1932

Abstract

I review my career from its academic beginning to my recent retirement. I grew up and studied chemical engineering in New York City. My initial failure to understand thermodynamics the way it had been taught, evidenced by the difficulty I had when starting graduate school, led me years later to write a textbook on the subject that is now in a fifth edition, in addition to other books I have written. My research areas have included molecular simulation, statistical- and quantum mechanical–based methods, and a variety of experimental thermodynamic measurements. In addition, I have been a consultant in traditional chemical engineering areas, as well in nontraditional areas, such as assisting in the design of a heat shield for interplanetary exploration, the destruction of armed chemical weapons, and the cleanup of nuclear weapons production facilities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-050520-013749
2021-06-07
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-050520-013749.html?itemId=/content/journals/10.1146/annurev-chembioeng-050520-013749&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bird RB, Stewart WE, Lightfoot EN. 1960. Transport Phenomena Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  2. 2. 
    Sandler SI. 1977. Chemical and Engineering Thermodynamics Hoboken, NJ: John Wiley & Sons, 1st ed..
    [Google Scholar]
  3. 3. 
    Sandler SI. 1989. Chemical and Engineering Thermodynamics Hoboken, NJ: John Wiley & Sons, 2nd ed..
    [Google Scholar]
  4. 4. 
    Sandler SI. 1998. Chemical and Engineering Thermodynamics Hoboken, NJ: John Wiley & Sons, 3rd ed..
    [Google Scholar]
  5. 5. 
    Sandler SI. 2006. Chemical, Biochemical, and Engineering Thermodynamics Hoboken, NJ: John Wiley & Sons, 4th ed..
    [Google Scholar]
  6. 6. 
    Sandler SI. 2017. Chemical, Biochemical, and Engineering Thermodynamics Hoboken NJ: John Wiley & Sons, 5th ed..
    [Google Scholar]
  7. 7. 
    Sandler SI, Dahler JS. 1964. Nonstationary diffusion. Phys. Fluids 7:1743–46
    [Google Scholar]
  8. 8. 
    Sandler SI, Dahler JS. 1966. Kinetic theory of loaded spheres. II. J. Chem. Phys. 43:1750–59
    [Google Scholar]
  9. 9. 
    Sandler SI, Dahler JS. 1966. Transport properties of polyatomic fluids. II. A dilute gas of spherocylinders. J. Chem. Phys. 44:1229–37
    [Google Scholar]
  10. 10. 
    McCoy BJ, Sandler SI, Dahler JS. 1966. Transport properties of polyatomic fluids. IV. The kinetic theory of a dense gas of perfectly rough spheres. J. Chem. Phys. 45:3485–512 Erratum. 1968. J. Chem. Phys. 49 2468
    [Google Scholar]
  11. 11. 
    Sandler SI, Dahler JS. 1967. Kinetic theory of loaded spheres. III. Transport coefficients for the dense gas. J. Chem. Phys. 46:3520–31
    [Google Scholar]
  12. 12. 
    Sandler SI, Dahler JS. 1967. Kinetic theory of loaded spheres. IV. Thermal diffusion in a dilute-gas mixture of D2 and HT. J. Chem. Phys. 47:2621–30
    [Google Scholar]
  13. 13. 
    Sandler SI, Mason EA. 1967. Thermal diffusion in a loaded sphere–smooth sphere mixture: a model for 4He-HT and 3He-HD. J. Chem. Phys. 47:4653–58
    [Google Scholar]
  14. 14. 
    Sandler SI, Mason EA. 1968. Kinetic-theory deviations form Blanc's law of ion mobilities. J. Chem. Phys. 48:2873–75
    [Google Scholar]
  15. 15. 
    Monhick L, Sandler SI, Mason EA. 1968. Thermal diffusion in polyatomic gases: nonspherical interactions. J. Chem. Phys. 49:1178–84
    [Google Scholar]
  16. 16. 
    Sandler SI. 1968. The thermal conductivity of polyatomic gases. Phys. Fluids 11:2549–55
    [Google Scholar]
  17. 17. 
    Sandler SI, Mason EA. 1969. The transport properties of almost Lorentzian mixtures. Phys. Fluids 12:71–77
    [Google Scholar]
  18. 18. 
    Sandler SI, Miller EJ, Mason EA. 1970. Transport properties of partially ionized argon. Proceedings of the Fifth Symposium on Thermophysical Properties342–46 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  19. 19. 
    Miller EJ, Sandler SI. 1973. Transport properties of a two-temperature partially ionized gas. Phys. Fluids 16:491–94
    [Google Scholar]
  20. 20. 
    Storvik TS, Sandler SI 1977. Proceedings of the Engineering Foundation Conference on the Estimation and Correlation of Phase Equilibria and Fluid Properties in the Chemical Industry Sympos. Ser. 60 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  21. 21. 
    Knapp H, Sandler SI 1980. Phase Equilibria and Fluid Properties in the Chemical Industry: Proceedings of the 2nd International Conference, Berlin (West), 1721 March 1980, 225th Event of the EFCE. EFCF Publ. Ser. No. 11 Frankfurt, Ger: DECHEMA
    [Google Scholar]
  22. 22. 
    Eng R, Sandler SI. 1984. Vapor-liquid equilibria for three aldehyde/hydrocarbon mixtures. J. Chem. Eng. Data 29:156–61
    [Google Scholar]
  23. 23. 
    Eng R, Sandler SI. 1984. Liquid-vapor equilibria and excess Gibbs energies in alkanal (C3-C4) + n-alkane (C5,C7) mixtures. Int. Data Ser. A 1984.11–9
    [Google Scholar]
  24. 24. 
    Kehiaian HV, Sandler SI. 1984. Thermodynamic properties of binary mixtures containing aldehydes. II. Liquid-vapor equilibria in normal or branched alkanal + normal alkane mixtures: analysis in terms of a quasi-chemical group contribution model. Fluid Phase Equilib 17:139–45
    [Google Scholar]
  25. 25. 
    Shealy GS, Sandler SI. 1985. Vapor-liquid equilibria of {xCH3CH(CH3)CHO + (1 − x)C7H16}(l) and {xCH3CO2C2H5 + (1 − x)C7H16}(l). J. Chem. Thermodyn. 17:143–50
    [Google Scholar]
  26. 26. 
    Patel NC, Sandler SI. 1985. Excess volumes of the water/methanol, n-heptane/ethyl acetate, n-heptane/n-butyraldehyde and n-heptane/isobutyraldehyde systems. J. Chem. Eng. Data 30:218–22
    [Google Scholar]
  27. 27. 
    Shealy GS, Sandler SI. 1985. Vapor-liquid equilibria for four mixtures containing N,N-dimethylformamide. J. Chem. Eng. Data 30:455–59
    [Google Scholar]
  28. 28. 
    Shealy GS, Sandler SI. 1985. Liquid-vapor equilibrium and excess Gibbs energy of ethyl ethanoate + heptane. Int. Data Ser. A 1985.140–42
    [Google Scholar]
  29. 29. 
    Eckert CJ, Sandler SI. 1986. Vapor-liquid equilibria for the carbon dioxide-cyclopentane system at 37.7, 45.0 and 60.0°C. J. Chem. Eng. Data 31:26–28
    [Google Scholar]
  30. 30. 
    Shealy GS, Bauer TJ, Hauschild T, Sandler SI, Kassmann KD, Knapp H. 1986. Vapor-liquid equilibrium of binary and ternary mixtures of isobutyraldehyde/ethyl acetate/N,N-dimethylformamide. J. Chem. Eng. Data 31:457–62
    [Google Scholar]
  31. 31. 
    Hauschild T, Wu HS, Sandler SI. 1987. Vapor-liquid equilibrium of the mixtures 2-furaldehyde/1-butanol and 2-furaldehyde/4-methyl-2-pentanone. J. Chem. Eng. Data 32:226–29
    [Google Scholar]
  32. 32. 
    Shealy GS, Hagewieshe D, Sandler SI. 1987. Vapor-liquid equilibrium of ethanol/water/N,N-dimethylformamide. J. Chem. Eng. Data 32:366–69
    [Google Scholar]
  33. 33. 
    Shealy GS, Sandler SI. 1987. Liquid-vapor equilibrium and excess Gibbs energy of N,N-dimethylmethanamide + benzaldehyde, + butyl ethanoate, or + cyclohexylamine. Int. Data Ser. A 1987.2129–37
    [Google Scholar]
  34. 34. 
    Eng R, Sandler SI. 1988. Liquid-vapor equilibrium and excess Gibbs energy of 1,2-dichloroethane + heptane. Int. Data Ser. A 1988.2138–40
    [Google Scholar]
  35. 35. 
    Wu HS, Sandler SI. 1988. Vapor-liquid equilibrium of tetrahydrofuran systems. J. Chem. Eng. Data 33:157–65
    [Google Scholar]
  36. 36. 
    Kang CH, Sandler SI. 1987. Phase behavior of aqueous two polymer systems. Fluid Phase Equilib 38:245–72
    [Google Scholar]
  37. 37. 
    Wu HS, Hagewiesche D, Sandler SI. 1988. Vapor-liquid equilibria of 2-propanol + water + N,N-dimethyl formamide. Fluid Phase Equilib 43:77–89
    [Google Scholar]
  38. 38. 
    Wu HS, Sandler SI. 1988. Liquid-vapor equilibrium and excess Gibbs energy of dibutyl ether + isomeric heptanones. Int. Data Ser. A 1988.3209–17
    [Google Scholar]
  39. 39. 
    Wu HS, Sandler SI. 1989. Vapor-liquid equilibrium of 1,3-dioxolane systems. J. Chem. Eng. Data 34:209–13
    [Google Scholar]
  40. 40. 
    Wu HS, Sandler SI. 1989. Liquid-vapor equilibrium and excess Gibbs free energy of oxolane + hexane, + cyclohexane, or + ethyl ethanoate and of ethyl ethanoate + cyclohexane. Int. Data Ser. A 1989.2116–27
    [Google Scholar]
  41. 41. 
    Hauschild T, Wu HS, Sandler SI. 1989. Liquid-vapor equilibrium and excess Gibbs free energy of 2-furaldehyde + dibutyl ether, + 1-butanol, or + 4-methyl-2-pentanone. Int. Data Ser. A 1989.2128–36
    [Google Scholar]
  42. 42. 
    Wu HS, Locke WE III, Sandler SI. 1990. Vapor-liquid equilibrium of binary mixtures containing pyrrolidine. J. Chem. Eng. Data 35:169–72
    [Google Scholar]
  43. 43. 
    Wu HS, Locke WE III, Sandler SI. 1990. Liquid-vapor equilibria and excess Gibbs energies of pyrrolidine + cyclohexane, + oxolane, or + ethanol. Int. Data Ser. A 1990.2111–19
    [Google Scholar]
  44. 44. 
    Wu HS, Locke WE III, Sandler SI. 1990. Liquid-vapor equilibria and excess Gibbs energies of morpholine + octane, + cyclooctane, or + 1-butanol. Int. Data Ser. A 1990.3207–15
    [Google Scholar]
  45. 45. 
    Marathe P, Sandler SI. 1991. The high-pressure vapor-liquid equilibrium of some binary mixtures of cyclopentane, argon, nitrogen, n-butane, and neopentane. J. Chem. Eng. Data 36:192–97
    [Google Scholar]
  46. 46. 
    Wu HS, Locke WE III, Sandler SI. 1991. Vapor-liquid equilibrium of binary mixtures containing morpholine. J. Chem. Eng. Data 36:127–30
    [Google Scholar]
  47. 47. 
    Shibata SK, Sandler SI. 1989. High pressure vapor-liquid equilibria involving mixtures of nitrogen, carbon dioxide and n-butane. J. Chem. Eng. Data 34:291–98
    [Google Scholar]
  48. 48. 
    Wu HS, Sandler SI. 1988. Vapor-liquid equilibria for binary mixtures of butyl ether with 2-furaldehyde, and with 2-,3-, and 4-heptanone. J. Chem. Eng. Data 33:316–21
    [Google Scholar]
  49. 49. 
    Pividal KA, Sandler SI. 1988. Ebulliometric method for measuring activity coefficients at infinite dilution: systems with cyclic ethers. J. Chem. Eng. Data 33:438–45
    [Google Scholar]
  50. 50. 
    Wu HS, Sandler SI. 1989. Liquid-vapor equilibrium and excess Gibbs energy of 1,3-dioxolane + heptane, + cyclohexane, + ethanol or + trichloromethane. Int. Data Ser. A 1989.3197–208
    [Google Scholar]
  51. 51. 
    Malewski MKF, Sandler SI. 1989. High-pressure vapor-liquid equilibria of the binary mixtures nitrogen + n-butane and argon + n-butane. J. Chem. Eng. Data 34:424–26
    [Google Scholar]
  52. 52. 
    Antosik M, Sandler SI. 1994. Vapor-liquid equilibria of hydrocarbons and tert-amyl methyl ether. J. Chem. Eng. Data 39:584–87
    [Google Scholar]
  53. 53. 
    Steinhagen V, Sandler SI. 1994. Vapor-liquid equilibria of binary mixtures with ethyl tertiary butyl ether. J. Chem. Eng. Data 39:588–90
    [Google Scholar]
  54. 54. 
    Pividal KA, Sterner C, Sandler SI, Orbey H. 1992. Vapor-liquid equilibrium from infinite dilution activity coefficients: measurement and prediction of oxygenated fuel additives with alkanes. Fluid Phase Equilib 72:227–49
    [Google Scholar]
  55. 55. 
    Wu HS, Pividal KA, Sandler SI. 1991. Vapor-liquid equilibria of hydrocarbons and fuel oxygenates. J. Chem. Eng. Data 36:418–21
    [Google Scholar]
  56. 56. 
    Orbey H, Sandler SI. 1991. Relative measurements of activity coefficients at infinite dilution by gas chromatography. IEC Res 30:2006–11
    [Google Scholar]
  57. 57. 
    Tse G, Sandler SI. 1994. Determination of infinite dilution activity coefficients and octanol/water partition coefficients of volatile organic pollutants. J. Chem. Eng. Data 39:354–57
    [Google Scholar]
  58. 58. 
    Huang H, Sandler SI, Orbey H. 1994. Vapor-liquid equilibria of some hydrogen + hydrocarbon systems with the Wong-Sandler mixing rule. Fluid Phase Equilib 96:143–53
    [Google Scholar]
  59. 59. 
    Wu HS, Hagewiesche D, Sandler SI. 1992. Liquid-vapor equilibrium and excess Gibbs energy of N,N-dimethylmethanamide + 2-propanol. Int. Data Ser. A 1992.14–6
    [Google Scholar]
  60. 60. 
    Wright DA, Sandler SI, DeVoll D. 1992. Infinite dilution activity coefficients of halogenated hydrocarbons in water at ambient temperatures. Environ. Sci. Technol. 26:1828–31
    [Google Scholar]
  61. 61. 
    Tse G, Orbey H, Sandler SI. 1992. Infinite dilution activity coefficients and Henry's law coefficients of some priority water pollutants determined by a relative gas chromatographic method. Environ. Sci. Technol. 26:2017–22
    [Google Scholar]
  62. 62. 
    Pividal KA, Birtigh A, Sandler SI. 1992. Infinite dilution activity coefficients for oxygenate systems determined using a differential static cell. J. Chem. Eng. Data 37:484–88
    [Google Scholar]
  63. 63. 
    Peschke N, Sandler SI. 1995. Liquid-liquid equilibria of fuel oxygenate + water + hydrocarbon mixtures. I. J. Chem. Eng. Data 40:315–20
    [Google Scholar]
  64. 64. 
    Hellinger S, Sandler SI. 1995. Liquid-liquid equilibria of fuel oxygenate + water + hydrocarbon mixtures. II. J. Chem. Eng. Data 40:321–25
    [Google Scholar]
  65. 65. 
    Steinhagen V, Sandler SI. 1995. Liquid-vapor equilibria and excess Gibbs energy of 1,1-dimethylpropyl methyl ether + hydrocarbons. Int. Data Ser. A 1995. 1:42–50
    [Google Scholar]
  66. 66. 
    Shealy GS, Bauer TJ, Haushild T, Sandler SI, Kassman KD, Knapp H. 1991. Liquid-vapor equilibrium and excess Gibbs energy of binary mixtures of ethyl ethanoate, 2-methylpropanal and N,N-dimethylmethanamide. Int. Data Ser. A 1991.165–73
    [Google Scholar]
  67. 67. 
    Bhatia S, Sandler SI. 1995. The temperature dependence of infinite dilution activity coefficients in octanol and octanol/water partition coefficients of some halogenated volatile organic pollutants. J. Chem. Eng. Data 40:1196–98
    [Google Scholar]
  68. 68. 
    Plesnar Z, Fu YH, Sandler SI, Orbey H. 1996. Vapor-liquid equilibrium of the acetic acid + n-octane system at 323.15 and 343.15 K. J. Chem. Eng. Data 41:799–801
    [Google Scholar]
  69. 69. 
    Whitehead PG, Sandler SI. 1999. Headspace gas chromatography for measurement of infinite dilution activity coefficients of C4 alcohols in water. Fluid Phase Equilib 157:111–20
    [Google Scholar]
  70. 70. 
    Semar S, Sandler SI, Antosik M. 1995. Total pressure measurements of binary mixtures containing tertiary amyl methyl ether and tertiary amyl alcohol. J. Chem. Eng. Data 40:712–18
    [Google Scholar]
  71. 71. 
    Haines RIS, Sandler SI. 1995. Aqueous solubilities and infinite dilution activity coefficients of several polycyclic aromatic hydrocarbons. J. Chem. Eng. Data 40:833–36
    [Google Scholar]
  72. 72. 
    Wagner G, Sandler SI. 1995. Liquid-liquid equilibria of fuel oxygenate + water + hydrocarbon mixtures. III. Effect of temperature. J. Chem. Eng. Data 40:1119–23
    [Google Scholar]
  73. 73. 
    Kang CH, Lee CK, Sandler SI. 1989. Polydispersivity effects on the behavior of aqueous two-phase two-polymer systems. IEC Res 28:1537–40
    [Google Scholar]
  74. 74. 
    Lee C-K, Sandler SI. 1990. Vancomycin partitioning behavior in aqueous two-phase systems. Biotechnol. Bioeng. 35:408–16
    [Google Scholar]
  75. 75. 
    Hartounian H, Sandler SI. 1991. Polymer fractionation in aqueous two-phase polymer systems. Biotechnol. Prog. 7:279–82
    [Google Scholar]
  76. 76. 
    Hartounian H, Kaler EW, Sandler SI. 1994. Aqueous two-phase systems. I. Salt partitioning. IEC Res 33:2288–94
    [Google Scholar]
  77. 77. 
    Hartounian H, Kaler EW, Sandler SI. 1994. Aqueous two-phase systems. II. Protein partitioning. IEC Res 33:2294–300
    [Google Scholar]
  78. 78. 
    Bennett A, Lamm S, Orbey H, Sandler SI. 1993. Vapor-liquid equilibria of hydrocarbons and fuel oxygenates. II. J. Chem. Eng. Data 38:263–69
    [Google Scholar]
  79. 79. 
    Hartounian H, Floeter E, Kaler EW, Sandler SI. 1993. The effect of temperature on the phase equilibrium of aqueous two-phase polymer systems. AIChE J 39:1976–84
    [Google Scholar]
  80. 80. 
    Moretti JJ, Sandler SI, Lenhoff AM. 2000. Phase equilibria in the lysozyme–ammonium sulfate–water system. Biotechnol. Bioeng. 70:498–506
    [Google Scholar]
  81. 81. 
    Ruppert S, Sandler SI, Lenhoff AM. 2001. Correlation between the second osmotic virial coefficient and the solubility of proteins. Biotechnol. Technol. Prog. 17:182–87
    [Google Scholar]
  82. 82. 
    Tessier PM, Lenhoff AM, Sandler SI. 2002. Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography. Biophys. J. 82:1620–31
    [Google Scholar]
  83. 83. 
    Tessler PM, Sandler SI, Lenhoff AM. 2004. Direct measurement of protein osmotic cross second virial coefficients by cross-interaction chromatography. Protein Sci 13:1379–90
    [Google Scholar]
  84. 84. 
    Tessier PM, Verruto VJ, Sandler SI, Lenhoff AM. 2004. Correlation of diafiltration sieving behavior for lysozyme and BSA mixtures with osmotic second virial cross coefficients. Biotechnol. Bioeng. 87:303–10
    [Google Scholar]
  85. 85. 
    Lewus RA, Levy NE, Lenhoff AM, Sandler SI. 2015. A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions. Biotechnol. Prog. 31:268–76
    [Google Scholar]
  86. 86. 
    Wu HS, Sandler SI. 1991. The use of abinitio quantum mechanics calculations in group contribution methods. I. Theory and the basis for group identifications. IEC Res 30:881–89
    [Google Scholar]
  87. 87. 
    Wu HS, Sandler SI. 1991. The use of abinitio quantum mechanics calculations in group contribution methods. II. Test of new groups in UNIFAC. IEC Res 30:889–97
    [Google Scholar]
  88. 88. 
    Wolbah JP, Sandler SI. 1997. The thermodynamic properties of hydrogen-bonding fluids from abinitio molecular orbital calculations. 1. Water. AIChE J 43:1589–96
    [Google Scholar]
  89. 89. 
    Wolbah JP, Sandler SI. 1997. The thermodynamic properties of hydrogen-bonding fluids from abinitio molecular orbital calculations. 2. Organic compounds. AIChE J 43:1597–604
    [Google Scholar]
  90. 90. 
    Sum AK, Sandler SI. 1999. Use of abinitio methods to make phase equilibria predictions using activity coefficient models. Fluid Phase Equilib 158:375–80
    [Google Scholar]
  91. 91. 
    Klauda JB, Garrison SL, Jiang J, Arora G, Sandler SI. 2004. HM-IE: a quantum chemical hybrid method for calculating interaction energies. J. Phys. Chem. 108:107–12
    [Google Scholar]
  92. 92. 
    Sum AK, Sandler SI. 1999. A novel approach to phase equilibria predictions using abinitio methods. IEC Res 38:2849–55
    [Google Scholar]
  93. 93. 
    Mullins E, Liu YA, Oldland R, Wang S, Sandler SI et al. 2006. Sigma-profile database for using COSMO-based thermodynamic methods. Ind. Eng. Chem. Res. 45:4389–415
    [Google Scholar]
  94. 94. 
    Wang S, Lin S-T, Chang J, Goddard WA III, Sandler SI 2006. Application of the COSMO-SAC-BP solvation model to predictions of normal boiling temperatures for environmentally significant substances. Ind. Eng. Chem. Res. 45:5426–34
    [Google Scholar]
  95. 95. 
    Wang S, Sandler SI, Chen C-C. 2007. Refinement of COSMO-SAC and the applications. Ind. Eng. Chem. Res. 46:7275–88
    [Google Scholar]
  96. 96. 
    Lin S-T, Sandler SI. 1999. Predictions of infinite dilution activity coefficients from abinitio solvation calculations. AIChE J 45:2606–18
    [Google Scholar]
  97. 97. 
    Phillips KL, Sandler SI, Greene RW, Di Toro DM. 2008. Quantum mechanical predictions of the Henry's law constants and their temperature dependence for the 209 polychlorinated biphenyl congeners. Environ. Sci. Technol. 42:8412–18
    [Google Scholar]
  98. 98. 
    Hsieh CM, Lin S-T, Sandler SI. 2010. Improvements of COSMO-SAC for vapor-liquid and liquid-liquid equilibrium predictions. Fluid. Phase Equilib. 297:90–97
    [Google Scholar]
  99. 99. 
    Xiong R, Miller J, León M, Nikolakis V, Sandler SI. 2015. Evaluation of COSMO-SAC method for the prediction of the alcohol-water partition coefficients of the compounds encountered in aqueous phase fructose dehydration. Chem. Eng. Sci. 126:169–76
    [Google Scholar]
  100. 100. 
    Liang Y, Xiong R, Sandler SI, DiToro DM. 2017. Quantum chemically estimated Abraham solute parameters using multiple solvent-water partition coefficients and molecular polarizability. Environ. Sci. Technol. 51:9887–98
    [Google Scholar]
  101. 101. 
    Silveira CL, Sandler SI. 2018. Extending the range of COSMO-SAC to high temperatures and high pressures. AIChE J 64:1806–13
    [Google Scholar]
  102. 102. 
    Bharti A, Verma R, Prerna Namdeo S, Malviya A et al. 2018. Liquid-liquid equilibria and COSMO-SAC modeling of organic solvent/ionic liquid-hydroxyacetone-water mixtures. Fluid Phase Equilib 462:73–84
    [Google Scholar]
  103. 103. 
    Natl. Res. Counc 1999. Review and Evaluation of Alternative Technologies for Demilitarization of Assembled Chemical Weapons Washington, DC: Natl. Acad. PressThis is a multi-authored committee report; in addition to contributing to several chapters, I had prime responsibility for chapter 7.
    [Google Scholar]
  104. 104. 
    Natl. Res. Counc 2000. Evaluation of Demonstration Test Results of Alternative Technologies for Demilitarization of Assembled Chemical Weapons: A Supplemental Review. Washington, DC: Natl. Acad. Press
    [Google Scholar]
  105. 105. 
    Natl. Res. Counc 2001. Analysis of Engineering Design Study for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot Washington, DC: Natl. Acad. Press
    [Google Scholar]
  106. 106. 
    Natl. Res. Counc 2001. Evaluation of Demonstration Test Results of Alternative Technologies for Demilitarization of Assembled Chemical Weapons. A Supplemental Review for Demonstration II. Washington, DC: Natl. Acad. Press
    [Google Scholar]
  107. 107. 
    Natl. Res. Counc 2002. Analysis of the Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Blue Grass Army Depot. Washington, DC: Natl. Acad. Press
    [Google Scholar]
  108. 108. 
    Numerous Letter Reports commissioned by the U.S Department of Energy through the Consortium for Risk Evaluation with Stakeholder Participation on the treatment of radioactive wastes from nuclear weapons production at Hanford WA, Savannah River SC, and Idaho Falls ID; 2006.
  109. 109. 
    Sandler SI. 2015. Using Aspen Plus® in Thermodynamics Instruction Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  110. 110. 
    Sandler SI. 2010. An Introduction to Applied Statistical Thermodynamics Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  111. 111. 
    Adams H. 1918. The Education of Henry Adams: An Autobiography. Boston: Houghton-Mifflin
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-050520-013749
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error