One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Tobias CW. 1.  1995. Interview by James J. Bohning. Chem. Herit. Found. Cent. Oral Hist., Orinda, CA. http://www.chemheritage.org/discover/collections/oral-histories/details/tobias-charles-w.aspx [Google Scholar]
  2. Juda W, McRae WA. 2.  1950. Coherent ion-exchange gels and membranes. J. Am. Chem. Soc. 72:1043–44 [Google Scholar]
  3. Grubb WT. 3.  1959. Fuel cell. US Patent No. 2,913,511
  4. Wilson MS, Gottesfeld S. 4.  1992. Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes. J. Appl. Electrochem. 22:1–7 [Google Scholar]
  5. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R. 5.  et al. 2007. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107:3904–51 [Google Scholar]
  6. Bashyam R, Zelenay P. 6.  2006. A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66 [Google Scholar]
  7. Wu G, More KL, Johnston CM, Zelenay P. 7.  2011. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–47 [Google Scholar]
  8. Justi EW, Winsel AW. 8.  1961. The DSK system of fuel cell electrodes. J. Electrochem. Soc. 108:1073–79 [Google Scholar]
  9. Agel E, Bouet J, Fauvarque JF. 9.  2001. Characterization and use of anionic membranes for alkaline fuel cells. J. Power Sources 101:267–74 [Google Scholar]
  10. Varcoe JR, Slade RCT. 10.  2005. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:187–200 [Google Scholar]
  11. Lu SF, Pan J, Huang AB, Zhuang L, Lu JT. 11.  2008. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl. Acad. Sci. USA 105:20611–14 [Google Scholar]
  12. Gu S, Sheng WC, Cai R, Alia SM, Song SQ. 12.  et al. 2013. An efficient Ag-ionomer interface for hydroxide exchange membrane fuel cells. Chem. Commun. 49:131–33 [Google Scholar]
  13. Varcoe JR, Slade RCT, Wright GL, Chen YL. 13.  2006. Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. J. Phys. Chem. B 110:21041–49 [Google Scholar]
  14. Eisenberg D, Crothers D. 14.  1979. Physical Chemistry with Applications to the Life Sciences Menlo Park, CA: Benjamin Cummings Publ. [Google Scholar]
  15. Isomura T, Fukuta K, Yanagi H, Ge SH, Wang CY. 15.  2012. The effect of gas diffusion media on AMFC performance. ECS Meet. Abstr. MA2012–02:1594 [Google Scholar]
  16. Yu EH, Wang X, Krewer U, Li L, Scott K. 16.  2012. Direct oxidation alkaline fuel cells: from materials to systems. Energy Environ. Sci. 5:5668–80 [Google Scholar]
  17. Ogumi Z, Matsuoka K, Chiba S, Matsuoka M, Iriyama Y. 17.  et al. 2002. Preliminary study on direct alcohol fuel cells employing anion exchange membrane. Electrochemistry 70:980–83 [Google Scholar]
  18. Fujiwara N, Siroma Z, Yamazaki SI, Ioroi T, Senoh H, Yasuda K. 18.  2008. Direct ethanol fuel cells using an anion exchange membrane. J. Power Sources 185:621–26 [Google Scholar]
  19. Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z. 19.  2005. Alkaline direct alcohol fuel cells using an anion exchange membrane. J. Power Sources 150:27–31 [Google Scholar]
  20. Yamada K, Yasuda K, Fujiwara N, Siroma Z, Tanaka H. 20.  et al. 2003. Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte. Electrochem. Commun. 5:892–96 [Google Scholar]
  21. Lan R, Tao SW. 21.  2010. Direct ammonia alkaline anion-exchange membrane fuel cells. Electrochem. Solid-St. Lett. 13:B83–B86 [Google Scholar]
  22. Fujiwara N, Yamazaki S, Siroma Z, Ioroi T, Senoh H, Yasuda K. 22.  2009. Nonenzymatic glucose fuel cells with an anion exchange membrane as an electrolyte. Electrochem. Commun. 11:390–92 [Google Scholar]
  23. McLean GF, Niet T, Prince-Richard S, Djilali N. 23.  2002. An assessment of alkaline fuel cell technology. Int. J. Hydrog. Energy 27:507–26 [Google Scholar]
  24. Adams LA, Poynton SD, Tamain C, Slade RCT, Varcoe JR. 24.  2008. A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell. ChemSusChem 1:79–81 [Google Scholar]
  25. Fukuta K, Inoue H, Watanabe S, Yanagi H. 25.  2009. In-situ observation of CO2 through the self-purging in alkaline membrane fuel cell (AMFC). ECS Trans. 19:23–27 [Google Scholar]
  26. Pan J, Chen C, Zhuang L, Lu JT. 26.  2012. Designing advanced alkaline polymer electrolytes for fuel cell applications. Acc. Chem. Res. 45:473–81 [Google Scholar]
  27. Merle G, Wessling M, Nijmeijer K. 27.  2011. Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci. 377:1–35 [Google Scholar]
  28. Tang DP, Pan J, Lu SF, Zhuang L, Lu JT. 28.  2010. Alkaline polymer electrolyte fuel cells: principle, challenges, and recent progress. Sci. China Chem. 53:357–64 [Google Scholar]
  29. Hickner MA. 29.  2010. Ion-containing polymers: new energy & clean water. Mater. Today 13:34–41 [Google Scholar]
  30. Zhang HW, Shen PK. 30.  2012. Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev. 112:2780–832 [Google Scholar]
  31. Couture G, Alaaeddine A, Boschet F, Ameduri B. 31.  2011. Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog. Polym. Sci. 36:1521–57 [Google Scholar]
  32. Shevchenko VV, Gumennaya MA. 32.  2010. Synthesis and properties of anion-exchange membranes for fuel cells. Theor. Exp. Chem. 46:139–52 [Google Scholar]
  33. Zhang HW, Shen PK. 33.  2012. Advances in the high performance polymer electrolyte membranes for fuel cells. Chem. Soc. Rev. 41:2382–94 [Google Scholar]
  34. Jaeger W, Bohrisch J, Laschewsky A. 34.  2010. Synthetic polymers with quaternary nitrogen atoms—synthesis and structure of the most used type of cationic polyelectrolytes. Prog. Polym. Sci. 35:511–77 [Google Scholar]
  35. Gu S, Cai R, Luo T, Chen ZW, Sun MW. 35.  et al. 2009. A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. Angew. Chem. Int. Ed. 48:6499–502 [Google Scholar]
  36. Gu S, Cai R, Luo T, Jensen K, Contreras C, Yan YS. 36.  2010. Quaternary phosphonium-based polymers as hydroxide exchange membranes. ChemSusChem 3:555–58 [Google Scholar]
  37. Gu S, Cai R, Yan YS. 37.  2011. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes. Chem. Commun. 47:2856–58 [Google Scholar]
  38. Zhang BZ, Gu S, Wang JH, Liu Y, Herring AM, Yan YS. 38.  2012. Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes. RSC Adv. 2:12683–85 [Google Scholar]
  39. Wang JH, Li SH, Zhang SB. 39.  2010. Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890–96 [Google Scholar]
  40. Guo ML, Fang J, Xu HK, Li W, Lu XH. 40.  et al. 2010. Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells. J. Membr. Sci. 362:97–104 [Google Scholar]
  41. Zha YP, Disabb-Miller ML, Johnson ZD, Hickner MA, Tew GN. 41.  2012. Metal-cation-based anion exchange membranes. J. Am. Chem. Soc. 134:4493–96 [Google Scholar]
  42. Gu S, Skovgard J, Yan YS. 42.  2012. Engineering the van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity. ChemSusChem 5:843–48 [Google Scholar]
  43. Antolini E, Gonzalez ER. 43.  2010. Alkaline direct alcohol fuel cells. J. Power Sources 195:3431–50 [Google Scholar]
  44. Spendelow JS, Wieckowski A. 44.  2007. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 9:2654–75 [Google Scholar]
  45. Blizanac BB, Ross PN, Markovic NM. 45.  2007. Oxygen electroreduction on Ag(111): the pH effect. Electrochim. Acta 52:2264–71 [Google Scholar]
  46. Wang B. 46.  2005. Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 152:1–15 [Google Scholar]
  47. Chung HT, Won JH, Zelenay P. 47.  2013. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 4:1922 [Google Scholar]
  48. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. 48.  2011. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–85 [Google Scholar]
  49. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. 49.  2011. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 3:546–50 [Google Scholar]
  50. Alia SM, Duong K, Liu T, Jensen K, Yan YS. 50.  2012. Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. ChemSusChem 5:1619–24 [Google Scholar]
  51. Wagner N, Schulze M, Gülzow E. 51.  2004. Long term investigations of silver cathodes for alkaline fuel cells. J. Power Sources 127:264–72 [Google Scholar]
  52. Mamlouk M, Kumar SMS, Gouerec P, Scott K. 52.  2011. Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells. J. Power Sources 196:7594–600 [Google Scholar]
  53. Mamlouk M, Wang X, Scott K, Horsfall JA, Williams C. 53.  2011. Characterization and application of anion exchange polymer membranes with non-platinum group metals for fuel cells. Proc. Inst. Mech. Eng. A J. Power Energy 225:152–60 [Google Scholar]
  54. Kim J, Momma T, Osaka T. 54.  2009. Cell performance of Pd-Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane. J. Power Sources 189:999–1002 [Google Scholar]
  55. Wu G, Cui GF, Li DY, Shen PK, Li N. 55.  2009. Carbon-supported Co1.67Te2 nanoparticles as electrocatalysts for oxygen reduction reaction in alkaline electrolyte. J. Mater. Chem. 19:6581–89 [Google Scholar]
  56. Piana M, Boccia M, Filpi A, Flammia E, Miller HA. 56.  et al. 2010. H-2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst. J. Power Sources 195:5875–81 [Google Scholar]
  57. Yanagi H, Fukuta K. 57.  2008. Anion exchange membrane and ionomer for alkaline membrane fuel cells (AEMFCs). ECS Trans. 16:257–62 [Google Scholar]
  58. Pan J, Li Y, Zhuang L, Lu JT. 58.  2010. Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90°C. Chem. Commun. 46:8597–99 [Google Scholar]
  59. Conway BE, Jerkiewicz G. 59.  2000. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics. Electrochim. Acta 45:4075–83 [Google Scholar]
  60. Sheng WC, Myint M, Chen JGG, Yan YS. 60.  2013. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6:1509–12 [Google Scholar]
  61. Sheng WC, Gasteiger HA, Shao-Horn Y. 61.  2010. Hydrogen oxidation and evolution reaction kinetics on platinum: acid versus alkaline electrolytes. J. Electrochem. Soc. 157:B1529–B36 [Google Scholar]
  62. Barber J, Morin S, Conway BE. 62.  1998. Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between OPD and UPD H. J. Electroanal. Chem. 446:125–38 [Google Scholar]
  63. Conway BE, Bai L. 63.  1986. Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J. Electroanal. Chem. 198:149–75 [Google Scholar]
  64. Alia SM, Pivovar BS, Yan Y. 64.  2013. Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. J. Am. Chem. Soc. 135:13473–78 [Google Scholar]
  65. Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N. 65.  et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5:300–6 [Google Scholar]
  66. Machado SAS, Avaca LA. 66.  1994. The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption. Electrochim. Acta 39:1385–91 [Google Scholar]
  67. Norskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG. 67.  et al. 2005. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152:J23–J26 [Google Scholar]
  68. Sleightholme AES, Varcoe JR, Kucernak AR. 68.  2008. Oxygen reduction at the silver/hydroxide-exchange membrane interface. Electrochem. Commun. 10:151–55 [Google Scholar]
  69. Tamain C, Poynton SA, Slade RCT, Carroll B, Varcoe JR. 69.  2007. Development of cathode architectures customized for H2/O2 metal-cation-free alkaline membrane fuel. J. Phys. Chem. C 111:18423–30 [Google Scholar]
  70. Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H. 70.  2010. Dye-sensitized solar cells. Chem. Rev. 110:6595–663 [Google Scholar]
  71. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC. 71.  2010. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110:6873–90 [Google Scholar]
  72. Günes S, Neugebauer H, Sariciftci NS. 72.  2007. Conjugated polymer-based organic solar cells. Chem. Rev. 107:1324–38 [Google Scholar]
  73. Bergmann RB. 73.  1999. Crystalline Si thin-film solar cells: a review. App. Phys. A. 69:187–94 [Google Scholar]
  74. Denholm P, Margolis RM. 74.  2007. Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies. Energy Policy 35:4424–33 [Google Scholar]
  75. Denholm P, Margolis RM. 75.  2007. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems. Energy Policy 35:2852–61 [Google Scholar]
  76. Balzani V, Credi A, Venturi M. 76.  2008. Photochemical conversion of solar energy. ChemSusChem 1:26–58 [Google Scholar]
  77. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX. 77.  et al. 2010. Solar water splitting cells. Chem. Rev. 110:6446–73 [Google Scholar]
  78. Fujishima A, Honda K. 78.  1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38 [Google Scholar]
  79. Maeda K, Teramura K, Lu DL, Takata T, Saito N. 79.  et al. 2006. Photocatalyst releasing hydrogen from water—enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440:295 [Google Scholar]
  80. Maeda K, Domen K. 80.  2010. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1:2655–61 [Google Scholar]
  81. Maeda K, Higashi M, Lu DL, Abe R, Domen K. 81.  2010. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132:5858–68 [Google Scholar]
  82. Moriya Y, Takata T, Domen K. 82.  2013. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev. 257:1957–69 [Google Scholar]
  83. Linic S, Christopher P, Ingram DB. 83.  2011. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10:911–21 [Google Scholar]
  84. Spurgeon JM, Walter MG, Zhou JF, Kohl PA, Lewis NS. 84.  2011. Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays. Energy Environ. Sci. 4:1772–80 [Google Scholar]
  85. Spurgeon JM, Lewis NS. 85.  2011. Proton exchange membrane electrolysis sustained by water vapor. Energy Environ. Sci. 4:2993–98 [Google Scholar]
  86. Karakitsou K, Verykios XE. 86.  1995. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO2/TiO2 catalysts. J. Catal. 152:360–67 [Google Scholar]
  87. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW. 87.  et al. 2011. Electrochemical energy storage for green grid. Chem. Rev. 111:3577–613 [Google Scholar]
  88. Thaller LH. 88.  1974. Electrically rechargeable redox flow cells. Proc. 9th Intersoc. Energy Convers. Eng. Conf. Proc.924–28 New York: Am. Soc. Mech. Eng. [Google Scholar]
  89. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH. 89.  2011. Redox flow batteries: a review. J. Appl. Electrochem. 41:1137–64 [Google Scholar]
  90. Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. 90.  2011. Progress in flow battery research and development. J. Electrochem. Soc. 158:R55–R79 [Google Scholar]
  91. Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG. 91.  2013. Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23:970–86 [Google Scholar]
  92. Leung P, Li XH, de Leon CP, Berlouis L, Low CTJ, Walsh FC. 92.  2012. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2:10125–56 [Google Scholar]
  93. Remick RJ, Ang PGP. 93.  1984. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system. US Patent No. 4,485,154
  94. Adams GB, Hollandsworth RP, Littauer EL. 94.  1981. Proc. 16th Intersoc. Energy Convers. Eng. Conf.812–16 New York: Am. Soc. Mech. Eng. [Google Scholar]
  95. Hruska LW, Savinell RF. 95.  1981. Investigation of factors affecting performance of the iron-redox battery. J. Electrochem. Soc. 128:18–25 [Google Scholar]
  96. Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA. 96.  1986. New all-vanadium redox flow cell. J. Electrochem. Soc. 133:1057–58 [Google Scholar]
  97. Yamamura T, Watanabe N, Yano T, Shiokawa Y. 97.  2005. Electron-transfer kinetics of Np3+/Np4+, NpO2+/NpO22+, V2+/V3+, and VO2+/VO2+ at carbon electrodes. J. Electrochem. Soc. 152:A830–36 [Google Scholar]
  98. Hazza A, Pletcher D, Wills R. 98.  2004. A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II). Part I. Preliminary studies. Phys. Chem. Chem. Phys. 6:1773–78 [Google Scholar]
  99. Yan YS, Gu S, Gong K. 99.  2014. Double-membrane triple-electrolyte redox flow battery design. US Patent Appl. No. 20140004402A1
  100. Yan YS, Gu S, Gong K. 100.  2014. Multiple-membrane multiple-electrolyte redox flow battery design. US Patent Appl. No. 20140004403A1
  101. Gu S, Gong K, Yan EZ, Yan Y. 101.  2014. A multiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. In press. doi: 10.1039/C4EE00165F [Google Scholar]
  102. Schwenzer B, Zhang JL, Kim S, Li LY, Liu J, Yang ZG. 102.  2011. Membrane development for vanadium redox flow batteries. ChemSusChem 4:1388–406 [Google Scholar]
  103. Li XF, Zhang HM, Mai ZS, Zhang HZ, Vankelecom I. 103.  2011. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 4:1147–60 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error