Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO and HO, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. US Energy Inf. Adm 2013. International Energy Outlook 2013. Washington, DC: US Energy Inf. Adm. [Google Scholar]
  2. 2. US Natl. Ocean. Atmos. Adm 2013. Trends in Atmospheric Carbon Dioxide 2013. Mauna Loa, HI: US Natl. Ocean. Atmos. Adm. [Google Scholar]
  3. Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD. 3.  2008. Advances in CO2 capture technology—the U.S. Department of Energy's carbon sequestration program. Int. J. Greenh. Gas Control 2:9–20 [Google Scholar]
  4. Fan LS. 4.  2010. Chemical Looping Systems for Fossil Energy Conversions New York: Wiley [Google Scholar]
  5. Fan LS, Zeng L, Wang W, Luo S. 5.  2012. Chemical looping processes for CO2 capture and carbonaceous fuel conversion—prospect and opportunity. Energy Environ. Sci. 5:7254–80 [Google Scholar]
  6. Connell DP, Dunkerley ML, Lewandowski DA, Zeng L, Wang D. 6.  et al. 2012. Techno-economic analysis of a coal direct chemical looping power plant with carbon dioxide capture. Int. Tech. Conf. Clean Coal Fuel Syst. 37:11–22 [Google Scholar]
  7. Xu J, Froment GF. 7.  1989. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J. 35:88–96 [Google Scholar]
  8. Tang P, Zhu Q, Wu Z, Ma D. 8.  2014. Methane activation: the past and future. Energy Environ. Sci. 7:2580–91 [Google Scholar]
  9. Shafiefarhood A, Galinsky N, Huang Y, Chen Y, Li F. 9.  2014. Fe2O3@LaxSr1−xFeO3 core-shell redox catalyst for chemical looping reforming of methane. ChemCatChem 6:3790–99 [Google Scholar]
  10. He F, Trainham J, Parsons G, Newman JS, Li F. 10.  2014. A hybrid solar-redox scheme for liquid fuel and hydrogen coproduction. Energy Environ. Sci. 7:2033–42 [Google Scholar]
  11. Thursfield A, Murugan A, Franca R, Metcalfe IS. 11.  2012. Chemical looping and oxygen permeable ceramic membranes for hydrogen production—a review. Energy Environ. Sci. 5:7421–59 [Google Scholar]
  12. Adánez J, de Diego LF, García-Labiano F, Gayán P, Abad A. 12.  2004. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels 18:371–77 [Google Scholar]
  13. Li F, Kim H, Sridhar D, Wang F, Zeng L. 13.  et al. 2009. Syngas chemical looping gasification process: oxygen carrier particle selection and performance. Energy Fuels 23:4182–89 [Google Scholar]
  14. Mattisson T, Leion H, Lyngfelt A. 14.  2009. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke. Fuel 88:683–90 [Google Scholar]
  15. Lewis WK, Gilliland ER, Sweeney WP. 15.  1951. Gasification of carbon metal oxides in a fluidized powder bed. Chem. Eng. Prog. 47:5251–56 [Google Scholar]
  16. Zhu Y, Mimura K, Isshiki M. 16.  2004. Oxidation mechanism of Cu2O to CuO at 600–1050°C. Oxid. Met. 62:207–22 [Google Scholar]
  17. de Diego LF, García-Labiano F, Adánez J, Gayán P, Abad A. 17.  et al. 2004. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel 83:131749–57 [Google Scholar]
  18. de Diego LF, Gayán P, García-Labiano F, Celaya J, Abad A. 18.  et al. 2005. Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: avoiding fluidized bed agglomeration. Energy Fuels 19:51850–56 [Google Scholar]
  19. Gayán P, Forero CR, Abad A, de Diego LF, García-Labiano F. 19.  et al. 2007. Effect of support on the behavior of Cu-based oxygen carriers during long-term CLC operation at temperatures above 1073 K. Energy Fuels 25:31316–26 [Google Scholar]
  20. Forero CR, Gayán P, García-Labiano F, de Diego LF, Abad A. 20.  et al. 2010. Effect of gas composition in chemical-looping combustion with copper-based oxygen carriers: fate of sulphur. Int. J. Greenh. Gas Control 4:762–70 [Google Scholar]
  21. Adánez-Rubio I, Gayán P, García-Labiano F, de Diego LF, Adánez J. 21.  et al. 2011. Development of CuO-based oxygen-carrier materials suitable for chemical-looping with oxygen uncoupling (CLOU) process. Energy Procedia 4:417–24 [Google Scholar]
  22. Gayán P, Adánez-Rubio I, Abad A, de Diego LF, García-Labiano F. 22.  et al. 2012. Development of Cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU) process. Fuel 96:226–38 [Google Scholar]
  23. Arjmand M, Azad AM, Leion H, Lyngfelt A, Mattisson T. 23.  2011. Prospects of Al2O3 and MgAl2O4-supported CuO oxygen carriers in chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). Energy Fuels 25:5493–502 [Google Scholar]
  24. Arjmand M, Keller M, Leion H, Mattisson T, Lyngfelt A. 24.  2012. Oxygen release and oxidation rates of MgAl2O4 supported CuO oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU). Energy Fuels 26:6528–39 [Google Scholar]
  25. Xu L, Wang J, Li Z, Cai N. 25.  2013. Experimental study of cement-supported CuO oxygen carriers in chemical looping with oxygen uncoupling (CLOU). Energy Fuels 27:1522–30 [Google Scholar]
  26. Song Q, Liu W, Bohn CD, Harper RN, Sivaniah E. 26.  et al. 2013. A high performance oxygen storage material for chemical looping processes with CO2 capture. Energy Environ. Sci. 6:288–98 [Google Scholar]
  27. Thomas TJ, Fan LS, Gupta P, Valazquez-Vargas LG. 27.  2010. Combustion looping using composite oxygen carriers. US Patent No. 7767191 [Google Scholar]
  28. Li F, Zeng L, Velazquez-Vargas LG, Yoscovits Z, Fan L-S. 28.  2010. Syngas chemical looping gasification process: bench scale studies and reactor simulations. AIChE J. 56:2186–99 [Google Scholar]
  29. Sridhar D, Tong A, Kim HR, Zeng L, Li F. 29.  et al. 2012. Syngas chemical looping process: design and construction of a 25 kWth subpilot unit. Energy Fuels 26:42292–302 [Google Scholar]
  30. Tong A, Sridhar D, Sun Z, Kim HR, Zeng L. 30.  et al. 2013. Continuous high purity hydrogen generation from a syngas chemical looping 25 kWth subpilot unit with 100% carbon capture. Fuel 103:495–595 [Google Scholar]
  31. Kim HR, Wang D, Zeng L, Bayham S, Tong A. 31.  et al. 2013. Coal direct chemical looping combustion process: design and operation of a 25-kWth sub-pilot unit. Fuel 108:370–84 [Google Scholar]
  32. Tong A, Zeng L, Kathe M, Sridhar D, Fan L-S. 32.  2013. Application of the moving bed chemical looping process for high methane conversion. Energy Fuels 27:4119–28 [Google Scholar]
  33. Bayham S, Kim HR, Wang D, Tong A, Zeng L. 33.  et al. 2013. Iron-based coal direct chemical looping combustion process: 200-hour continuous operation of a 25 kWth sub-pilot unit. Energy Fuels 27:31347–56 [Google Scholar]
  34. Pineau A, Kanari N, Gaballah I. 34.  2006. Kinetics of reduction of iron oxides by H2 part I: low temperature reduction of hematite. Thermochim. Acta 447:89–100 [Google Scholar]
  35. Pineau A, Kanari N, Gaballah I. 35.  2007. Kinetics of reduction of iron oxides by H2 part II: low temperature reduction of magnetite. Thermochim. Acta 456:75–88 [Google Scholar]
  36. Li S, Krishnamoorthy S, Li A, Meitzner GD, Iglesia E. 36.  2002. Promoted iron-based catalysts for the Fischer–Tropsch synthesis: design, synthesis, site densities, and catalytic properties. J. Catal. 206:202–17 [Google Scholar]
  37. Chen S, Shi Q, Xue Z, Sun X, Xiang W. 37.  2011. Experimental investigation of chemical-looping hydrogen generation using Al2O3 or TiO2-supported iron oxides in a batch fluidized bed. Int. J. Hydrog. Energy 36:8915–26 [Google Scholar]
  38. Liu L, Zachariah MR. 38.  2013. Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion. Energy Fuels 27:4977–83 [Google Scholar]
  39. Li F, Sun Z, Luo S, Fan LS. 39.  2011. Ionic diffusion in the oxidation of iron-effect of support and its implications to chemical looping applications. Energy Environ. Sci. 4:876–80 [Google Scholar]
  40. Song Q, Xiao R, Deng Z, Zheng W, Shen L. 40.  et al. 2008. Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO4 oxygen carrier in a fluidized bed reactor. Energy Fuels 22:3661–72 [Google Scholar]
  41. Song T, Zheng M, Shen L, Zhang T, Niu X. 41.  et al. 2013. Mechanism investigation of enhancing reaction performance with CaSO4/Fe2O3 oxygen carrier in chemical-looping combustion of coal. Ind. Eng. Chem. Res. 52:4059–71 [Google Scholar]
  42. He F, Galinsky N, Li F. 42.  2013. Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles—feasibility assessment and process simulations. Int. J. Hydrog. Energy 38:7839–54 [Google Scholar]
  43. Shulman A, Cleverstam E, Mattisson T, Lyngfelt A. 43.  2009. Manganese/iron, manganese/nickel, and manganese/silicon oxides used in chemical-looping with oxygen uncoupling (CLOU) for combustion of methane. Energy Fuels 23:5269–75 [Google Scholar]
  44. Azimi G, Ryden M, Leion H, Mattisson T, Lyngfelt T. 44.  2012. (MnzFe1−z)yOx combined oxides as oxygen carrier for chemical-looping with oxygen uncoupling. AIChE J. 59:582–88 [Google Scholar]
  45. Azimi G, Leion H, Ryden M, Mattisson T, Lyngfelt T. 45.  2013. Investigation of different Mn–Fe oxides as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU). Energy Fuels 27:367–77 [Google Scholar]
  46. Azad A, Hedayati A, Ryden M, Leion H, Mattisson T. 46.  2013. Examining the Cu–Mn–O spinel system as an oxygen carrier in chemical looping combustion. Energy Technol. 1:59–69 [Google Scholar]
  47. Shen S, Li R, Zhou J, Yu C. 47.  2003. Selective oxidation of light hydrocarbons using lattice oxygen instead of molecular oxygen. Chin. J. Chem. Eng. 11:649–54 [Google Scholar]
  48. Dai X, Wu Q, Li R, Yu C, Hao Z. 48.  2006. Hydrogen production from a combination of the water–gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst. J. Phys. Chem. B 110:25856–62 [Google Scholar]
  49. Galinsky NL, Huang Y, Shafiefarhood A, Li F. 49.  2013. Iron oxide with facilitated O2– transport for facile fuel oxidation and CO2 capture in a chemical looping scheme. ACS Sustain. Chem. Eng. 1:364–73 [Google Scholar]
  50. Mihai O, Chen D, Holmen A. 50.  2011. Catalytic consequence of oxygen of lanthanum ferrite Perovskite in chemical looping reforming of methane. Ind. Eng. Chem. Res. 50:2613–21 [Google Scholar]
  51. Carter S, Selcuk A, Chater R, Kajda J, Kilner J. 51.  et al. 1992. Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ionics 53:597–605 [Google Scholar]
  52. Bakken E, Norby T, Stølen S. 52.  2005. Nonstoichiometry and reductive decomposition of CaMnO3. Solid State Ionics 176:217–23 [Google Scholar]
  53. Leion H, Larring Y, Bakken E, Bredesen R, Mattisson T. 53.  et al. 2009. Use of CaMn0.875Ti0.125O3 as oxygen carrier in chemical-looping with oxygen uncoupling. Energy Fuels 23:5276–83 [Google Scholar]
  54. Hallberg P, Jing D, Ryden M, Mattisson T, Lynfelt A. 54.  2013. Chemical looping combustion and chemical looping with oxygen uncoupling experiments in a batch reactor using spray-dried CaMn1−xMxO3−δ (M = Ti, Fe, Mg) particles as oxygen carriers. Energy Fuels 27:1473–81 [Google Scholar]
  55. Arjmand M, Hedayati A, Azad AM, Leion H, Ryden M. 55.  et al. 2013. CaxLa1-xMn1−yMyO3−δ (M = Mg, Ti, Fe, or Cu) as oxygen carriers for chemical-looping with oxygen uncoupling (CLOU). Energy Fuels 27:4097–107 [Google Scholar]
  56. Sundqvist S, Leion H, Ryden M, Lyngfelt A, Mattisson T. 56.  2013. CaMn0.875Ti0.125O3−δ as an oxygen carrier for chemical-looping with oxygen uncoupling (CLOU)—solid-fuel testing and sulfur interaction. Energy Technol. 1:338–44 [Google Scholar]
  57. Peña JA, Lorente E, Romero E, Herguido J. 57.  2006. Kinetic study of the redox process for storing hydrogen reduction stage. Catal. Today 116:439–44 [Google Scholar]
  58. Kuo YL, Hsu WM, Chiu PC, Tseng YH, Ku Y. 58.  2013. Assessment of redox behavior of nickel ferrite as oxygen carriers for chemical looping process. Ceram. Int. 39:5459–65 [Google Scholar]
  59. Wang B, Yan R, Zhao H, Zheng Y, Liu Z, Zheng C. 59.  2011. Investigation of chemical looping combustion of coal with CuFe2O4 oxygen carrier. Energy Fuels 25:3344–54 [Google Scholar]
  60. Wang B, Zhao H, Zheng Y, Liu Z, Zheng C. 60.  2013. Chemical looping combustion of petroleum coke with CuFe2O4 as oxygen carrier. Chem. Eng. Technol. 36:1488–95 [Google Scholar]
  61. Scheffe JR, Allendorf MD, Coker EN, Jacobs BW, McDaniel AH. 61.  et al. 2011. Hydrogen production via chemical looping redox cycles using atomic layer deposition-synthesized iron oxide and cobalt ferrites. Chem. Mater. 23:2030–38 [Google Scholar]
  62. Muhich CL, Evanko BW, Weston KC, Lichty P, Liang X. 62.  et al. 2013. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science 341:540–42 [Google Scholar]
  63. Leion H, Lyngfelt A, Johansson M, Jerndal E, Mattisson T. 63.  2008. The use of ilmenite as an oxygen carrier in chemical-looping combustion. Chem. Eng. Res. Des. 86:1017–26 [Google Scholar]
  64. Gu H, Shen L, Xiao J, Zhang S, Song T. 64.  2011. Chemical looping combustion of biomass/coal with natural iron ore as oxygen carrier in a continuous reactor. Energy Fuels 25:446–55 [Google Scholar]
  65. Cuadrat A, Abad A, Adánez J, de Diego LF, García-Labiano F, Gayán P. 65.  2012. Behavior of ilmenite as oxygen carrier in chemical-looping combustion. Fuel Process. Technol. 94:101–12 [Google Scholar]
  66. Tian H, Siriwardane R, Simonyi T, Poston J. 66.  2013. Natural ores as oxygen carriers in chemical looping combustion. Energy Fuels 27:4108–18 [Google Scholar]
  67. Li F, Luo S, Sun Z, Bao X, Fan LS. 67.  2011. Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations. Energy Envir. Sci. 4:3661–67 [Google Scholar]
  68. Li K, Wang H, Wei Y. 68.  2013. Syngas generation from methane using a chemical looping concept: a review of oxygen carriers. J. Chem. 2013:294817 [Google Scholar]
  69. Otsuka K, Wang Y, Sunada E, Yamanaka I. 69.  1998. Direct partial oxidation of methane to synthesis gas by cerium oxide. J. Catal. 175:152–60 [Google Scholar]
  70. Gupta A, Hegde MS, Priolkar KR, Waghmare UV, Sarode PR. 70.  et al. 2009. Structural investigation of activated lattice oxygen in Ce1−xSnxO2 and Ce1−x−ySnxPdyO2−δ by EXAFS and DFT calculation. Chem. Mater. 21:5836–47 [Google Scholar]
  71. Wang S, Kobayashi T, Dokiya M, Hashimoto T. 71.  2000. Electrical and ionic conductivity of Gd-doped ceria. J. Electrochem. Soc. 147:3606–9 [Google Scholar]
  72. Salazar-Villalpando MD, Berry DA, Cugini A. 72.  2010. Role of lattice oxygen in the partial oxidation of methane over Rh/zirconia-doped ceria. Isotopic studies. Int. J. Hydrog. Energy 36:1998–2003 [Google Scholar]
  73. Mattos LV, Rodino E, Resasco DE, Passos FB, Noronha FB. 73.  2003. Partial oxidation and CO2 reforming of methane on Pt/AL2O3, Pt/ZrO2 and Pt/Ce-ZrO2 catalysts. Fuel Process. Technol. 83:147–61 [Google Scholar]
  74. Wu Q, Chen J, Zhang J. 74.  2008. Effect of yttrium and praseodymium on properties of Ce0.75Zr0.25O2 solid solution for CH4–CO2 reforming. Fuel Process. Technol. 89:993–99 [Google Scholar]
  75. Sadykov VA, Kuznetsova TG, Alikina GM, Frolova YV, Lukashevich AI. 75.  et al. 2004. Ceria-based fluorite-like oxide solid solutions as catalysts of methane selective oxidation into syngas by the lattice oxygen: synthesis, characterization and performance. Catal. Today 93:45–53 [Google Scholar]
  76. Kang ZC, Eyring L. 76.  2000. Lattice oxygen transfer in fluorite-type oxides containing Ce, Pr, and/or Tb. J. Solid State Chem. 155:129–37 [Google Scholar]
  77. Jalibert JC, Fathi M, Rokstad OA, Holmen A. 77.  2001. Synthesis gas production by partial oxidation of methane from the cyclic gas-solid reaction using promoted cerium oxide. Stud. Surf. Sci. Catal. 136:301–6 [Google Scholar]
  78. Li R, Yu C, Dai X, Shen S. 78.  2002. Partial oxidation of methane to synthesis gas using lattice oxygen instead of molecular oxygen. Chin. J. Catal. 10:56–69 [Google Scholar]
  79. Jeong HH, Kwak JH, Han GY, Yoon KJ. 79.  2011. Stepwise production of syngas and hydrogen through methane reforming and water splitting by using a cerium oxide redox system. Int. J. Hydrog. Energy 36:15221–30 [Google Scholar]
  80. Chen J, Yao C, Zhao Y, Jia P. 80.  2010. Synthesis gas production from dry reforming of methane over Ce0.75Zr0.25O2-supported Ru catalysts. Int. J. Hydrog. Energy 35:1630–42 [Google Scholar]
  81. Johansson M, Mattisson T, Lyngfelt A, Abad A. 81.  2008. Using continuous and pulse experiments to compare two promising nickel-based oxygen carriers for use in chemical-looping technologies. Fuel 87:988–1001 [Google Scholar]
  82. de Diego LF, Ortiz M, Adánez J, García-Labiano F, Abad A, Gayán P. 82.  2008. Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers. Chem. Eng. J. 144:289–98 [Google Scholar]
  83. Jerndal E, Mattisson T, Lyngfelt A. 83.  2009. Investigation of NiO/NiAl2O4 oxygen carriers for chemical-looping combustion produced by spray-drying. Energy Fuels 23:665–76 [Google Scholar]
  84. Zafar Q, Mattisson T, Gevert B. 84.  2006. Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4. Energy Fuels 20:34–44 [Google Scholar]
  85. Adánez J, Abad A, García-Labiano F, Gayán P, de Diego LF. 85.  2012. Progress in chemical-looping combustion and reforming technologies. Prog. Energy Combust. 38:215–82 [Google Scholar]
  86. Ryden M, Lyngfelt A, Mattisson T. 86.  2006. Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor. Fuel 85:1631–41 [Google Scholar]
  87. de Diego LF, Ortiz M, García-Labiano F, Adánez J, Abad A. 87.  et al. 2009. Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers. J. Power Sources 192:27–34 [Google Scholar]
  88. Pröll T, Bolhàr-Nordenkampf J, Kolbitsch P, Hofbauer H. 88.  2010. Syngas and a separate nitrogen/argon stream via chemical looping reforming—a 140 kW pilot plant study. Fuel 89:1249–56 [Google Scholar]
  89. Azadi P, Otomo J, Hatano H, Oshima Y, Farnood R. 89.  2011. Interactions of supported nickel and nickel oxide catalysts with methane and steam at high temperatures. Chem. Eng. Sci. 66:4196–202 [Google Scholar]
  90. Nakayama O, Ikenaga N, Miyake T, Yagasaki E, Suzuki T. 90.  2008. Partial oxidation of CH4 with air to produce pure hydrogen and syngas. Catal. Today 138:141–46 [Google Scholar]
  91. Steinfeld A, Kuhn P. 91.  1993. High-temperature solar thermochemistry: production of iron and synthesis gas by Fe3O4-reduction with methane. Energy 18:239–49 [Google Scholar]
  92. Fan LS, Luo S, Zeng L. 92.  2013. Methods for fuel conversion US Provis. Patent Appl. No. PCT/US2014/014877 [Google Scholar]
  93. Fan LS, Luo S, Zeng L, Xu D. 93.  2013. High quality syngas production using composite metal oxides US Provis. Patent Appl. No. 61/875,425 [Google Scholar]
  94. Fan LS, Wang D. 94.  2013. Devices and methods for co-current chemical looping system US Provis. Patent Appl. No. OSU0082MA [Google Scholar]
  95. Fan LS, Kathe M, Wang W, Chung E, Tong A. 95.  2014. Novel chemical looping process configurations US Provis. Patent Appl. No. 61/945,257 [Google Scholar]
  96. Kodama T, Ohtake H, Matsumoto S, Aoki A, Shimizu T, Kitayama Y. 96.  2000. Thermochemical methane reforming using a reactive WO3/W redox system. Energy 25:411–25 [Google Scholar]
  97. Kodama T, Shimizu T, Satoh T, Shimizu KI. 97.  2003. Stepwise production of CO-rich syngas and hydrogen via methane reforming by a WO3-redox catalyst. Energy 28:1055–68 [Google Scholar]
  98. Steinfeld A, Brack M, Meier A, Weidenkaff A, Wuillemin D. 98.  1998. A solar chemical reactor for co-production of zinc and synthesis gas. Energy 18:239–49 [Google Scholar]
  99. Kodama T, Miura S, Shimizu T, Kitayama Y. 99.  1997. Thermochemical conversion of coal and water to CO and H2 by a two-step redox cycle of ferrite. Energy 22:1019–27 [Google Scholar]
  100. Aoki A, Shimizu T, Kitayama Y, Kodama T. 100.  1999. A two-step thermochemical conversion of CH4 to CO, H2 and C2-hydrocarbons below 1173 K. J. Phys. IV France 9:337–42 [Google Scholar]
  101. Halmann M, Frei A, Steinfeld A. 101.  2002. Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons. Energy 27:1069–84 [Google Scholar]
  102. Wei HJ, Cao Y, Ji WJ, Au CT. 102.  2008. Lattice oxygen of La1−xSrxMO3 (M = Mn, Ni) and LaMnO3−aFb perovskite oxides for the partial oxidation of methane to synthesis gas. Catal. Commun. 9:2509–12 [Google Scholar]
  103. Dai X, Li R, Yu C, Hao Z. 103.  2006. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A = La, Nd, Eu) perovskite-type oxides as oxygen storage. J. Phys. Chem. B 110:22525–31 [Google Scholar]
  104. Wang Y, Zhu Y, Zhang L, Yang X, Lu L, Wang X. 104.  2006. Preparation and characterization of perovskite LaFeO3 nanocrystals. Mater. Lett. 60:1767–70 [Google Scholar]
  105. Nalbandian L, Evdou A, Zaspalis V. 105.  2011. La1−xSrxMyFe1−yO3−z perovskites as oxygen-carrier materials for chemical-looping reforming. Int. J. Hydrog. Energy 36:6657–70 [Google Scholar]
  106. Kodama T, Shimizu T, Satoh T, Nakata M, Shimizu KI. 106.  2002. Stepwise production of CO-rich syngas and hydrogen via solar methane reforming by using a Ni(II)–ferrite redox system. Sol. Energy 73:363–74 [Google Scholar]
  107. Trimm DL. 107.  1999. Catalysts for the control of coking during steam reforming. Catal. Today 49:3–10 [Google Scholar]
  108. Sturzenegger M, D'Souza L, Struis RP, Stucki S. 108.  2006. Oxygen transfer and catalytic properties of nickel iron oxides for steam reforming of methane. Fuel 85:1599–602 [Google Scholar]
  109. Cha KS, Yoo BK, Kim HS, Ryu TG, Kang KS. 109.  et al. 2010. A study on improving reactivity of Cu-ferrite/ZrO2 medium for syngas and hydrogen production from two-step thermochemical methane reforming. Energy 34:422–30 [Google Scholar]
  110. Cha KS, Kim HS, Yoo BK, Lee YS, Kang KS. 110.  et al. 2009. Reaction characteristics of two-step methane reforming over a Cu-ferrite/Ce–ZrO2 medium. Int. J. Hydrog. Energy 34:1801–8 [Google Scholar]
  111. Nakayama O, Ikenaga N, Miyake T, Yagasaki E, Suzuki T. 111.  2010. Production of synthesis gas from methane using lattice oxygen of NiO–Cr2O3–MgO complex oxide. Ind. Eng. Chem. Res. 49:526–34 [Google Scholar]
  112. Paul A. 112.  1985. Effect of thermal stabilization on redox equilibria and colour of glass. J. Non-Cryst. Solids 71:269–78 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error