1932

Abstract

New experimental technology and theoretical approaches have advanced battery research across length scales ranging from the molecular to the macroscopic. Direct observations of nanoscale phenomena and atomistic simulations have enhanced the understanding of the fundamental electrochemical processes that occur in battery materials. This vast and ever-growing pool of microscopic data brings with it the challenge of isolating crucial performance-decisive physical parameters, an effort that often requires the consideration of intricate interactions across very different length scales and timescales. Effective physics-based battery modeling emphasizes the cross-scale perspective, with the aim of showing how nanoscale physicochemical phenomena affect device performance. This review surveys the methods researchers have used to bridge the gap between the nanoscale and the macroscale. We highlight the modeling of properties or phenomena that have direct and considerable impact on battery performance metrics, such as open-circuit voltage and charge/discharge overpotentials. Particular emphasis is given to thermodynamically rigorous multiphysics models that incorporate coupling between materials’ mechanical and electrochemical states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-012120-083016
2020-06-07
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-012120-083016.html?itemId=/content/journals/10.1146/annurev-chembioeng-012120-083016&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    US Dep. Energy 2017. Vehicle Technologies Office annual merit review 2017. Rep., US Dep. Energy, Washington, DC. https://www.energy.gov/sites/prod/files/2017/11/f39/2017-vehicle-technologies-office-annual-merit-review.pdf
    [Google Scholar]
  2. 2. 
    Zekoll S, Marriner-Edwards C, Hekselman AKO, Kasemchainan J, Kuss C et al. 2018. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11:185–201
    [Google Scholar]
  3. 3. 
    Becker MZ, Shomrat N, Tsur Y 2018. Recent advances in mechanism research and methods for electric-field-assisted sintering of ceramics. Adv. Mater. 30:1706369
    [Google Scholar]
  4. 4. 
    Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X 2018. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10:246–67
    [Google Scholar]
  5. 5. 
    Wang A, Kadam S, Li H, Shi S, Qi Y 2018. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput. Mater. 4:15
    [Google Scholar]
  6. 6. 
    Seh ZW, Sun Y, Zhang Q, Cui Y 2016. Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45:5605–34
    [Google Scholar]
  7. 7. 
    Wild M, O'Neill L, Zhang T, Purkayastha R, Minton G et al. 2015. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8:3477–94
    [Google Scholar]
  8. 8. 
    Aurbach D, McCloskey BD, Nazar LF, Bruce PG 2016. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 1:16128
    [Google Scholar]
  9. 9. 
    Newman J, Thomas-Alyea KE 2004. Electrochemical Systems New York: Wiley. 3rd ed.
    [Google Scholar]
  10. 10. 
    Goyal P, Monroe CW 2017. New foundations of Newman's theory for solid electrolytes: thermodynamics and transient balances. J. Electrochem. Soc. 164:E3647–60
    [Google Scholar]
  11. 11. 
    Hirschfelder JO, Bird RB, Curtiss CF 1964. Molecular Theory of Gases and Liquids New York: Wiley
    [Google Scholar]
  12. 12. 
    Monroe CW, Wheeler DR, Newman J 2015. Nonequilibrium linear response theory: application to Onsager–Stefan–Maxwell diffusion. Ind. Eng. Chem. Res. 54:4460–67
    [Google Scholar]
  13. 13. 
    Fornasiero F, Prausnitz JM, Radke CJ 2005. Multicomponent diffusion in highly asymmetric systems. An extended Maxwell–Stefan model for starkly different-sized, segment-accessible chain molecules. Macromolecules 38:1364–70
    [Google Scholar]
  14. 14. 
    Monroe CW, Delacourt C 2013. Continuum transport laws for locally non-neutral concentrated electrolytes. Electrochim. Acta 114:649–57
    [Google Scholar]
  15. 15. 
    Bizeray AM, Howey DA, Monroe CW 2016. Resolving a discrepancy in diffusion potentials, with a case study for Li-ion batteries. J. Electrochem. Soc. 163:E223–29
    [Google Scholar]
  16. 16. 
    Doyle M, Fuller TF, Newman J 1993. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140:1526–33
    [Google Scholar]
  17. 17. 
    Fuller TF, Doyle M, Newman J 1994. Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141:1–10
    [Google Scholar]
  18. 18. 
    Doyle M, Fuller TF, Newman J 1994. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 39:2073–81
    [Google Scholar]
  19. 19. 
    Sulzer V, Chapman SJ, Please CP, Howey DA, Monroe CW 2019. Faster lead-acid battery simulations from porous-electrode theory: part I. Physical model. J. Electrochem. Soc. 166:A2363–71
    [Google Scholar]
  20. 20. 
    Liu J, Monroe CW 2014. Solute-volume effects in electrolyte transport. Electrochim. Acta 135:447–60
    [Google Scholar]
  21. 21. 
    Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR 1998. Ab initio calculation of the lithium-tin voltage profile. Phys. Rev. B 58:15583–88
    [Google Scholar]
  22. 22. 
    Wolverton C, Zunger A 1998. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. Phys. Rev. Lett. 81:606–9
    [Google Scholar]
  23. 23. 
    Newman M, Barkema G 1999. Monte Carlo Methods in Statistical Physics New York: Oxford Univ. Press
    [Google Scholar]
  24. 24. 
    Van der Ven A, Aydinol MK, Ceder G, Kresse G, Hafner J 1998. First-principles investigation of phase stability in LixCoO2. Phys. Rev. B 58:2975–87
    [Google Scholar]
  25. 25. 
    Zhou F, Kang K, Maxisch T, Ceder G, Morgan D 2004. The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 132:181–86
    [Google Scholar]
  26. 26. 
    Ménétrier M, Saadoune I, Levasseur S, Delmas C 1999. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study. J. Mater. Chem. 9:1135–40
    [Google Scholar]
  27. 27. 
    Zhou F, Maxisch T, Ceder G 2006. Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LixFePO4. Phys. Rev. Lett. 97:155704
    [Google Scholar]
  28. 28. 
    Hänggi P, Talkner P, Borkovec M 1990. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62:251–341
    [Google Scholar]
  29. 29. 
    Van der Ven A, Thomas JC, Xu Q, Swoboda B, Morgan D 2008. Nondilute diffusion from first principles: Li diffusion in LixTiS2. Phys. Rev. B 78:104306
    [Google Scholar]
  30. 30. 
    Gomer R 1990. Diffusion of adsorbates on metal surfaces. Rep. Prog. Phys. 53:917–1002
    [Google Scholar]
  31. 31. 
    Morgan D, Van der Ven A, Ceder G 2004. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 7:A30–32
    [Google Scholar]
  32. 32. 
    Van der Ven A, Ceder G 2000. Lithium diffusion in layered LixCoO2. Electrochem. Solid-State Lett. 3:301–4
    [Google Scholar]
  33. 33. 
    Van der Ven A, Ceder G 2001. Lithium diffusion mechanisms in layered intercalation compounds. J. Power Sources 97–98:529–31
    [Google Scholar]
  34. 34. 
    Jalem R, Yamamoto Y, Shiiba H, Nakayama M, Munakata H et al. 2013. Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater. 25:425–30
    [Google Scholar]
  35. 35. 
    Malik R, Burch D, Bazant M, Ceder G 2010. Particle size dependence of the ionic diffusivity. Nano Lett. 10:4123–27
    [Google Scholar]
  36. 36. 
    He X, Zhu Y, Mo Y 2017. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 8:15893
    [Google Scholar]
  37. 37. 
    Islam MS, Fisher CAJ 2014. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43:185–204
    [Google Scholar]
  38. 38. 
    Urban A, Seo DH, Ceder G 2016. Computational understanding of Li-ion batteries. NPJ Comput. Mater. 2:16002
    [Google Scholar]
  39. 39. 
    Van der Ven A, Thomas J, Puchala B, Natarajan A 2018. First-principles statistical mechanics of multicomponent crystals. Annu. Rev. Mater. Res. 48:27–55
    [Google Scholar]
  40. 40. 
    Li Y, Chueh WC 2018. Electrochemical and chemical insertion for energy transformation and switching. Annu. Rev. Mater. Res. 48:137–65
    [Google Scholar]
  41. 41. 
    Darling R, Newman J 1997. Modeling a porous intercalation electrode with two characteristic particle sizes. J. Electrochem. Soc. 144:4201–8
    [Google Scholar]
  42. 42. 
    Qi Y, Hector LG, James C, Kim KJ 2014. Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations. J. Electrochem. Soc. 161:F3010–18
    [Google Scholar]
  43. 43. 
    Qi Y, Guo H, Hector LG, Timmons A 2010. Threefold increase in the Young's modulus of graphite negative electrode during lithium intercalation. J. Electrochem. Soc. 157:A558–66
    [Google Scholar]
  44. 44. 
    Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR 2001. Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4:A137–40
    [Google Scholar]
  45. 45. 
    Itou Y, Ukyo Y 2005. Performance of LiNiCoO2 materials for advanced lithium-ion batteries. J. Power Sources 146:39–44
    [Google Scholar]
  46. 46. 
    Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu BX 2019. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J. Power Sources 413:259–83
    [Google Scholar]
  47. 47. 
    Prussin S 1961. Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32:1876–81
    [Google Scholar]
  48. 48. 
    Christensen J, Newman J 2006. Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10:293–319
    [Google Scholar]
  49. 49. 
    Christensen J 2010. Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J. Electrochem. Soc. 157:A366–80
    [Google Scholar]
  50. 50. 
    Zhang X, Shyy W, Sastry AM 2007. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154:A910–16
    [Google Scholar]
  51. 51. 
    Cheng YT, Verbrugge MW 2008. The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104:083521
    [Google Scholar]
  52. 52. 
    Miller RE, Shenoy VB 2000. Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–47
    [Google Scholar]
  53. 53. 
    Wang J, Duan H, Huang Z, Karihaloo B 2006. A scaling law for properties of nano-structured materials. Proc. R. Soc. A 462:1355–63
    [Google Scholar]
  54. 54. 
    Wang J, Huang Z, Duan H, Yu S, Feng X et al. 2011. Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24:52–82
    [Google Scholar]
  55. 55. 
    Deshpande R, Cheng YT, Verbrugge MW 2010. Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195:5081–88
    [Google Scholar]
  56. 56. 
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF et al. 2008. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3:31–35
    [Google Scholar]
  57. 57. 
    Deshpande R, Qi Y, Cheng YT 2010. Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157:A967–71
    [Google Scholar]
  58. 58. 
    Yang B, He YP, Irsa J, Lundgren C, Ratchford J, Zhao YP 2012. Effects of composition-dependent modulus, finite concentration and boundary constraint on Li-ion diffusion and stresses in a bilayer Cu-coated Si nano-anode. J. Power Sources 204:168–76
    [Google Scholar]
  59. 59. 
    Hsieh AG, Bhadra S, Hertzberg BJ, Gjeltema PJ, Goy A et al. 2015. Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health. Energy Environ. Sci. 8:1569–77
    [Google Scholar]
  60. 60. 
    Davies G, Knehr KW, Van Tassell B, Hodson T, Biswas S et al. 2017. State of charge and state of health estimation using electrochemical acoustic time of flight analysis. J. Electrochem. Soc. 164:A2746–55
    [Google Scholar]
  61. 61. 
    Zhang W, Srinivasan S, Ploehn HJ 1996. Analysis of transient hydrogen uptake by metal alloy particles. J. Electrochem. Soc. 143:4039–47
    [Google Scholar]
  62. 62. 
    Subramanian VR, Ploehn HJ, White RE 2000. Shrinking core model for the discharge of a metal hydride electrode. J. Electrochem. Soc. 147:2868–73
    [Google Scholar]
  63. 63. 
    Zhang Q, White RE 2007. Moving boundary model for the discharge of a LiCoO2 electrode. J. Electrochem. Soc. 154:A587–96
    [Google Scholar]
  64. 64. 
    Srinivasan V, Newman J 2004. Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151:A1517–29
    [Google Scholar]
  65. 65. 
    Srinivasan V, Newman J 2006. Existence of path-dependence in the LiFePO4 electrode. Electrochem. Solid-State Lett. 9:A110–14
    [Google Scholar]
  66. 66. 
    Christensen J, Newman J 2006. A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153:A1019–30
    [Google Scholar]
  67. 67. 
    Deshpande R, Cheng YT, Verbrugge MW, Timmons A 2011. Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J. Electrochem. Soc. 158:A718–24
    [Google Scholar]
  68. 68. 
    Han B, Van der Ven A, Morgan D, Ceder G 2004. Electrochemical modeling of intercalation processes with phase field models. Electrochim. Acta 49:4691–99
    [Google Scholar]
  69. 69. 
    Weppner W, Huggins RA 1977. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124:1569–78
    [Google Scholar]
  70. 70. 
    Wen CJ, Boukamp BA, Huggins RA, Weppner W 1979. Thermodynamic and mass transport properties of “LiAl.”J. Electrochem. Soc. 126:2258–66.
    [Google Scholar]
  71. 71. 
    Singh GK, Ceder G, Bazant MZ 2008. Intercalation dynamics in rechargeable battery materials: general theory and phase-transformation waves in LiFePO4. Electrochim. Acta 53:7599–613
    [Google Scholar]
  72. 72. 
    Bai P, Cogswell DA, Bazant MZ 2011. Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett. 11:4890–96
    [Google Scholar]
  73. 73. 
    Li Y, El Gabaly F, Ferguson TR, Smith RB, Bartelt NC et al. 2014. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat. Mater. 13:1149–56
    [Google Scholar]
  74. 74. 
    Tang M, Huang HY, Meethong N, Kao YH, Carter WC, Chiang YM 2009. Model for the particle size, overpotential, and strain dependence of phase transition pathways in storage electrodes: application to nanoscale olivines. Chem. Mater. 21:1557–71
    [Google Scholar]
  75. 75. 
    Meethong N, Kao YH, Tang M, Huang HY, Carter WC, Chiang YM 2008. Electrochemically induced phase transformation in nanoscale olivines Li1 − xMPO4 (M = Fe, Mn). Chem. Mater. 20:6189–98
    [Google Scholar]
  76. 76. 
    Meethong N, Huang HYS, Carter WC, Chiang YM 2007. Size-dependent lithium miscibility gap in nanoscale Li1 − xFePO4. Electrochem. Solid-State Lett. 10:A134–38
    [Google Scholar]
  77. 77. 
    Wagemaker M, Singh DP, Borghols WJ, Lafont U, Haverkate L et al. 2011. Dynamic solubility limits in nanosized olivine LiFePO4. J. Am. Chem. Soc. 133:10222–28
    [Google Scholar]
  78. 78. 
    Zhang T, Kamlah M 2019. Phase-field modeling of the particle size and average concentration dependent miscibility gap in nanoparticles of LixMn2O4, LixFePO4, and NaxFePO4 during insertion. Electrochim. Acta 298:31–42
    [Google Scholar]
  79. 79. 
    Newman J, Chapman TW 1973. Restricted diffusion in binary solutions. AIChE J. 19:343–48
    [Google Scholar]
  80. 80. 
    Kim SU, Monroe CW 2013. Increasing the rate capability of batteries with electrolyte flow. Appl. Energy 103:207–11
    [Google Scholar]
  81. 81. 
    Lu Y, Tikekar M, Mohanty R, Hendrickson K, Ma L, Archer LA 2015. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5:1402073
    [Google Scholar]
  82. 82. 
    Diederichsen KM, McShane EJ, McCloskey BD 2017. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2:2563–75
    [Google Scholar]
  83. 83. 
    Yariv E, Almog Y 2010. Ionic currents in the presence of supporting electrolytes. Phys. Rev. Lett. 105:176101
    [Google Scholar]
  84. 84. 
    Monroe CW 2017. Does oxygen transport affect the cell voltages of metal/air batteries. J. Electrochem. Soc 164:E3547–51
    [Google Scholar]
  85. 85. 
    Gebbie MA, Dobbs HA, Valtiner M, Israelachvili JN 2015. Long-range electrostatic screening in ionic liquids. PNAS 112:7432–37
    [Google Scholar]
  86. 86. 
    Lee AA, Vella D, Perkin S, Goriely A 2015. Are room-temperature ionic liquids dilute electrolytes? J. Phys. Chem. Lett. 6:159–63.
    [Google Scholar]
  87. 87. 
    Richardson G, Foster JM, Sethurajan AK, Krachkovskiy SA, Halalay IC et al. 2018. The effect of ionic aggregates on the transport of charged species in lithium electrolyte solutions. J. Electrochem. Soc. 165:H561–67
    [Google Scholar]
  88. 88. 
    Clark S, Latz A, Horstmann B 2017. Rational development of neutral aqueous electrolytes for zinc-air batteries. ChemSusChem 10:4735–47
    [Google Scholar]
  89. 89. 
    Grossfield A, Ren P, Ponder JW 2003. Ion solvation thermodynamics from simulation with a polarizable force field. J. Am. Chem. Soc. 125:15671–82
    [Google Scholar]
  90. 90. 
    Li Z, Smith GD, Bedrov D 2012. Li+ solvation and transport properties in ionic liquid/lithium salt mixtures: a molecular dynamics simulation study. J. Phys. Chem. B 116:12801–9
    [Google Scholar]
  91. 91. 
    Abe T, Fukuda H, Iriyama Y, Ogumi Z 2004. Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151:A1120–23
    [Google Scholar]
  92. 92. 
    Landstorfer M, Guhlke C, Dreyer W 2016. Theory and structure of the metal-electrolyte interface incorporating adsorption and solvation effects. Electrochim. Acta 201:187–219
    [Google Scholar]
  93. 93. 
    Suo L, Hu YS, Li H, Armand M, Chen L 2013. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4:1481
    [Google Scholar]
  94. 94. 
    McEldrew M, Goodwin ZAH, Kornyshev AA, Bazant MZ 2018. Theory of the double layer in water-in-salt electrolytes. J. Phys. Chem. Lett. 9:5840–46
    [Google Scholar]
  95. 95. 
    Xu K 2014. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114:11503–618
    [Google Scholar]
  96. 96. 
    Wyllie MRJ, Rose WD 1950. Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data. J. Pet. Technol. 2:105–18
    [Google Scholar]
  97. 97. 
    Zalc JM, Reyes SC, Iglesia E 2004. The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures. Chem. Eng. Sci. 59:2947–60
    [Google Scholar]
  98. 98. 
    Wiedenmann D, Keller L, Holzer L, Stojadinović J, Münch B et al. 2013. Three-dimensional pore structure and ion conductivity of porous ceramic diaphragms. AIChE J. 59:1446–57
    [Google Scholar]
  99. 99. 
    Landesfeind J, Hattendorff J, Ehrl A, Wall WA, Gasteiger HA 2016. Tortuosity determination of battery electrodes and separators by impedance spectroscopy. J. Electrochem. Soc. 163:A1373–87
    [Google Scholar]
  100. 100. 
    Torquato S 2013. Random Heterogeneous Materials: Microstructure and Macroscopic Properties New York: Springer
    [Google Scholar]
  101. 101. 
    Stauffer D, Aharony A 1994. Introduction to Percolation Theory Philadelphia: Taylor & Francis. 2nd ed.
    [Google Scholar]
  102. 102. 
    Bruggeman DAG 1935. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416:636–64
    [Google Scholar]
  103. 103. 
    Tjaden B, Cooper SJ, Brett DJ, Kramer D, Shearing PR 2016. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr. Opin. Chem. Eng. 12:44–51
    [Google Scholar]
  104. 104. 
    Ferguson TR, Bazant MZ 2012. Nonequilibrium thermodynamics of porous electrodes. J. Electrochem. Soc. 159:A1967–85
    [Google Scholar]
  105. 105. 
    Ender M, Joos J, Carraro T, Ivers-Tiffe E 2011. Three-dimensional reconstruction of a composite cathode for lithium-ion cells. Electrochem. Commun. 13:166–68
    [Google Scholar]
  106. 106. 
    Ebner M, Wood V 2015. Tool for tortuosity estimation in lithium ion battery porous electrodes. J. Electrochem. Soc. 162:A3064–70
    [Google Scholar]
  107. 107. 
    Cooper S, Eastwood D, Gelb J, Damblanc G, Brett D et al. 2014. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries. J. Power Sources 247:1033–39
    [Google Scholar]
  108. 108. 
    Liu J, Rahimian SK, Monroe CW 2016. Capacity-limiting mechanisms in Li/O2 batteries. Phys. Chem. Chem. Phys. 18:22840–51
    [Google Scholar]
  109. 109. 
    Mullins WW, Sekerka RF 1963. Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34:323–29
    [Google Scholar]
  110. 110. 
    Mullins WW, Sekerka RF 1964. Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35:444–51
    [Google Scholar]
  111. 111. 
    Aogaki R, Makino T 1981. Theory of powdered metal formation in electrochemistry—morphological instability in galvanostatic crystal growth under diffusion control. Electrochim. Acta 26:1509–17
    [Google Scholar]
  112. 112. 
    Aogaki R 1982. Image analysis of morphological instability in galvanostatic electrocrystallization: I. General expression for the growth mode of surface irregularities. J. Electrochem. Soc. 129:2442–46
    [Google Scholar]
  113. 113. 
    Sundström LG, Bark FH 1995. On morphological instability during electrodeposition with a stagnant binary electrolyte. Electrochim. Acta 40:599–614
    [Google Scholar]
  114. 114. 
    Monroe C, Newman J 2004. The effect of interfacial deformation on electrodeposition kinetics. J. Electrochem. Soc. 151:A880–86
    [Google Scholar]
  115. 115. 
    Monroe C, Newman J 2005. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152:A396–404
    [Google Scholar]
  116. 116. 
    Despić A, Popov KI 1972. Transport-controlled deposition and dissolution of metals. In Modern Aspects of Electrochemistry No. 7, ed. BE Conway, JO Bockris, pp. 199–313. Boston:: Springer
    [Google Scholar]
  117. 117. 
    Witten TA, Sander LM 1981. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47:1400–3
    [Google Scholar]
  118. 118. 
    Chazalviel JN 1990. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42:7355–67
    [Google Scholar]
  119. 119. 
    Barton JL, Bockris JO 1962. The electrolytic growth of dendrites from ionic solutions. Proc. R. Soc. A 268:485–505
    [Google Scholar]
  120. 120. 
    Diggle JW, Despic AR, Bockris JO 1969. The mechanism of the dendritic electrocrystallization of zinc. J. Electrochem. Soc. 116:1503–14
    [Google Scholar]
  121. 121. 
    Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon JM 2002. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem. Solid-State Lett. 5:A286–89
    [Google Scholar]
  122. 122. 
    Monroe C, Newman J 2003. Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 150:A1377–84
    [Google Scholar]
  123. 123. 
    Han F, Westover AS, Yue J, Fan X, Wang F et al. 2019. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4:187–96
    [Google Scholar]
  124. 124. 
    Zhu Y, He X, Mo Y 2016. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4:3253–66
    [Google Scholar]
  125. 125. 
    Zhang Z, Shao Y, Lotsch B, Hu YS, Li H et al. 2018. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11:1945–76
    [Google Scholar]
  126. 126. 
    Kornyshev A, Vorotyntsev M 1981. Conductivity and space charge phenomena in solid electrolytes with one mobile charge carrier species, a review with original material. Electrochim. Acta 26:303–23
    [Google Scholar]
  127. 127. 
    Yamamoto K, Iriyama Y, Asaka T, Hirayama T, Fujita H et al. 2010. Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. 49:4414–17
    [Google Scholar]
  128. 128. 
    Braun S, Yada C, Latz A 2015. Thermodynamically consistent model for space-charge-layer formation in a solid electrolyte. J. Phys. Chem. C 119:22281–88
    [Google Scholar]
  129. 129. 
    Li G, Monroe CW 2019. Dendrite nucleation in lithium-conductive ceramics. Phys. Chem. Chem. Phys. 21:20354–59
    [Google Scholar]
  130. 130. 
    De Jonghe LC, Feldman L, Beuchele A 1981. Slow degradation and electron conduction in sodium/beta-aluminas. J. Mater. Sci. 16:780–86
    [Google Scholar]
  131. 131. 
    De Jonghe LC 1982. Transport number gradients and solid electrolyte degradation. J. Electrochem. Soc. 129:752–55
    [Google Scholar]
  132. 132. 
    Feldman LA, De Jonghe LC 1982. Initiation of mode I degradation in sodium-beta alumina electrolytes. J. Mater. Sci. 17:517–24
    [Google Scholar]
  133. 133. 
    Porz L, Swamy T, Sheldon BW, Rettenwander D, Frömling T et al. 2017. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7:1701003
    [Google Scholar]
  134. 134. 
    Ahmad Z, Viswanathan V 2017. Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. 119:056003
    [Google Scholar]
  135. 135. 
    Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley GO et al. 2019. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18:1105–11
    [Google Scholar]
  136. 136. 
    Krauskopf T, Hartmann H, Zeier WG, Janek J 2019. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11:14463–77
    [Google Scholar]
  137. 137. 
    Wang MJ, Choudhury R, Sakamoto J 2019. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 3:2165–78
    [Google Scholar]
  138. 138. 
    Masias A, Felten N, Garcia-Mendez R, Wolfenstine J, Sakamoto J 2019. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54:2585–600
    [Google Scholar]
  139. 139. 
    Sharafi A, Meyer HM, Nanda J, Wolfenstine J, Sakamoto J 2016. Characterizing the Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power Sources 302:135–39
    [Google Scholar]
  140. 140. 
    Sharafi A, Kazyak E, Davis AL, Yu S, Thompson T et al. 2017. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29:7961–68
    [Google Scholar]
  141. 141. 
    Fu KK, Gong Y, Liu B, Zhu Y, Xu S et al. 2017. Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3:e1601659
    [Google Scholar]
  142. 142. 
    Cheng EJ, Sharafi A, Sakamoto J 2017. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223:85–91
    [Google Scholar]
  143. 143. 
    Cheng L, Chen W, Kunz M, Persson K, Tamura N et al. 2015. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl. Mater. Interfaces 7:2073–81
    [Google Scholar]
  144. 144. 
    Sharafi A, Haslam CG, Kerns RD, Wolfenstine J, Sakamoto J 2017. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A 5:21491–504
    [Google Scholar]
  145. 145. 
    Yu S, Siegel DJ 2017. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 29:9639–47
    [Google Scholar]
  146. 146. 
    Ma C, Chen K, Liang C, Nan CW, Ishikawa R et al. 2014. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 7:1638–42
    [Google Scholar]
  147. 147. 
    Bucci G, Swamy T, Chiang YM, Carter WC 2017. Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design. J. Mater. Chem. A 5:19422–30
    [Google Scholar]
  148. 148. 
    Bucci G, Talamini B, Balakrishna AR, Chiang YM, Carter WC 2018. Mechanical instability of electrode-electrolyte interfaces in solid-state batteries. Phys. Rev. Mater. 2:105407
    [Google Scholar]
  149. 149. 
    Van der Ven A, Ceder G, Asta M, Tepesch PD 2001. First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64:184307
    [Google Scholar]
  150. 150. 
    Van der Ven A, Bhattacharya J, Belak AA 2013. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46:1216–25
    [Google Scholar]
  151. 151. 
    Shetty DK, Virkar AV, Gordon RS 1978. Electrolytic degradation of lithia-stabilized polycrystalline β′′-alumina. Fracture Mechanics of Ceramics 4 Crack Growth and Microstructure, ed. RC Bradt, DPH Hasselman, FF Lange 651–65 New York: Plenum
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-012120-083016
Loading
/content/journals/10.1146/annurev-chembioeng-012120-083016
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error