1932

Abstract

Positron emission particle tracking (PEPT) is a noninvasive technique capable of imaging the three-dimensional dynamics of a wide variety of powders, particles, grains, and/or fluids. The PEPT technique can track the motion of particles with high temporal and spatial resolution and can be used to study various phenomena in systems spanning a broad range of scales, geometries, and physical states. We provide an introduction to the PEPT technique, an overview of its fundamental principles and operation, and a brief review of its application to a diverse range of scientific and industrial systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-011620-120633
2020-06-07
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-011620-120633.html?itemId=/content/journals/10.1146/annurev-chembioeng-011620-120633&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hawkesworth M, O'Dwyer M, Walker J, Fowles P, Heritage J et al. 1986. A positron camera for industrial application. Nucl. Instrum. Methods A 253:145–57
    [Google Scholar]
  2. 2. 
    Bemrose C, Fowles P, Hawkesworth M, O'Dwyer M 1988. Application of positron emission tomography to particulate flow measurement in chemical engineering processes. Nucl. Instrum. Methods A 273:874–80
    [Google Scholar]
  3. 3. 
    Hawkesworth M, Parker DJ, Fowles P, Crilly J, Jefferies N, Jonkers G 1991. Nonmedical applications of a positron camera. Nucl. Instrum. Methods A 310:423–34
    [Google Scholar]
  4. 4. 
    Parker DJ, Broadbent C, Fowles P, Hawkesworth M, McNeil P 1993. Positron emission particle tracking—a technique for studying flow within engineering equipment. Nucl. Instrum. Methods A 326:592–607
    [Google Scholar]
  5. 5. 
    Palmer MR, Brownell GL 1992. Annihilation density distribution calculations for medically important positron emitters. IEEE Trans. Med. Imaging 11:373–78
    [Google Scholar]
  6. 6. 
    Tsoulfanidis N 2010. Measurement and Detection of Radiation Boca Raton, FL: CRC
    [Google Scholar]
  7. 7. 
    Parker DJ, Forster R, Fowles P, Takhar P 2002. Positron emission particle tracking using the new Birmingham positron camera. Nucl. Instrum. Methods A 477:540–45
    [Google Scholar]
  8. 8. 
    Parker DJ 2017. Positron emission particle tracking and its application to granular media. Rev. Sci. Instrum. 88:051803
    [Google Scholar]
  9. 9. 
    Yang Z, Parker DJ, Fryer P, Bakalis S, Fan X 2006. Multiple-particle tracking: an improvement for positron particle tracking. Nucl. Instrum. Methods A 564:332–38
    [Google Scholar]
  10. 10. 
    Yang Z, Fryer P, Bakalis S, Fan X, Parker DJ, Seville J 2007. An improved algorithm for tracking multiple, freely moving particles in a positron emission particle tracking system. Nucl. Instrum. Methods A 577:585–94
    [Google Scholar]
  11. 11. 
    Bickell M, Buffler A, Govender I, Parker DJ 2012. A new line density tracking algorithm for PEPT and its application to multiple tracers. Nucl. Instrum. Methods A 682:36–41
    [Google Scholar]
  12. 12. 
    Hamerly G, Elkan C 2004. Learning the k in k-means. In Proceedings of the 16th International Conference on Neural Information Processing Systems (NIPS03), pp. 281–88. New York:: ACM
    [Google Scholar]
  13. 13. 
    MacQueen J 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 281–97. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  14. 14. 
    Anderson TW, Darling DA 1952. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat. 23:193–212
    [Google Scholar]
  15. 15. 
    Wiggins C, Santos R, Ruggles A 2017. A feature point identification method for positron emission particle tracking with multiple tracers. Nucl. Instrum. Methods A 843:22–28
    [Google Scholar]
  16. 16. 
    Crocker JC, Grier DG 1996. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179:298–310
    [Google Scholar]
  17. 17. 
    Sbalzarini IF, Koumoutsakos P 2005. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151:182–95
    [Google Scholar]
  18. 18. 
    Blakemore D, Govender I, McBride A, Mainza A 2019. Multiple particle tracking in PEPT using Voronoi tessellations. Chem. Eng. Sci. 207:780–89
    [Google Scholar]
  19. 19. 
    Aurenhammer F 1991. Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Comput. Surv. 23:345–405
    [Google Scholar]
  20. 20. 
    Nicuşan A, Windows-Yule C 2020. Positron emission particle tracking using machine learning. Rev. Sci. Instrum. 91:013329
    [Google Scholar]
  21. 21. 
    Mandel S 2020. Machine learning is used to conduct positron emission particle tracking. AIP Scilight, Jan. 24
    [Google Scholar]
  22. 22. 
    Campello RJ, Moulavi D, Sander J 2013. Density-based clustering based on hierarchical density estimates. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 160–72. Berlin:: Springer
    [Google Scholar]
  23. 23. 
    Parker DJ, Hawkesworth M, Broadbent C, Fowles P, Fryer T, McNeil P 1994. Industrial positron-based imaging: principles and applications. Nucl. Instrum. Methods A 348:583–92
    [Google Scholar]
  24. 24. 
    Parker DJ, Allen D, Benton D, Fowles P, McNeil P et al. 1997. Developments in particle tracking using the Birmingham positron camera. Nucl. Instrum. Methods A 392:421–426
    [Google Scholar]
  25. 25. 
    Cole K, Buffler A, Van der Meulen N, Cilliers J, Franzidis J et al. 2012. Positron emission particle tracking measurements with 50 micron tracers. Chem. Eng. Sci. 75:235–42
    [Google Scholar]
  26. 26. 
    Spinks T, Jones T, Bloomfield P, Bailey D, Miller M et al. 2000. Physical characteristics of the ECAT EXACT3D positron tomograph. Phys. Med. Biol. 45:2601–18
    [Google Scholar]
  27. 27. 
    Langford S, Wiggins C, Tenpenny D, Ruggles A 2016. Positron emission particle tracking (PEPT) for fluid flow measurements. Nucl. Eng. Des. 302:81–89
    [Google Scholar]
  28. 28. 
    Tai YC, Chatziioannou A, Siegel S, Young J, Newport D et al. 2001. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys. Med. Biol. 46:1845–62
    [Google Scholar]
  29. 29. 
    Sadrmomtaz A, Parker DJ, Byars L 2007. Modification of a medical PET scanner for PEPT studies. Nucl. Instrum. Methods A 573:91–94
    [Google Scholar]
  30. 30. 
    Parker DJ, Leadbeater T, Fan X, Hausard M, Ingram A, Yang Z 2009. Positron emission particle tracking using a modular positron camera. Nucl. Instrum. Methods A 604:339–42
    [Google Scholar]
  31. 30a. 
    Fairhurst PG, Barigou M, Fryer PJ, Pain JP, Parker DJ 2001. Using positron emission particle tracking (PEPT) to study nearly neutrally buoyant particles in high solid fraction pipe flow. Int. J. Multiph. Flow 27:111881–901
    [Google Scholar]
  32. 31. 
    Fan X, Parker DJ, Smith M 2006. Labelling a single particle for positron emission particle tracking using direct activation and ion-exchange techniques. Nucl. Instrum. Methods A 562:345–50
    [Google Scholar]
  33. 32. 
    Lagunas-Solar M, Jungerman J 1979. Cyclotron production of carrier-free cobalt-55, a new positron-emitting label for bleomycin. Int. J. Appl. Radiat. Isot. 30:25–32
    [Google Scholar]
  34. 33. 
    Parker DJ, Fan X 2008. Positron emission particle tracking application and labelling techniques. Particuology 6:16–23
    [Google Scholar]
  35. 34. 
    Miller PW, Long NJ, Vilar R, Gee AD 2008. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew. Chem. Int. Ed. 47:8998–9033
    [Google Scholar]
  36. 35. 
    Wildman R, Huntley J, Hansen JP, Parker DJ, Allen D 2000. Single-particle motion in three-dimensional vibrofluidized granular beds. Phys. Rev. E 62:3826
    [Google Scholar]
  37. 36. 
    Windows-Yule CRK, Rosato AD, Rivas N, Parker DJ 2014. Influence of initial conditions on granular dynamics near the jamming transition. New J. Phys. 16:063016
    [Google Scholar]
  38. 37. 
    Windows-Yule C, Rivas N, Parker DJ, Thornton A 2014. Low-frequency oscillations and convective phenomena in a density-inverted vibrofluidized granular system. Phys. Rev. E 90:062205
    [Google Scholar]
  39. 38. 
    Juarez G, Chen P, Lueptow RM 2011. Transition to centrifuging granular flow in rotating tumblers: a modified Froude number. New J. Phys. 13:053055
    [Google Scholar]
  40. 39. 
    Martin T, Huntley J, Wildman R 2005. Hydrodynamic model for a vibrofluidized granular bed. J. Fluid Mech. 535:325–45
    [Google Scholar]
  41. 40. 
    Viswanathan H, Sheikh NA, Wildman RD, Huntley JM 2011. Convection in three-dimensional vibrofluidized granular beds. J. Fluid Mech. 682:185–212
    [Google Scholar]
  42. 41. 
    Viswanathan H, Wildman R, Huntley J, Martin T 2006. Comparison of kinetic theory predictions with experimental results for a vibrated three-dimensional granular bed. Phys. Fluids 18:113302
    [Google Scholar]
  43. 42. 
    Hoomans B, Kuipers J, Salleh MM, Stein M, Seville J 2001. Experimental validation of granular dynamics simulations of gas-fluidised beds with homogenous in-flow conditions using positron emission particle tracking. Powder Technol. 116:166–77
    [Google Scholar]
  44. 43. 
    Seiler C, Fryer P, Seville J 2008. Statistical modelling of the spouted bed coating process using positron emission particle tracking (PEPT) data. Can. J. Chem. Eng. 86:571–81
    [Google Scholar]
  45. 44. 
    Epstein N, Grace JR 2010. Spouted and Spout-Fluid Beds: Fundamentals and Applications Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  46. 45. 
    González S, Windows-Yule C, Luding S, Parker DJ, Thornton AR 2015. Forced axial segregation in axially inhomogeneous rotating systems. Phys. Rev. E 92:022202
    [Google Scholar]
  47. 46. 
    Windows-Yule C, Scheper B, van der Horn A, Hainsworth N, Saunders J et al. 2016. Understanding and exploiting competing segregation mechanisms in horizontally rotated granular media. New J. Phys. 18:023013
    [Google Scholar]
  48. 47. 
    Yang R, Zou R, Yu A 2003. Microdynamic analysis of particle flow in a horizontal rotating drum. Powder Technol. 130:138–46
    [Google Scholar]
  49. 48. 
    Govender I, Pathmathas T 2016. A positron emission particle tracking investigation of the flow regimes in tumbling mills. J. Phys. D 50:035601
    [Google Scholar]
  50. 49. 
    Marigo M, Davies M, Leadbeater T, Cairns D, Ingram A, Stitt E 2013. Application of positron emission particle tracking (PEPT) to validate a discrete element method (DEM) model of granular flow and mixing in the Turbula mixer. Int. J. Pharm. 446:46–58
    [Google Scholar]
  51. 50. 
    Alizadeh E, Bertrand F, Chaouki J 2014. Comparison of DEM results and Lagrangian experimental data for the flow and mixing of granules in a rotating drum. AIChE J. 60:60–75
    [Google Scholar]
  52. 51. 
    Stewart R, Bridgwater J, Zhou Y, Yu A 2001. Simulated and measured flow of granules in a bladed mixer—a detailed comparison. Chem. Eng. Sci. 56:5457–71
    [Google Scholar]
  53. 52. 
    Parker DJ, Fan X, Forster RN, Fowles P, Ding Y, Seville JP 2005. Positron imaging studies of rotating drums. Can. J. Chem. Eng. 83:83–87
    [Google Scholar]
  54. 53. 
    Wildman R, Hansen JP, Parker DJ 2002. Velocity auto-correlation functions in three-dimensional vibro-fluidized granular beds. Phys. Fluids 14:232–39
    [Google Scholar]
  55. 54. 
    Puglisi A, Loreto V, Marconi UMB, Petri A, Vulpiani A 1998. Clustering and non-Gaussian behavior in granular matter. Phys. Rev. Lett. 81:3848
    [Google Scholar]
  56. 55. 
    Olafsen J, Urbach JS 1999. Velocity distributions and density fluctuations in a granular gas. Phys. Rev. E 60:R2468–71
    [Google Scholar]
  57. 56. 
    van der Meer D, Reimann P 2006. Temperature anisotropy in a driven granular gas. Europhys. Lett. 74:384–90
    [Google Scholar]
  58. 57. 
    Govender I, Mangesana N, Mainza A, Franzidis JP 2011. Measurement of shear rates in a laboratory tumbling mill. Miner. Eng. 24:225–29
    [Google Scholar]
  59. 58. 
    Hansen JP, McDonald IR 1990. Theory of Simple Liquids Amsterdam: Elsevier
    [Google Scholar]
  60. 59. 
    Xu Y, Li T, Lu L, Tebianian S, Chaouki J et al. 2019. Numerical and experimental comparison of tracer particle and averaging techniques for particle velocities in a fluidized bed. Chem. Eng. Sci. 195:356–66
    [Google Scholar]
  61. 60. 
    Windows-Yule CRK, Parker DJ 2013. Boltzmann statistics in a three-dimensional vibrofluidized granular bed: idealizing the experimental system. Phys. Rev. E 87:022211
    [Google Scholar]
  62. 61. 
    Windows-Yule C, Rivas N, Parker DJ 2013. Thermal convection and temperature inhomogeneity in a vibrofluidized granular bed: the influence of sidewall dissipation. Phys. Rev. Lett. 111:038001
    [Google Scholar]
  63. 62. 
    Windows-Yule C, Maddox B, Parker DJ 2014. The role of rotational inertia in the dynamics of vibrofluidised granular gases. Europhys. Lett. 108:58006
    [Google Scholar]
  64. 63. 
    Windows-Yule C 2017. Do granular systems obey statistical mechanics? A review of recent work assessing the applicability of equilibrium theory to vibrationally excited granular media. Int. J. Mod. Phys. B 31:1742010
    [Google Scholar]
  65. 64. 
    Stein MG 1999. Particle motion in fluidised beds. PhD Diss., Univ. Birmingham, Birmingham, UK
  66. 65. 
    Stein M, Ding Y, Seville J, Parker DJ 2000. Solids motion in bubbling gas fluidised beds. Chem. Eng. Sci. 55:5291–300
    [Google Scholar]
  67. 66. 
    Fan X, Parker DJ, Yang Z, Seville JP, Baeyens J 2008. The effect of bed materials on the solid/bubble motion in a fluidised bed. Chem. Eng. Sci. 63:943–50
    [Google Scholar]
  68. 67. 
    Fan X, Yang Z, Parker DJ 2011. Impact of solid sizes on flow structure and particle motions in bubbling fluidization. Powder Technol. 206:132–38
    [Google Scholar]
  69. 68. 
    Seville J, Salleh A, Ingram A, McCormack A, Greenwood R, Reiling V 2004. Particle motion and defluidisation by sintering in the fluidised bed polyethylene process. In Proceedings of the 11th International Conference on Fluidization (Fluidization XI), pp. 211–18. Brooklyn, NY: Eng. Conf. Int.
  70. 69. 
    Ingram I, Hausard M, Fan X, Parker DJ, Seville J et al. 2007. Portable positron emission particle tracking (PEPT) for industrial use. In Proceedings of the 12th International Conference on Fluidization: New Horizons in Fluidization Engineering (Fluidization XII), pp. 497–504. Brooklyn, NY:: Eng. Conf. Int.
    [Google Scholar]
  71. 70. 
    Chan CW, Seville JP, Parker DJ, Baeyens J 2010. Particle velocities and their residence time distribution in the riser of a CFB. Powder Technol. 203:187–97
    [Google Scholar]
  72. 71. 
    Chan CW, Seville JP, Fan X, Baeyens J 2008. Particle motion in CFB cyclones as observed by positron emission particle tracking. Ind. Eng. Chem. Res. 48:253–61
    [Google Scholar]
  73. 72. 
    Seville J, Silomon-Pflug H, Knight P 1998. Modelling of sintering in high temperature gas fluidisation. Powder Technol. 97:160–69
    [Google Scholar]
  74. 73. 
    Wildman R, Huntley J, Parker DJ 2001. Convection in highly fluidized three-dimensional granular beds. Phys. Rev. Lett. 86:3304–7
    [Google Scholar]
  75. 74. 
    Wildman RD, Martin TW, Krouskop PE, Talbot J, Huntley JM, Parker DJ 2005. Convection in vibrated annular granular beds. Phys. Rev. E 71:061301
    [Google Scholar]
  76. 75. 
    Windows-Yule CRK, Lanchester E, Madkins D, Parker DJ 2018. New insight into pseudo-thermal convection in vibrofluidised granular systems. Sci. Rep. 8:12859
    [Google Scholar]
  77. 76. 
    Li Y, Fan H, Fan X 2014. Identify of flow patterns in bubbling fluidization. Chem. Eng. Sci. 117:455–64
    [Google Scholar]
  78. 77. 
    Li L, Rasmuson A, Ingram A, Johansson M, Remmelgas J et al. 2015. PEPT study of particle cycle and residence time distributions in a Würster fluid bed. AIChE J. 61:756–68
    [Google Scholar]
  79. 78. 
    Hensler T, Tupy M, Strer T, Pöschel T, Wirth KE 2015. Particle tracking in fluidized beds with secondary gas injection. Proc. Eng. 102:850–57
    [Google Scholar]
  80. 79. 
    Ding Y, Forster R, Seville J, Parker DJ 2002. Granular motion in rotating drums: bed turnover time and slumping–rolling transition. Powder Technol. 124:18–27
    [Google Scholar]
  81. 80. 
    Lim SY, Davidson J, Forster R, Parker DJ, Scott D, Seville J 2003. Avalanching of granular material in a horizontal slowly rotating cylinder: PEPT studies. Powder Technol. 138:25–30
    [Google Scholar]
  82. 81. 
    Morrison A, Govender I, Mainza A, Parker DJ 2016. The shape and behaviour of a granular bed in a rotating drum using Eulerian flow fields obtained from PEPT. Chem. Eng. Sci. 152:186–98
    [Google Scholar]
  83. 82. 
    Ancey C 2001. Dry granular flows down an inclined channel: experimental investigations on the frictional–collisional regime. Phys. Rev. E 65:011304
    [Google Scholar]
  84. 83. 
    Govender I, Richter MC, Mainza AN, De Klerk DN 2017. A positron emission particle tracking investigation of the scaling law governing free surface flows in tumbling mills. AIChE J. 63:903–13
    [Google Scholar]
  85. 84. 
    Laverman J, Fan X, Ingram A, van Sint Annaland M, Parker DJ et al. 2012. Experimental study on the influence of bed material on the scaling of solids circulation patterns in 3D bubbling gas–solid fluidized beds of glass and polyethylene using positron emission particle tracking. Powder Technol. 224:297–305
    [Google Scholar]
  86. 85. 
    McBride A, Govender I, Powell M, Cloete T 2004. Contributions to the experimental validation of the discrete element method applied to tumbling mills. Eng. Comput. 21:119–36
    [Google Scholar]
  87. 86. 
    Govender I, McBride A, Powell M 2004. Improved experimental tracking techniques for validating discrete element method simulations of tumbling mills. Exp. Mech. 44:593–607
    [Google Scholar]
  88. 87. 
    Wildman R, Huntley J, Parker DJ 2001. Granular temperature profiles in three-dimensional vibrofluidized granular beds. Phys. Rev. E 63:061311
    [Google Scholar]
  89. 88. 
    Wildman R, Huntley J, Hansen JP 1999. Self-diffusion of grains in a two-dimensional vibrofluidized bed. Phys. Rev. E 60:7066–75
    [Google Scholar]
  90. 89. 
    Wildman R, Huntley J 2000. Novel method for measurement of granular temperature distributions in two-dimensional vibro-fluidised beds. Powder Technol. 113:14–22
    [Google Scholar]
  91. 90. 
    Martin T, Seville J, Parker DJ 2007. A general method for quantifying dispersion in multiscale systems using trajectory analysis. Chem. Eng. Sci. 62:3419–28
    [Google Scholar]
  92. 91. 
    Kuo H, Knight P, Parker DJ, Tsuji Y, Adams M, Seville J 2002. The influence of DEM simulation parameters on the particle behaviour in a v-mixer. Chem. Eng. Sci. 57:3621–38
    [Google Scholar]
  93. 92. 
    Kuo H, Knight P, Parker DJ, Seville J 2005. Solids circulation and axial dispersion of cohesionless particles in a v-mixer. Powder Technol. 152:133–40
    [Google Scholar]
  94. 93. 
    Windows-Yule C, Van Der Horn A, Tunuguntla D, Parker DJ, Thornton A 2017. Inducing axial banding in bidisperse-by-density granular systems using noncylindrical tumbler geometries. Phys. Rev. Appl. 8:024010
    [Google Scholar]
  95. 94. 
    Ng B, Kwan C, Ding Y, Ghadiri M, Fan X, Parker DJ 2008. Granular flow fields in vertical high shear mixer granulators. AIChE J. 54:415–26
    [Google Scholar]
  96. 95. 
    Knight P, Seville J, Wellm A, Instone T 2001. Prediction of impeller torque in high shear powder mixers. Chem. Eng. Sci. 56:4457–71
    [Google Scholar]
  97. 96. 
    Stewart R, Bridgwater J, Parker DJ 2001. Granular flow over a flat-bladed stirrer. Chem. Eng. Sci. 56:4257–71
    [Google Scholar]
  98. 97. 
    Bridgwater J, Broadbent C, Parker DJ 1993. Study of the influence of blade speed on the performance of a powder mixer using positron emission particle tracking. Chem. Eng. Res. Des. 71:675–81
    [Google Scholar]
  99. 98. 
    Jones J, Parker DJ, Bridgwater J 2007. Axial mixing in a ploughshare mixer. Powder Technol. 178:73–86
    [Google Scholar]
  100. 99. 
    Laurent B, Bridgwater J, Parker DJ 2002. Convection and segregation in a horizontal mixer. Powder Technol. 123:9–18
    [Google Scholar]
  101. 100. 
    Wildman RD, Huntley JM, Jean-Pierre H 2001. Experimental studies of vibro-fluidised granular beds. In Granular Gases, ed. T Pöschel, S Luding, pp. 215–32. Berlin:: Springer
    [Google Scholar]
  102. 101. 
    Marston JO, Thoroddsen ST 2015. Investigation of granular impact using positron emission particle tracking. Powder Technol. 274:284–88
    [Google Scholar]
  103. 102. 
    Keys AS, Abate AR, Glotzer SC, Durian DJ 2007. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nat. Phys. 3:260–64
    [Google Scholar]
  104. 103. 
    Goldhirsch I 2008. Introduction to granular temperature. Powder Technol. 182:130–36
    [Google Scholar]
  105. 104. 
    Behringer B 2002. Granular materials: taking the temperature. Nature 415:594–95
    [Google Scholar]
  106. 105. 
    Ogawa S 1978. Multitemperature theory of granular materials. In Proceedings of the US–Japan Seminar on Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials, pp. 208–17. Tokyo:: Gakujutsu Bunken Fukyukai
    [Google Scholar]
  107. 106. 
    Ogawa S, Umemura A, Oshima N 1980. On the equations of fully fluidized granular materials. Z. Angew. Math. Phys. 31:483–93
    [Google Scholar]
  108. 107. 
    Windows-Yule CRK, Weinhart T, Parker DJ, Thornton AR 2014. Influence of thermal convection on density segregation in a vibrated binary granular system. Phys. Rev. E 89:022202
    [Google Scholar]
  109. 108. 
    Windows-Yule C, Rosato A, Parker DJ, Thornton AR 2015. Maximizing energy transfer in vibrofluidized granular systems. Phys. Rev. E 91:052203
    [Google Scholar]
  110. 109. 
    Windows-Yule C, Rosato A, Thornton A, Parker DJ 2015. Resonance effects on the dynamics of dense granular beds: achieving optimal energy transfer in vibrated granular systems. New J. Phys. 17:023015
    [Google Scholar]
  111. 110. 
    Wildman R, Huntley J 2008. Experimental measurements and modelling of rapid granular flows. Powder Technol. 182:182–91
    [Google Scholar]
  112. 111. 
    Wildman R, Martin T, Huntley J, Jenkins J, Viswanathan H et al. 2008. Experimental investigation and kinetic-theory-based model of a rapid granular shear flow. J. Fluid Mech. 602:63–79
    [Google Scholar]
  113. 112. 
    Wildman R, Parker DJ 2002. Coexistence of two granular temperatures in binary vibrofluidized beds. Phys. Rev. Lett. 88:064301
    [Google Scholar]
  114. 113. 
    Ottino JM, Khakhar D 2000. Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32:55–91
    [Google Scholar]
  115. 114. 
    Ahmad K, Smalley I 1973. Observation of particle segregation in vibrated granular systems. Powder Technol. 8:69–75
    [Google Scholar]
  116. 115. 
    Khakhar D, McCarthy J, Ottino JM 1997. Radial segregation of granular mixtures in rotating cylinders. Phys. Fluids 9:3600–14
    [Google Scholar]
  117. 116. 
    Tunuguntla DR, Bokhove O, Thornton AR 2014. A mixture theory for size and density segregation in shallow granular free-surface flows. J. Fluid Mech. 749:99–112
    [Google Scholar]
  118. 117. 
    Rosato AD, Blackmore DL, Zhang N, Lan Y 2002. A perspective on vibration-induced size segregation of granular materials. Chem. Eng. Sci. 57:265–75
    [Google Scholar]
  119. 118. 
    Arntz M, den Otter WK, Briels WJ, Bussmann P, Beeftink H, Boom R 2008. Granular mixing and segregation in a horizontal rotating drum: a simulation study on the impact of rotational speed and fill level. AIChE J. 54:3133–46
    [Google Scholar]
  120. 119. 
    Feitosa K, Menon N 2002. Breakdown of energy equipartition in a 2D binary vibrated granular gas. Phys. Rev. Lett. 88:198301
    [Google Scholar]
  121. 120. 
    Windows-Yule K, Parker DJ 2015. Density-driven segregation in binary and ternary granular systems. KONA Powder Part. J. 32:163–75
    [Google Scholar]
  122. 121. 
    Windows-Yule C, Parker DJ 2014. Inelasticity-induced segregation: why it matters, when it matters. Europhys. Lett. 106:64003
    [Google Scholar]
  123. 122. 
    Windows-Yule C, Parker DJ 2014. Self-diffusion, local clustering and global segregation in binary granular systems: the role of system geometry. Powder Technol. 261:133–42
    [Google Scholar]
  124. 123. 
    Windows-Yule C, Parker DJ 2014. Center of mass scaling in three-dimensional binary granular systems. Phys. Rev. E 89:062206
    [Google Scholar]
  125. 124. 
    Windows-Yule CRK, Moore A, Wellard C, Parker DJ, Seville JPK 2020. Particle distributions in binary gas-fluidised beds: Shape matters—but not much. Chem. Eng. Sci. 216:115440
    [Google Scholar]
  126. 124a. 
    Windows-Yule CRK, Gibson S, Parker DJ, Kokalova TZ, Seville JPK 2020. Effect of distributor design on particle distribution in a binary fluidised bed. Powder Technol 367:1–9
    [Google Scholar]
  127. 125. 
    Hsiau SS, Chen C 2000. Granular convection cells in a vertical shaker. Powder Technol. 111:210–17
    [Google Scholar]
  128. 126. 
    Hsiau SS, Wang PC, Tai CH 2002. Convection cells and segregation in a vibrated granular bed. AIChE J. 48:1430–38
    [Google Scholar]
  129. 127. 
    Windows-Yule C, Parker DJ 2014. Energy non-equipartition in strongly convective granular systems. Eur. Phys. J. E 37:17
    [Google Scholar]
  130. 128. 
    Ingram A, Yang Z, Bakalis S, Parker DJ, Fan X et al. 2007. Multiple particle tracking in a fluidised bed. Proceedings of the 12th International Conference on Fluidization: New Horizons in Fluidization Engineering (Fluidization XII), pp. 449–52. Brooklyn, NY: Eng. Conf. Int.
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-011620-120633
Loading
/content/journals/10.1146/annurev-chembioeng-011620-120633
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error