In the past several years, ionic liquids (ILs) have been at the cutting edge of the most promising science and technology. ILs not only have found applications in classical areas of knowledge but also are important candidates to solve classical problems within several societal challenges, such as clean and efficient energy, through the development of a broad swath of energy technologies, such as advanced batteries, dye-sensitized solar cells, double-layer capacitors, actuators, fuel cells, thermo-cells, and water splitting, essentially related to highly efficient carbon capture and storage technologies and resource efficiency to date. This review focuses on the application of IL methodologies to solve critical pharmaceutical problems, in particular, the low solubility and thus bioavailability of pharmaceutical compounds and the presence of polymorphs, which severely hamper the efficacy of important commercially available drugs. The development of strategies to use ILs as carriers of pharmaceutical active compounds is an extremely promising and wide avenue. Further, the synthesis of liquid salts through the discerning combination of cations and anions with several distinct pharmaceutical roles provides answers to some of today's pharmaceutical industrial challenges.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Stella VJ. 1.  2010. Prodrugs: some thoughts and current issues. J. Pharm. Sci. 99:4755–65 [Google Scholar]
  2. Huttunen KM, Raunio H, Rautio J. 2.  2011. Prodrugs—from serendipity to rational design. Pharmacol. Rev. 63:750–71 [Google Scholar]
  3. Serajuddin ATM. 3.  2007. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 59:603–16 [Google Scholar]
  4. Banerjee R, Bhatt PM, Ravindra NV, Desiraju GR. 4.  2005. Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities. Cryst. Growth Des. 5:2299–309 [Google Scholar]
  5. Berge SM, Bighley LD, Monkhouse DC. 5.  1977. Pharmaceutical salts. J. Pharm. Sci. 66:1–19 [Google Scholar]
  6. Childs SL, Chyall LJ, Dunlap JT, Smolenskaya VN, Stahly BC, Stahly GP. 6.  2004. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J. Am. Chem. Soc. 126:13335–42 [Google Scholar]
  7. Dean PM, Turanjanin J, Yoshizawa-Fujita M, MacFarlane DR, Scott JL. 7.  2009. Exploring an anti-crystal engineering approach to the preparation of pharmaceutically active ionic liquids. Cryst. Growth Des. 9:1137–45 [Google Scholar]
  8. Elder DP, Holm R, de Diego HL. 8.  2013. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int. J. Pharm. 453:88–100 [Google Scholar]
  9. Leuner C, Dressman J. 9.  2000. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50:47–60 [Google Scholar]
  10. Vasconcelos T, Sarmento B, Costa P. 10.  2007. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 12:1068–75 [Google Scholar]
  11. Torchilin VP. 11.  2005. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4:145–60 [Google Scholar]
  12. Seddon KR. 12.  1997. Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68:351–56 [Google Scholar]
  13. Gardas RL, Coutinho JAP. 13.  2009. Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AIChE J. 55:1274–90 [Google Scholar]
  14. Lopes J, Padua AAH. 14.  2006. Nanostructural organization in ionic liquids. J. Phys. Chem. B 110:3330–35 [Google Scholar]
  15. Plechkova NV, Seddon KR. 15.  2008. Applications of ionic liquids in the chemical industry.. Chem. Soc. Rev. 37:123–50 [Google Scholar]
  16. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC. 16.  et al. 2014. Energy applications of ionic liquids.. Energy Environ. Sci. 7:232–50 [Google Scholar]
  17. Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y. 17.  2012. Carbon capture with ionic liquids: overview and progress. Energy Environ. Sci. 5:6668–81 [Google Scholar]
  18. D'Alessandro DM, Smit B, Long JR. 18.  2010. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49:6058–82 [Google Scholar]
  19. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. 19.  2002. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124:4974–75 [Google Scholar]
  20. Larpent JP, Sanglier JJ. 20.  1989. Biotechnologie des Antibiotiques Paris: Masson [Google Scholar]
  21. Ho TD, Canestraro AJ, Anderson JL. 21.  2011. Ionic liquids in solid-phase microextraction: a review. Anal. Chim. Acta 695:18–43 [Google Scholar]
  22. Vidal L, Riekkola ML, Canals A. 22.  2012. Ionic liquid-modified materials for solid-phase extraction and separation: a review. Anal. Chim. Acta 715:19–41 [Google Scholar]
  23. Soukup-Hein RJ, Warnke MM, Armstrong DW. 23.  2009. Ionic liquids in analytical chemistry. Annu. Rev. Anal. Chem. 2:145–68 [Google Scholar]
  24. Shahriari S, Tomé LC, Araújo JMM, Rebelo LPN, Coutinho JAP. 24.  et al. 2013. Aqueous biphasic systems: a benign route using cholinium-based ionic liquids. RSC Adv. 3:1835–43 [Google Scholar]
  25. Tang B, Bi W, Tian M, Row KH. 25.  2012. Application of ionic liquid for extraction and separation of bioactive compounds from plants. J. Chromatogr. B 904:1–21 [Google Scholar]
  26. Han D, Row KH. 26.  2010. Recent applications of ionic liquids in separation technology. Molecules 15:2405–26 [Google Scholar]
  27. Fujita K, MacFarlane DR, Forsyth M. 27.  2005. Protein solubilising and stabilising ionic liquids. Chem. Commun. 38:4804–6 [Google Scholar]
  28. van Rantwijk F, Sheldon RA. 28.  2007. Biocatalysis in ionic liquids. Chem. Rev. 107:2757–85 [Google Scholar]
  29. Chen XW, Liu JW, Wang JH. 29.  2010. Ionic liquids in the assay of proteins. Anal. Methods 2:1222–26 [Google Scholar]
  30. Constatinescu D, Herrmann C, Weingartner H. 30.  2010. Patterns of protein unfolding and protein aggregation in ionic liquids. Phys. Chem. Chem. Phys. 12:1756–63 [Google Scholar]
  31. Sheldon RA. 31.  2008. Green and sustainable chemistry: challenges and perspectives. Green Chem. 10:359–60 [Google Scholar]
  32. Grodowskai K, Parczewski A. 32.  2010. Organic solvents in the pharmaceutical industry. Acta Pol. Pharm. Drug Res. 67:3–12 [Google Scholar]
  33. Bouder F. 33.  2008. Regulating impurities in pharmaceutical products: A tolerability of risk approach?. Expert Rev. Clin. Pharmacol. 1:241–50 [Google Scholar]
  34. Siodmiak T, Piotr Marszall M, Proszowska A. 34.  2012. Ionic liquids: a new strategy in pharmaceutical synthesis. Mini Rev. Org. Chem. 9:203–8 [Google Scholar]
  35. Kumar V, Parmar VS, Malhotra SV. 35.  2007. Enhanced solubility and selective benzoylation of nucleosides in novel ionic liquid. Tetrahedron Lett. 48:809–12 [Google Scholar]
  36. Kumar V, Malhotra SV. 36.  2008. Synthesis of nucleoside-based antiviral drugs in ionic liquids. Bioorganic Med. Chem. Lett. 18:5640–42 [Google Scholar]
  37. Shaabani A, Soleimani E, Maleki A. 37.  2006. Ionic liquid promoted one-pot synthesis of 3-aminoimidazo[1,2-a]pyridines. Tetrahedron Lett. 47:3031–34 [Google Scholar]
  38. Fan XS, Feng D, Qu YY, Zhang XY, Wang JJ. 38.  et al. 2010. Practical and efficient synthesis of pyrano[3,2-c]pyridone, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents. Bioorganic Med. Chem. Lett. 20:809–13 [Google Scholar]
  39. Zhang XY, Li XY, Li DF, Qu GR, Wang JJ. 39.  et al. 2009. Ionic liquid mediated and promoted eco-friendly preparation of thiazolidinone and pyrimidine nucleoside-thiazolidinone hybrids and their antiparasitic activities. Bioorganic Med. Chem. Lett. 19:6280–83 [Google Scholar]
  40. Zaidlewicz M, Cytarska J, Dzielendziak A, Ziegler-Borowska M. 40.  2004. Synthesis of boronated phenylala-nine analogues with a quaternary center for boron neutron capture therapy. Arkivoc 3:11–21 [Google Scholar]
  41. Wolan A, Zaidlewicz M. 41.  2003. Synthesis of arylboronates by the palladium catalysed cross-coupling reaction in ionic liquids. Org. Biomol. Chem. 1:3274–76 [Google Scholar]
  42. Kurata A, Kitamura Y, Irie S, Takemoto S, Akai Y. 42.  et al. 2010. Enzymatic synthesis of caffeic acid phenethyl ester analogues in ionic liquid. J. Biotechnol. 148:133–38 [Google Scholar]
  43. Earle MJ, McCormac PB, Seddon KR. 43.  2000. The first high yield green route to a pharmaceutical in a room temperature ionic liquid. Green Chem. 2:261–62 [Google Scholar]
  44. Earle MJ, Seddon KR. 44.  2000. Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72:1391–98 [Google Scholar]
  45. Monteiro AL, Zinn FK, DeSouza RF, Dupont J. 45.  1997. Asymmetric hydrogenation of 2-arylacrylic acids catalyzed by immobilized Ru-BINAP complex in 1-n-butyl-3-methylimidazolium tetrafluoroborate molten salt. Tetrahedron Asymmetry 8:177–79 [Google Scholar]
  46. Carvalho PO, Cass QB, Calafatti SA, Contesini FJ, Bizaco R. 46.  2006. Review—alternatives for the separation of drug enantiomers: ibuprofen as a model compound. Braz. J. Chem. Eng. 23:291–300 [Google Scholar]
  47. Petkovic M, Ferguson JL, Gunaratne HQN, Ferreira R, Leitao MC. 47.  et al. 2010. Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chem. 12:643–49 [Google Scholar]
  48. Petkovic M, Seddon KR, Rebelo LPN, Pereira CS. 48.  2011. Ionic liquids: a pathway to environmental acceptability. Chem. Soc. Rev. 40:1383–403 [Google Scholar]
  49. Imperato G, König B, Chiappe C. 49.  2007. Ionic green solvents from renewable resources. Eur. J. Org. Chem. 7:1049–58 [Google Scholar]
  50. Morrissey S, Pegot B, Coleman D, Garcia MT, Ferguson D. 50.  et al. 2009. Biodegradable, non-bactericidal oxygen-functionalised imidazolium esters: a step towards ‘greener’ ionic liquids. Green Chem. 11:475–83 [Google Scholar]
  51. Dobler D, Schmidts T, Klingenhöfer I, Runkel F. 51.  2013. Ionic liquids as ingredients in topical drug delivery systems. Int. J. Pharm. 441:620–27 [Google Scholar]
  52. Ranke J, Mölter K, Stock F, Bottin-Weber U, Poczobutt J. 52.  et al. 2004. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol. Environ. Saf. 58:396–404 [Google Scholar]
  53. Stepnowski P, Skladanowski AC, Ludwiczak A, Laczynska E. 53.  2004. Evaluating the cytotoxicity of ionic liquids using human cell line HeLa. Hum. Exp. Toxicol. 23:513–17 [Google Scholar]
  54. Frade RFM, Afonso CAM. 54.  2010. Impact of ionic liquids in environment and humans: an overview. Hum. Exp. Toxicol. 29:1038–54 [Google Scholar]
  55. Coleman D, Gathergood N. 55.  2010. Biodegradation studies of ionic liquids. Chem. Soc. Rev. 39:600–37 [Google Scholar]
  56. Jaitely V, Karatas A, Florence AT. 56.  2008. Water-immiscible room temperature ionic liquids (RTILs) as drug reservoirs for controlled release. Int. J. Pharm. 354:168–73 [Google Scholar]
  57. Ventura SPM, Gonçalves AMM, Sintra T, Pereira JL, Gonçalves F, Coutinho JAP. 57.  2012. Designing ionic liquids: the chemical structure role in the toxicity. Ecotoxicol. Environ. Saf. 76:162–68 [Google Scholar]
  58. Mizuuchi H, Jaitely V, Murdan S, Florence AT. 58.  2008. Room temperature ionic liquids and their mixtures: potential pharmaceutical solvents. Eur. J. Pharm. Sci. 33:326–31 [Google Scholar]
  59. Tomé LC, Patinha DJS, Freire CSR, Rebelo LPR, Marrucho IM. 59.  2013. CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Adv. 3:12220–29 [Google Scholar]
  60. Forte A, Melo CI, Bogel-Łukasik R, Bogel-Łukasik E. 60.  2012. A favourable solubility of isoniazid, an antitubercular antibiotic drug, in alternative solvents. Fluid Phase Equilib. 318:89–95 [Google Scholar]
  61. Lourenço C, Melo CI, Bogel-Łukasik R, Bogel-Łukasik E. 61.  2012. Solubility advantage of pyrazine-2-carboxamide: application of alternative solvents on the way to the future pharmaceutical development. J. Chem. Eng. Data 57:1525–33 [Google Scholar]
  62. Manic MS, Najdanovic-Visak V. 62.  2012. Solubility of erythromycin in ionic liquids. J. Chem. Thermodyn. 44:102–6 [Google Scholar]
  63. Melo CI, Bogel-Łukasik R, da Ponte MN, Bogel-Łukasik E. 63.  2013. Ammonium ionic liquids as green solvents for drugs. Fluid Phase Equilib. 338:209–16 [Google Scholar]
  64. Ranke J, Stolte S, Stormann R, Arning J, Jastorff B. 64.  2007. Design of sustainable chemical products—the example of ionic liquids. Chem. Rev. 107:2183–206 [Google Scholar]
  65. Pernak J, Smiglak M, Griffin ST, Hough WL, Wilson TB. 65.  et al. 2006. Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chem. 8:798–806 [Google Scholar]
  66. McCrary PD, Beasley PA, Gurau G, Narita A, Barber PS. 66.  et al. 2013. Drug specific, tuning of an ionic liquid's hydrophilic-lipophilic balance to improve water solubility of poorly soluble active pharmaceutical ingredients. New J. Chem. 37:2196–202 [Google Scholar]
  67. Jaitely V, Mizuuchi H, Florence AT. 67.  2010. Current-stimulated release of solutes solubilized in water-immiscible room temperature ionic liquids (RTILs). J. Drug Target. 18:787–93 [Google Scholar]
  68. Moniruzzaman M, Tahara Y, Tamura M, Kamiya N, Goto M. 68.  2010. Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chem. Commun. 46:1452–54 [Google Scholar]
  69. Moniruzzaman M, Kamiya N, Goto M. 69.  2010. Ionic liquid based microemulsion with pharmaceutically accepted components: formulation and potential applications. J. Colloid Interface Sci. 352:136–42 [Google Scholar]
  70. Moniruzzaman M, Tamura M, Tahara Y, Kamiya N, Goto M. 70.  2010. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: characterization and cytotoxicity evaluation. Int. J. Pharm. 400:243–50 [Google Scholar]
  71. Gao YN, Han SB, Han BX, Li GZ, Shen D. 71.  et al. 2005. TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions. Langmuir 21:5681–84 [Google Scholar]
  72. Zheng YJ, Eli WJ, Li G. 72.  2009. FTIR study of Tween80/1-butyl-3-methylimidazolium hexafluorophosphate/toluene microemulsions. Colloid Polym. Sci. 287:871–76 [Google Scholar]
  73. Charnay C, Begu S, Tourné-Péteilh C, Nicole L, Lerner DA, Devoisselle JM. 73.  2004. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur. J. Pharm. Biopharm. 57:533–40 [Google Scholar]
  74. Néouze MA, Le Bideau J, Leroux F, Vioux A. 74.  2005. A route to heat resistant solid membranes with performances of liquid electrolytes. Chem. Commun. 2005:1082–84 [Google Scholar]
  75. Viau L, Tourné-Péteilh C, Devoisselle JM, Vioux A. 75.  2010. Ionogels as drug delivery system: one-step sol-gel synthesis using imidazolium ibuprofenate ionic liquid. Chem. Commun. 46:228–30 [Google Scholar]
  76. Bica K, Rodríguez H, Gurau G, Cojocaru OA, Riisager A. 76.  et al. 2012. Pharmaceutically active ionic liquids with solids handling, enhanced thermal stability, and fast release. Chem. Commun. 48:5422–24 [Google Scholar]
  77. Zhang YY, Chen X, Lan JB, You JS, Chen LJ. 77.  2009. Synthesis and biological applications of imidazolium-based polymerized ionic liquid as a gene delivery vector. Chem. Biol. Drug Des. 74:282–88 [Google Scholar]
  78. Azevedo AMO, Ribeiro DMG, Pinto PCAG, Lúcio M, Reis S, Saraiva MLMFS. 78.  2013. Imidazolium ionic liquids as solvents of pharmaceuticals: influence on HSA binding and partition coefficient of nimesulide. Int. J. Pharm. 443:273–78 [Google Scholar]
  79. Chuang VTG, Maruyama T, Otagiri M. 79.  2009. Updates on contemporary protein binding techniques. Drug Metab. Pharmacokinet. 24:358–64 [Google Scholar]
  80. Rodríguez H, Bica K, Rogers RD. 80.  2008. Ionic liquid technology: a potential new platform for the pharmaceutical industry. Trop. J. Pharm. Res. 7:1011–12 [Google Scholar]
  81. Hickey MB, Peterson ML, Manas ES, Alvarez J, Haeffner F, Almarsson O. 81.  2007. Hydrates and solid-state reactivity: a survey of β-lactam antibiotics. J. Pharm. Sci. 96:1090–99 [Google Scholar]
  82. Monissette SL, Almarsson O, Peterson ML, Remenar JF, Read MJ. 82.  et al. 2004. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev. 56:275–300 [Google Scholar]
  83. Datta S, Grant DJW. 83.  2004. Crystal structures of drugs: advances in determination, prediction and engineering. Nat. Rev. Drug Discov. 3:42–57 [Google Scholar]
  84. Bauer J, Spanton S, Henry R, Quick J, Dziki W. 84.  et al. 2001. Ritonavir: an extraordinary example of conformational polymorphism. Pharm. Res. 18:859–66 [Google Scholar]
  85. Hulme AT, Price SL, Tocher DA. 85.  2005. A new polymorph of 5-fluorouracil found following computational crystal structure predictions. J. Am. Chem. Soc. 127:1116–17 [Google Scholar]
  86. Brodin A, Nyqvistmayer A, Wadsten T, Forslund B, Broberg F. 86.  1984. Phase-diagram and aqueous solubility of lidocaine-prilocaine binary system. J. Pharm. Sci. 73:481–84 [Google Scholar]
  87. Stoimenovski J, MacFarlane DR, Bica K, Rogers RD. 87.  2010. Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm. Res. 27:521–26 [Google Scholar]
  88. Reichert WM, Holbrey JD, Vigour KB, Morgan TD, Broker GA, Rogers RD. 88.  2006. Approaches to crystallization from ionic liquids: complex solvents-complex results, or, a strategy for controlled formation of new supramolecular architectures?. Chem. Commun. 46:4767–79 [Google Scholar]
  89. Golding J, Forsyth S, MacFarlane DR, Forsyth M, Deacon GB. 89.  2002. Methanesulfonate and p-toluenesulfonate salts of the N-methyl-N-alkylpyrrolidinium and quaternary ammonium cations: novel low cost ionic liquids. Green Chem. 4:223–29 [Google Scholar]
  90. Sekhon BS. 90.  2011. Ionic liquids: pharmaceutical and biotechnological applications. Asian J. Pharm. Biol. Res. 1:395–411 [Google Scholar]
  91. Stahl PH, Wermuth CG. 91.  2002. Handbook of Pharmaceutical Salts: Properties, Selection, and Use Weinheim, Ger: Wiley-VCH [Google Scholar]
  92. Binghley LDBSM, Monkhouse DC. 92.  1966. Encyclopedia of Pharmaceutical Technology New York: Marcel Dekker [Google Scholar]
  93. Kumar V, Malhotra SV. 93.  2010. Ionic liquids as pharmaceutical salts: a historical perspective. Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology SV Malhotra 1–12 Washington, DC: Am. Chem. Soc. [Google Scholar]
  94. Anderson BD, Conradi RA. 94.  1985. Predictive relationships in the water solubility of salts of a nonsteroidal anti-inflammatory drug. J. Pharm. Sci. 74:815–20 [Google Scholar]
  95. Carter EB, Culver SL, Fox PA, Goode RD, Ntai I. 95.  et al. 2004. Sweet success: ionic liquids derived from non-nutritive sweeteners. Chem. Commun. 6:630–31 [Google Scholar]
  96. Higasio YS, Shoji T. 96.  2001. Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins. Appl. Catal. 221:197–207 [Google Scholar]
  97. Clauson-Kaas NKFW. 97.  1955. N-cetyl-3 hydroxypyridinium chloride. US Patent No. 2728775A
  98. Baccanar M. 98.  1978. Suppression of cardiac ventricular fibrillation and cardiac arrhythmias with bretylium tosylate. US Patent No. USRE29618E
  99. Hoffer M. 99.  1951. Gentisic acid compounds of antipyrines. US Patent No. US2541651A
  100. Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK. 100.  et al. 2007. The third evolution of ionic liquids: active pharmaceutical ingredients. New J. Chem. 31:1429–36 [Google Scholar]
  101. Fukumoto K, Yoshizawa M, Ohno H. 101.  2005. Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc. 127:2398–99 [Google Scholar]
  102. Ferraz R, Branco LC, Marrucho IM, Araújo JMM, Rebelo LPN. 102.  et al. 2012. Development of novel ionic liquids based on ampicillin. MedChemComm 3:494–97 [Google Scholar]
  103. Florindo C, Araújo JMM, Alves F, Matos C, Ferraz R, Prudêncio C. 103.  et al. 2013. Evaluation of solubility and partition properties of ampicillin-based ionic liquids. Int. J. Pharm. 456:553–59 [Google Scholar]
  104. Bica K, Rijksen C, Nieuwenhuyzen M, Rogers RD. 104.  2010. In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys. Chem. Chem. Phys. 12:2011–17 [Google Scholar]
  105. Bica K, Rogers RD. 105.  2010. Confused ionic liquid ions—a “liquification” and dosage strategy for pharmaceutically active salts. Chem. Commun. 46:1215–17 [Google Scholar]
  106. Hough-Troutman WL, Smiglak M, Griffin S, Reichert WM, Mirska I. 106.  et al. 2009. Ionic liquids with dual biological function: sweet and anti-microbial, hydrophobic quaternary ammonium-based salts. New J. Chem. 33:26–33 [Google Scholar]
  107. Belieres JP, Angell CA. 107.  2007. Protic ionic liquids: preparation, characterization, and proton free energy level representation. J. Phys. Chem. B 111:4926–37 [Google Scholar]
  108. MacFarlane DR, Seddon KR. 108.  2007. Ionic liquids—progress on the fundamental issues. Aust. J. Chem. 60:3–5 [Google Scholar]
  109. Nuthakki B, Greaves TL, Krodkiewska I, Weerawardena A, Burgar MI. 109.  et al. 2007. Protic ionic liquids and ionicity. Aust. J. Chem. 60:21–28 [Google Scholar]
  110. Stoimenovski J, Dean PM, Izgorodina EI, MacFarlane DR. 110.  2012. Protic pharmaceutical ionic liquids and solids: aspects of protonics. Faraday Discuss. 154:335–52 [Google Scholar]
  111. O'Neil MJ ed. 111.  2006. The Merck Index: An Encyclopedia of Chemical, Drugs and Biologicals Whitehouse Station, NJ: Merck [Google Scholar]
  112. Cole MR, Li M, El-Zahab B, Janes ME, Hayes D, Warner IM. 112.  2011. Design, synthesis, and biological evaluation of β-lactam antibiotic-based imidazolium- and pyridinium-type ionic liquids. Chem. Biol. Drug Des. 78:33–41 [Google Scholar]
  113. Alves F, Oliveira FS, Schröder B, Matos C, Marrucho IM. 113.  2013. Synthesis, characterization, and liposome partition of a novel tetracycline derivative using the ionic liquids framework. J. Pharm. Sci. 102:1504–12 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error