1932

Abstract

This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-034647
2016-06-07
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-034647.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-034647&mimeType=html&fmt=ahah

Literature Cited

  1. Granqvist CG. 1.  2014. Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564:1–38 [Google Scholar]
  2. Runnerstrom EL, Llordés A, Lounis SD, Milliron DJ. 2.  2014. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50:10555–72 [Google Scholar]
  3. Shehabi A, DeForest N, McNeil A, Masanet E, Greenblatt J. 3.  et al. 2013. U.S. energy savings potential from dynamic daylighting control glazings. Energy Build. 66:415–23 [Google Scholar]
  4. DeForest N, Shehabi A, O'Donnell J, Garcia G, Greenblatt J. 4.  et al. 2015. United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings. Build. Environ. 89:107–17 [Google Scholar]
  5. 5. US Dep. Energy 2008. Energy Efficiency Trends in Residential and Commercial Buildings. Washington, DC: US Dep. Energy http://apps1.eere.energy.gov/buildings/publications/pdfs/corporate/bt_stateindustry.pdf [Google Scholar]
  6. Michaels J, Leckey T. 6.  2012. Commercial Buildings Energy Consumption Survey (CBECS) Washington, DC: Energy Inf. Adm. US Dep. Energy http://www.eia.gov/consumption/commercial/data/2012/ [Google Scholar]
  7. Jensen J, Krebs FC. 7.  2014. From the bottom up—flexible solid state electrochromic devices. Adv. Mater. 26:7231–34 [Google Scholar]
  8. Kawahara J, Ersman PA, Engquist I, Berggren M. 8.  2012. Improving the color switch contrast in PEDOT: PSS-based electrochromic displays. Org. Electron. 13:469–74 [Google Scholar]
  9. Moon HC, Lodge TP, Frisbie CD. 9.  2015. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chem. Mater. 27:1420–25 [Google Scholar]
  10. Irie M, Fukaminato T, Matsuda K, Kobatake S. 10.  2014. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114:12174–277 [Google Scholar]
  11. Kim H, Kim Y, Kim KS, Jeong HY, Jang AR. 11.  et al. 2013. Flexible thermochromic window based on hybridized VO2/graphene. ACS Nano 7:5769–76 [Google Scholar]
  12. Gao Y, Wang S, Luo H, Dai L, Cao C. 12.  et al. 2012. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control. Energy Environ. Sci. 5:6104–10 [Google Scholar]
  13. Diop DK, Simonot L, Destouches N, Abadias G, Pailloux F. 13.  et al. 2015. Magnetron sputtering deposition of Ag/TiO2 nanocomposite thin films for repeatable and multicolor photochromic applications on flexible substrates. Adv. Mater. Interfaces 2: [Google Scholar]
  14. Wang C, Zhou B, Zeng X, Hong Y, Gao Y, Wen W. 14.  2015. Enhanced photochromic efficiency of transparent and flexible nanocomposite films based on PEO–PPO–PEO and tungstate hybridization. J. Mater. Chem. C 3:177–86 [Google Scholar]
  15. Gratzel M. 15.  2001. Materials science: ultrafast colour displays. Nature 409:575–76 [Google Scholar]
  16. Cummins D, Boschloo G, Ryan M, Corr D, Rao SN, Fitzmaurice D. 16.  2000. Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J. Phys. Chem. B 104:11449–59 [Google Scholar]
  17. Choi SY, Mamak M, Coombs N, Chopra N, Ozin GA. 17.  2004. Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes. Nano Lett. 4:1231–35 [Google Scholar]
  18. Sun XW, Wang JX. 18.  2008. Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode. Nano. Lett. 8:1884–89 [Google Scholar]
  19. Weng W, Higuchi T, Suzuki M, Fukuoka T, Shimomura T. 19.  et al. 2010. A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity. Angew. Chem. Int. Ed. 49:3956–59 [Google Scholar]
  20. 20. EControl 2014. Switchable Solar Control Glazing. EControl Glass GmbH. http://www.econtrol-glas.de/fileadmin/user_upload/Downloads/STU/EN_EC_technical_specifications_ver_1.0.pdf
  21. Mortimer RJ, Rosseinsky DR, Monk PM. 21.  2015. Electrochromism and Electrochromic Devices Weinheim, Ger: Wiley-VCH [Google Scholar]
  22. Monk P, Mortimer R, Rosseinsky D. 22.  2007. Electrochromism and Electrochromic Devices London: Cambridge Univ. Press [Google Scholar]
  23. Granqvist CG. 23.  2012. Oxide electrochromics: an introduction to devices and materials. Sol. Energy Mater. Sol. Cells 99:1–13 [Google Scholar]
  24. Deb SK. 24.  2008. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cells 92:245–58 [Google Scholar]
  25. Mortimer RJ. 25.  2011. Electrochromic materials. Annu. Rev. Mater. Res. 41:241–68 [Google Scholar]
  26. Deb SK. 26.  1969. A novel electrophotographic system. Appl. Opt. 8:Suppl. 1192–95 [Google Scholar]
  27. Deb SK. 27.  1973. Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 27:801–22 [Google Scholar]
  28. Triana C, Granqvist C, Niklasson G. 28.  2015. Electrochromism and small-polaron hopping in oxygen deficient and lithium intercalated amorphous tungsten oxide films. J. Appl. Phys. 118:024901 [Google Scholar]
  29. Gillaspie DT, Tenent RC, Dillon AC. 29.  2010. Metal-oxide films for electrochromic applications: present technology and future directions. J. Mater. Chem. 20:9585–92 [Google Scholar]
  30. Dillon A, Mahan A, Deshpande R, Parilla P, Jones K, Lee S. 30.  2008. Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies. Thin Solid Films 516:794–97 [Google Scholar]
  31. Lee SH, Deshpande R, Parilla PA, Jones KM, To B. 31.  et al. 2006. Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18:763–66 [Google Scholar]
  32. Li C-P, Wolden CA, Dillon AC, Tenent RC. 32.  2012. Electrochromic films produced by ultrasonic spray deposition of tungsten oxide nanoparticles. Sol. Energy Mater. Sol. Cells 99:50–55 [Google Scholar]
  33. Li C-P, Engtrakul C, Tenent RC, Wolden CA. 33.  2015. Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance. Sol. Energy Mater. Sol. Cells 132:6–14 [Google Scholar]
  34. Wang JM, Sun XW, Jiao Z. 34.  2010. Application of nanostructures in electrochromic materials and devices: recent progress. Materials 3:5029–53 [Google Scholar]
  35. Boschloo G, Fitzmaurice D. 35.  1999. Electron accumulation in nanostructured TiO2 (anatase) electrodes. J. Phys. Chem. B 103:7860–68 [Google Scholar]
  36. Lee S-H, Tracy CE, Yan Y, Pitts JR, Deb SK. 36.  2005. Solid-state nanocomposite electrochromic pseudocapacitors. Electrochem. Solid-State Lett. 8:A188–A90 [Google Scholar]
  37. Scherer MR, Steiner U. 37.  2012. Efficient electrochromic devices made from 3D nanotubular gyroid networks. Nano Lett. 13:3005–10 [Google Scholar]
  38. Wei D, Scherer MR, Bower C, Andrew P, Ryhanen T, Steiner U. 38.  2012. A nanostructured electrochromic supercapacitor. Nano Lett. 12:1857–62 [Google Scholar]
  39. Garcia G, Buonsanti R, Runnerstrom EL, Mendelsberg RJ, Llordés A. 39.  et al. 2011. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett. 11:4415–20 [Google Scholar]
  40. Henglein A, Mulvaney P, Linnert T. 40.  1991. Chemistry of Agn aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles. Faraday Discuss. 92:31–44 [Google Scholar]
  41. Ung T, Giersig M, Dunstan D, Mulvaney P. 41.  1997. Spectroelectrochemistry of colloidal silver. Langmuir 13:1773–82 [Google Scholar]
  42. Novo C, Funston AM, Gooding AK, Mulvaney P. 42.  2009. Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131:14664–66 [Google Scholar]
  43. Boschloo G, Fitzmaurice D. 43.  1999. Spectroelectrochemistry of highly doped nanostructured tin dioxide electrodes. J. Phys. Chem. B 103:3093–98 [Google Scholar]
  44. zum Felde U, Haase M, Weller H. 44.  2000. Electrochromism of highly doped nanocrystalline SnO2:Sb. J. Phys. Chem. B 104:9388–95 [Google Scholar]
  45. Wang C, Shim M, Guyot-Sionnest P. 45.  2001. Electrochromic nanocrystal quantum dots. Science 291:2390–92 [Google Scholar]
  46. Wang C, Shim M, Guyot-Sionnest P. 46.  2002. Electrochromic semiconductor nanocrystal films. Appl. Phys. Lett. 80:4–6 [Google Scholar]
  47. Kanehara M, Koike H, Yoshinaga T, Teranishi T. 47.  2009. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 131:17736–37 [Google Scholar]
  48. Buonsanti R, Llordés A, Aloni S, Helms BA, Milliron DJ. 48.  2011. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett. 11:4706–10 [Google Scholar]
  49. Hutter E, Fendler JH. 49.  2004. Exploitation of localized surface plasmon resonance. Adv. Mater. 16:1685–706 [Google Scholar]
  50. Mayer KM, Hafner JH. 50.  2011. Localized surface plasmon resonance sensors. Chem. Rev. 111:3828–57 [Google Scholar]
  51. Luther JM, Jain PK, Ewers T, Alivisatos AP. 51.  2011. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10:361–66 [Google Scholar]
  52. Lounis SD, Runnerstrom EL, Llordés A, Milliron DJ. 52.  2014. Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals. J. Phys. Chem. Lett. 5:1564–74 [Google Scholar]
  53. Kraft A, Rottmann M. 53.  2009. Properties, performance and current status of the laminated electrochromic glass of Gesimat. Sol. Energy Mater. Sol. Cells 93:2088–92 [Google Scholar]
  54. Garcia G, Buonsanti R, Llordés A, Runnerstrom EL, Bergerud A, Milliron DJ. 54.  2013. Near-infrared spectrally selective plasmonic electrochromic thin films. Adv. Opt. Mater. 1:215–20 [Google Scholar]
  55. Dahlman CJ, Tan Y, Marcus MA, Milliron DJ. 55.  2015. Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J. Am. Chem. Soc. 137:9160–66 [Google Scholar]
  56. Kim J, Ong GK, Wang Y, LeBlanc G, Williams TE. 56.  et al. 2015. Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 15:5574–79 [Google Scholar]
  57. Llordés A, Garcia G, Gazquez J, Milliron DJ. 57.  2013. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500:323–26 [Google Scholar]
  58. Llordés A, Hammack AT, Buonsanti R, Tangirala R, Aloni S. 58.  et al. 2011. Polyoxometalates and colloidal nanocrystals as building blocks for metal oxide nanocomposite films. J. Mater. Chem. 21:11631–38 [Google Scholar]
  59. DeForest N, Shehabi A, Garcia G, Greenblatt J, Masanet E. 59.  et al. 2013. Regional performance targets for transparent near-infrared switching electrochromic window glazings. Build. Environ. 61:160–68 [Google Scholar]
  60. Williams TE, Chang CM, Rosen EL, Garcia G, Runnerstrom EL. 60.  et al. 2014. NIR-selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices. J. Mater. Chem. C 2:3328–35 [Google Scholar]
  61. Bird C, Kuhn A. 61.  1981. Electrochemistry of the viologens. Chem. Soc. Rev. 10:49–82 [Google Scholar]
  62. Beaujuge PM, Reynolds JR. 62.  2010. Color control in pi-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 110:268–320 [Google Scholar]
  63. Kao S-Y, Kawahara Y, Nakatsuji S, Ho K-C. 63.  2015. Achieving a large contrast, low driving voltage, and high stability electrochromic device with a viologen chromophore. J. Mater. Chem. C 3:3266–72 [Google Scholar]
  64. Stolar M, Borau-Garcia J, Toonen M, Baumgartner T. 64.  2015. Synthesis and tunability of highly electron-accepting, N-benzylated “phosphaviologens.”. J. Am. Chem. Soc. 137:3366–71 [Google Scholar]
  65. Shankar S, Lahav M, van der Boom ME. 65.  2015. Coordination-based molecular assemblies as electrochromic materials: ultra-high switching stability and coloration efficiencies. J. Am. Chem. Soc. 137:4050–53 [Google Scholar]
  66. Cui B-B, Zhong Y-W, Yao J. 66.  2015. Three-state near-infrared electrochromism at the molecular scale. J. Am. Chem. Soc. 137:4058–61 [Google Scholar]
  67. Kaminker R, Motiei L, Gulino A, Fragalà I, Shimon LJW. 67.  et al. 2010. Stepwise assembly of coordination-based metal–organic networks. J. Am. Chem. Soc. 132:14554–61 [Google Scholar]
  68. Mortimer RJ. 68.  1999. Organic electrochromic materials. Electrochim. Acta 44:2971–81 [Google Scholar]
  69. Beaujuge PM, Reynolds JR. 69.  2010. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 110:268–320 [Google Scholar]
  70. Jensen J, Hösel M, Dyer AL, Krebs FC. 70.  2015. Development and manufacture of polymer-based electrochromic devices. Adv. Funct. Mater. 25:2073–90 [Google Scholar]
  71. Beaujuge PM, Ellinger S, Reynolds JR. 71.  2008. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat. Mater. 7:795–99 [Google Scholar]
  72. Kang J-H, Oh Y-J, Paek S-M, Hwang S-J, Choy J-H. 72.  2009. Electrochromic device of PEDOT-PANI hybrid system for fast response and high optical contrast. Sol. Energy Mater. Sol. Cells 93:2040–44 [Google Scholar]
  73. Kung C-W, Wang TC, Mondloch JE, Fairen-Jimenez D, Gardner DM. 73.  et al. 2013. Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism. Chem. Mater. 25:5012–17 [Google Scholar]
  74. Wade CR, Li M, Dincă M. 74.  2013. Facile deposition of multicolored electrochromic metal–organic framework thin films. Angew. Chem. Int. Ed. 125:13619–23 [Google Scholar]
  75. Zhang Z, Yoshikawa H, Awaga K. 75.  2014. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC=anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework. J. Am. Chem. Soc. 136:16112–15 [Google Scholar]
  76. Harvey CP, Tovar JD. 76.  2011. Main-chain photochromic conducting polymers. Polym. Chem. 2:2699–706 [Google Scholar]
  77. Morimoto M, Kobatake S, Irie M. 77.  2003. Multicolor photochromism of two- and three-component diarylethene crystals. J. Am. Chem. Soc. 125:11080–87 [Google Scholar]
  78. Orgiu E, Samori P. 78.  2014. 25th anniversary article: Organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices. Adv. Mater. 26:1827–45 [Google Scholar]
  79. Zhang J, Zou Q, Tian H. 79.  2013. Photochromic materials: more than meets the eye. Adv. Mater. 25:378–99 [Google Scholar]
  80. Pardo R, Zayat M, Levy D. 80.  2011. Photochromic organic-inorganic hybrid materials. Chem. Soc. Rev. 40:672–87 [Google Scholar]
  81. Schrauben JN, Hayoun R, Valdez CN, Braten M, Fridley L, Mayer JM. 81.  2012. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science 336:1298–301 [Google Scholar]
  82. Gavrilyuk AI. 82.  1999. Photochromism in WO3 thin films. Electrochim. Acta 44:3027–37 [Google Scholar]
  83. Wang Y, Pan L, Li Y, Gavrilyuk AI. 83.  2014. Hydrogen photochromism in V2O5 layers prepared by the sol-gel technology. Appl. Surf. Sci. 314:384–91 [Google Scholar]
  84. Pan L, Wang Y, Wang X, Qu H, Zhao J. 84.  et al. 2014. Hydrogen photochromism in Nb2O5 powders. Phys. Chem. Chem. Phys. 16:20828–33 [Google Scholar]
  85. Zhang Y, Lee SH, Mascarenhas A, Deb SK. 85.  2008. An UV photochromic memory effect in proton-based WO3 electrochromic devices. Appl. Phys. Lett. 93:203508 [Google Scholar]
  86. Valdez CN, Braten M, Soria A, Gamelin DR, Mayer JM. 86.  2013. Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals. J. Am. Chem. Soc. 135:8492–95 [Google Scholar]
  87. Bechinger C, Ferrere S, Zaban A, Sprague J, Gregg BA. 87.  1996. Photoelectrochromic windows and displays. Nature 383:608–10 [Google Scholar]
  88. Cibrev D, Jankulovska M, Lana-Villarreal T, Gomez R. 88.  2014. Potentiostatic reversible photoelectrochromism: an effect appearing in nanoporous TiO2/Ni(OH)2 thin films. ACS Appl. Mater. Interfaces 6:10304–12 [Google Scholar]
  89. Leftheriotis G, Syrrokostas G, Yianoulis P. 89.  2013. Photocoloration efficiency and stability of photoelectrochromic devices. Solid State Ionics 231:30–36 [Google Scholar]
  90. Zhang H, Duan L, Lan Y, Wang E, Hu C. 90.  2003. Synthesis, crystal structure, and photochromism of novel two-dimensional supramolecular networks based on Keggin-type polyoxoanion and lanthanide coordination cations. Inorg. Chem. 42:8053–58 [Google Scholar]
  91. Liu S, Mohwald H, Volkmer D, Kurth DG. 91.  2006. Polyoxometalate-based electro- and photochromic dual-mode devices. Langmuir 22:1949–51 [Google Scholar]
  92. Wang MS, Xu G, Zhang ZJ, Guo GC. 92.  2010. Inorganic-organic hybrid photochromic materials. Chem. Commun. 46:361–76 [Google Scholar]
  93. Wang Y, Li H, Wu C, Yang Y, Shi L, Wu L. 93.  2013. Chiral heteropoly blues and controllable switching of achiral polyoxometalate clusters. Angew. Chem. Int. Ed. 52:4577–81 [Google Scholar]
  94. Hakouk K, Oms O, Dolbecq A, El Moll H, Marrot J. 94.  et al. 2013. Sulfonium polyoxometalates: a new class of solid-state photochromic hybrid organic-inorganic materials. Inorg. Chem. 52:555–57 [Google Scholar]
  95. Branda NR, Bremner GR, Finden JG, Gauthier SJ, Gillon BH. 95.  et al. 2013. Switching materials and compositions and methods for making same US Patent No. 4/391,491 A1 [Google Scholar]
  96. Karel J, ViolBarbosa CE, Kiss J, Jeong J, Aetukuri N. 96.  et al. 2014. Distinct electronic structure of the electrolyte gate-induced conducting phase in vanadium dioxide revealed by high-energy photoelectron spectroscopy. ACS Nano 8:5784–89 [Google Scholar]
  97. Byker HJ, Ogburn PHJ, Vander Griend DA, Veldkamp BS, Winkle DD. 97.  2011. Ligand exchange thermochromic, (LETC), systems. US Patent No. 8,018,639 B2 [Google Scholar]
  98. Zhang Z, Gao Y, Chen Z, Du J, Cao C. 98.  et al. 2010. Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature. Langmuir 26:10738–44 [Google Scholar]
  99. Day JH. 99.  1963. Thermochromism. Chem. Rev. 63:65–80 [Google Scholar]
  100. Day JH. 100.  1968. Thermochromism of inorganic compounds. Chem. Rev. 68:649–57 [Google Scholar]
  101. Kiria P, Hyett G, Binions R. 101.  2010. Solid state thermochromic materials. Adv. Mat. Lett. 1:86–105 [Google Scholar]
  102. Granqvist CG, Lansåker PC, Mlyuka NR, Niklasson GA, Avendaño E. 102.  2009. Progress in chromogenics: new results for electrochromic and thermochromic materials and devices. Sol. Energy Mater. Sol. Cells 93:2032–39 [Google Scholar]
  103. Qazilbash MM, Brehm M, Chae BG, Ho PC, Andreev GO. 103.  et al. 2007. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318:1750–53 [Google Scholar]
  104. Budai JD, Hong J, Manley ME, Specht ED, Li CW. 104.  et al. 2014. Metallization of vanadium dioxide driven by large phonon entropy. Nature 515:535–39 [Google Scholar]
  105. Li S-Y, Niklasson GA, Granqvist C-G. 105.  2012. Thermochromic fenestration with VO2-based materials: three challenges and how they can be met. Thin Solid Films 520:3823–28 [Google Scholar]
  106. Reyes J, Sayer M, Chen R. 106.  1976. Transport properties of tungsten-doped VO2. Can. J. Phys. 54:408–12 [Google Scholar]
  107. Mlyuka N, Niklasson G, Granqvist C-G. 107.  2009. Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature. Appl. Phys. Lett. 95:171909 [Google Scholar]
  108. Bamfield P, Hutchings MG. 108.  2010. Chromic Phenomena: Technological Applications of Colour Chemistry London: R. Soc. Chem. [Google Scholar]
  109. Samat A, Lokshin V. 109.  2002. Thermochromism of organic compounds. Organic Photochromic and Thermochromic Compounds: Volume 2: Physicochemical Studies, Biological Applications, and Thermochromism JC Crano, RJ Guglielmetti 415–66 Boston: Springer [Google Scholar]
  110. Burkinshaw S, Towns A. 110.  1998. Reversibly thermochromic systems based on pH-sensitive functional dyes. J. Mater. Chem. 8:2677–83 [Google Scholar]
  111. Seeboth A, Kriwanek J, Vetter R. 111.  1999. The first example of thermochromism of dyes embedded in transparent polymer gel networks. J. Mater. Chem. 9:2277–78 [Google Scholar]
  112. Leclerc M. 112.  1999. Optical and electrochemical transducers based on functionalized conjugated polymers. Adv. Mater. 11:1491–98 [Google Scholar]
  113. Seeboth A, Lötzsch D. 113.  2013. Thermochromic and Thermotropic Materials Boca Raton, FL: CRC Press [Google Scholar]
  114. Seeboth A, Lötzsch D, Ruhmann R, Muehling O. 114.  2014. Thermochromic polymers—function by design. Chem. Rev. 114:3037–68 [Google Scholar]
  115. Sane K, Fukuda Y. 115.  1987. Inorganic Thermochromism Berlin: Springer [Google Scholar]
  116. McCleverty JA, Meyer TJ. 116.  2004. Comprehensive Coordination Chemistry II: From Biology to Nanotechnology Amsterdam: Elsevier Pergamon: [Google Scholar]
  117. El-Ayaan U, Murata F, Fukuda Y. 117.  2001. Thermochromism and solvatochromism in solution. Monatshefte Chem. 132:1279–94 [Google Scholar]
  118. Millett FA, Byker HJ. 118.  2006. Final report: sunlight responsive thermochromic window system Tech. Rep. DE-FG36-04GO14336, US Dep. Energy Off. Sci. Technol. http://www.osti.gov/scitech/servlets/purl/894091-FRpWuI/ [Google Scholar]
  119. Gao Y, Luo H, Zhang Z, Kang L, Chen Z. 119.  et al. 2012. Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing. Nano Energy 1:221–46 [Google Scholar]
  120. Li SY, Niklasson GA, Granqvist CG. 120.  2010. Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. J. Appl. Phys. 108:063525 [Google Scholar]
  121. Buffat P, Borel JP. 121.  1976. Size effect on the melting temperature of gold particles. Phys. Rev. A 13:2287 [Google Scholar]
  122. Tamaki H, Watanabe H, Kamiyama S, Oaki Y, Imai H. 122.  2014. Size-dependent thermochromism through enhanced electron-phonon coupling in 1 nm quantum dots. Angew. Chem. Int. Ed. 53:10706–9 [Google Scholar]
  123. Baetens R, Jelle BP, Gustavsen A. 123.  2010. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energy Mater. Sol. Cells 94:87–105 [Google Scholar]
  124. Lee ES, Selkowitz SE, Clear RD, DiBartolomeo DL, Klems JH. 124.  et al. 2006. Advancement of electrochromic windows Proj. Rep. CEC-500-2006-052, Calif. Energy Comm. Public Interest Energy Res. Progr., Sacramento, CA [Google Scholar]
  125. Favoino F, Overend M, Jin Q. 125.  2015. The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies. Appl. Energy 156:1–15 [Google Scholar]
  126. Lee ES, DiBartolomeo D. 126.  2002. Application issues for large-area electrochromic windows in commercial buildings. Sol. Energy Mater. Sol. Cells 71:465–91 [Google Scholar]
  127. Hee W, Alghoul M, Bakhtyar B, Elayeb O, Shameri M. 127.  et al. 2015. The role of window glazing on daylighting and energy saving in buildings. Renew. Sustain. Energy Rev. 42:323–43 [Google Scholar]
  128. Piccolo A, Simone F. 128.  2015. Performance requirements for electrochromic smart window. J. Build. Eng. 3:94–103 [Google Scholar]
  129. Cuce E, Riffat SB. 129.  2015. A state-of-the-art review on innovative glazing technologies. Renew. Sustain. Energy Rev. 41:695–714 [Google Scholar]
  130. Lee ES, Pang X, Hoffmann S, Goudey H, Thanachareonkit A. 130.  2013. An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives. Sol. Energy Mater. Sol. Cells 116:14–26 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-034647
Loading
/content/journals/10.1146/annurev-chembioeng-080615-034647
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error