1932

Abstract

In recent years, 3D printing has led to a disruptive manufacturing revolution that allows complex architected materials and structures to be created by directly joining sequential layers into designed 3D components. However, customized feedstocks for specific 3D printing techniques and applications are limited or nonexistent, which greatly impedes the production of desired structural or functional materials. Colloids, with their stable biphasic nature, have tremendous potential to satisfy the requirements of various 3D printing methods owing to their tunable electrical, optical, mechanical, and rheological properties. This enables materials delivery and assembly across the multiple length scales required for multifunctionality. Here, a state-of-the-art review on advanced colloidal processing strategies for 3D printing of organic, ceramic, metallic, and carbonaceous materials is provided. It is believed that the concomitant innovations in colloid design and 3D printing will provide numerous possibilities for the fabrication of new constructs unobtainable using traditional methods, which will significantly broaden their applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030133
2019-06-07
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/10/1/annurev-chembioeng-060718-030133.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030133&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tetelman AS, McEvily AJ. 1967. Fracture of Structural Materials Sci. Technol. Mater Hoboken, NJ: John Wiley & Sons
  2. 2.
    Gómez-Romero P, Sanchez C. 2006. Functional Hybrid Materials Hoboken, NJ: John Wiley & Sons
  3. 3.
    Huebsch N, Mooney DJ. 2009. Inspiration and application in the evolution of biomaterials. Nature 462:7272426
    [Google Scholar]
  4. 4.
    Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO 2015. Bioinspired structural materials. Nat. Mater. 14:123–36
    [Google Scholar]
  5. 5.
    Kickelbick G. 2007. Hybrid Materials: Synthesis, Characterization, and Applications Hoboken, NJ: John Wiley & Sons
  6. 6.
    Narayana KJ, Burela RG. 2018. A review of recent research on multifunctional composite materials and structures with their applications. Mater. Today Proc. 5:25580–90
    [Google Scholar]
  7. 7.
    DeGarmo EP, Black JT, Kohser RA 1997. Materials and Process in Manufacturing Upper Saddle River, NJ: Prentice Hall, 8th ed..
  8. 8.
    Lipson H, Kurman M. 2013. Fabricated: The New World of 3D Printing Hoboken, NJ: John Wiley & Sons
  9. 9.
    Mueller B. 2012. Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Assembly Autom 32:2 https://doi.org/10.1108/aa.2012.03332baa.010
    [Crossref] [Google Scholar]
  10. 10.
    MacDonald E, Wicker R. 2016. Multiprocess 3D printing for increasing component functionality. Science 353:6307aaf2093
    [Google Scholar]
  11. 11.
    Berman B. 2012. 3-D printing: the new industrial revolution. Bus. Horiz. 55:2155–62
    [Google Scholar]
  12. 12.
    Conner BP, Manogharan GP, Martof AN, Rodomsky LM, Rodomsky CM et al. 2014. Making sense of 3-D printing: creating a map of additive manufacturing products and services. Addit. Manuf. 1:64–76
    [Google Scholar]
  13. 13.
    Campbell T, Williams C, Ivanova O, Garrett B 2011. Could 3D printing change the world?. Atlantic Council Oct. 17. https://www.atlanticcouncil.org/publications/reports/could-3d-printing-change-the-world
    [Google Scholar]
  14. 14.
    Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y et al. 2015. The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 69:65–89
    [Google Scholar]
  15. 15.
    Hunter RJ. 2001. Foundations of Colloid Science Oxford, UK: Oxford Univ. Press
  16. 16.
    Hiemenz PC, Rajagopalan R. 1997. Principles of Colloid and Surface Chemistry, Revised and Expanded Boca Raton, FL: CRC Press
  17. 17.
    Xia Y, Gates B, Yin Y, Lu Y 2000. Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12:10693–713
    [Google Scholar]
  18. 18.
    Hirata Y. 1997. Theoretical aspects of colloidal processing. Ceram. Int. 23:193–98
    [Google Scholar]
  19. 19.
    Lewis JA. 2000. Colloidal processing of ceramics. J. Am. Ceram. Soc. 83:102341–59
    [Google Scholar]
  20. 20.
    Sigmund WM, Bell NS, Bergström L 2000. Novel powder‐processing methods for advanced ceramics. J. Am. Ceram. Soc. 83:71557–74
    [Google Scholar]
  21. 21.
    Larson RG. 1999. The Structure and Rheology of Complex Fluids Top. Chem. Eng New York/Oxford, UK: Oxford Univ. Press
  22. 22.
    Boles MA, Engel M, Talapin DV 2016. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116:1811220–89
    [Google Scholar]
  23. 23.
    Smay JE, Gratson GM, Shepherd RF, Cesarano J III, Lewis JA 2002. Directed colloidal assembly of 3D periodic structures. Adv. Mater. 14:181279–83
    [Google Scholar]
  24. 24.
    Gibson I, Rosen DW, Stucker B 2010. Additive Manufacturing Technologies 238 New York: Springer
  25. 25.
    Duoss E, Zhu C, Sullivan K, Vericella J, Hopkins J et al. 2014. Additive micro-manufacturing of designer materials. Materials Challenges and Testing for Manufacturing, Mobility, Biomedical Applications and Climate W Udomkichdecha, T Böllinghaus, A Manonukul, J Lexow 13–24 Cham, Switz: Springer
    [Google Scholar]
  26. 26.
    Ahn S-H, Montero M, Odell D, Roundy S, Wright PK 2002. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8:4248–57
    [Google Scholar]
  27. 27.
    Kruth J-P, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M 2005. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11:126–36
    [Google Scholar]
  28. 28.
    Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF et al. 2002. Fiber-reinforced polymer composites for construction—state-of-the-art review. J. Compos. Constr. 6:273–87
    [Google Scholar]
  29. 29.
    Compton BG, Lewis JA. 2014. 3D‐printing of lightweight cellular composites. Adv. Mater. 26:345930–35
    [Google Scholar]
  30. 30.
    Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG 2013. Functionally Graded Materials: Design, Processing and Applications 5 New York: Springer Sci. Bus. Media
  31. 31.
    Ober TJ, Foresti D, Lewis JA 2015. Active mixing of complex fluids at the microscale. PNAS 112:4012293–98
    [Google Scholar]
  32. 32.
    Nemat-Nasser S, Hori M. 2013. Micromechanics: Overall Properties of Heterogeneous Materials 37 Amsterdam: Elsevier
  33. 33.
    Sun K, Wei T-S, Ahn BY, Seo JY, Dillon SJ, Lewis JA 2013. 3D printing of interdigitated Li‐Ion microbattery architectures. Adv. Mater. 25:334539–43
    [Google Scholar]
  34. 34.
    Mueller J, Raney JR, Shea K, Lewis JA 2018. Architected lattices with high stiffness and toughness via multicore–shell 3D printing. Adv. Mater. 30:121705001
    [Google Scholar]
  35. 35.
    Wang Q, Jackson JA, Ge Q, Hopkins JB, Spadaccini CM, Fang NX 2016. Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys. Rev. Lett. 117:17175901
    [Google Scholar]
  36. 36.
    Duoss EB, Weisgraber TH, Hearon K, Zhu C, Small W IV et al. 2014. Three‐dimensional printing of elastomeric, cellular architectures with negative stiffness. Adv. Funct. Mater. 24:314905–13
    [Google Scholar]
  37. 37.
    Ostwald CWW. 1922. An Introduction to Theoretical and Applied Colloid Chemistry, “The World of Neglected Dimensions.” Hoboken, NJ: John Wiley & Sons
  38. 38.
    Lyklema J. 2005. Fundamentals of Interface and Colloid Science: Soft Colloids, Vol. 5 Amsterdam: Elsevier
  39. 39.
    Matijevic E, Good RJ. 2012. Surface and Colloid Science 12 New York: Springer Sci. Bus. Media
  40. 40.
    Russel W. 1980. Review of the role of colloidal forces in the rheology of suspensions. J. Rheol. 24:3287–317
    [Google Scholar]
  41. 41.
    Tohver V, Smay JE, Braem A, Braun PV, Lewis JA 2001. Nanoparticle halos: a new colloid stabilization mechanism. PNAS 98:168950–54
    [Google Scholar]
  42. 42.
    Hierrezuelo J, Sadeghpour A, Szilagyi I, Vaccaro A, Borkovec M 2010. Electrostatic stabilization of charged colloidal particles with adsorbed polyelectrolytes of opposite charge. Langmuir 26:1915109–11
    [Google Scholar]
  43. 43.
    Ninham BW. 1999. On progress in forces since the DLVO theory. Adv. Colloid Interface Sci. 83:1–31–17
    [Google Scholar]
  44. 44.
    Napper D, Netschey A. 1971. Studies of the steric stabilization of colloidal particles. J. Colloid Interface Sci. 37:3528–35
    [Google Scholar]
  45. 45.
    Romero-Cano MS, Martín-Rodríguez A, de las Nieves F 2001. Electrosteric stabilization of polymer colloids with different functionality. Langmuir 17:113505–11
    [Google Scholar]
  46. 46.
    Smay JE, Cesarano J III, Tuttle BA, Lewis JA 2004. Directed colloidal assembly of linear and annular lead zirconate titanate arrays. J. Am. Ceram. Soc. 87:2293–95
    [Google Scholar]
  47. 47.
    Smay JE, Cesarano J, Lewis JA 2002. Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18:145429–37
    [Google Scholar]
  48. 48.
    Conrad JC, Lewis JA. 2008. Structure of colloidal gels during microchannel flow. Langmuir 24:157628–34
    [Google Scholar]
  49. 49.
    Nallan HC, Sadie JA, Kitsomboonloha R, Volkman SK, Subramanian V 2014. Systematic design of jettable nanoparticle-based inkjet inks: rheology, acoustics, and jettability. Langmuir 30:4413470–77
    [Google Scholar]
  50. 50.
    M'Barki A, Bocquet L, Stevenson A 2017. Linking rheology and printability for dense and strong ceramics by Direct Ink Writing. Sci. Rep. 7:16017
    [Google Scholar]
  51. 51.
    Zhu C, Smay JE. 2011. Thixotropic rheology of concentrated alumina colloidal gels for solid freeform fabrication. J. Rheol. 55:3655–72
    [Google Scholar]
  52. 52.
    Zhu C, Smay JE. 2012. Catenary shape evolution of spanning structures in direct-write assembly of colloidal gels. J. Mater. Proc. Technol. 212:3727–33
    [Google Scholar]
  53. 53.
    Lewis JA, Smay JE, Stuecker J, Cesarano J III 2006. Direct ink writing of three‐dimensional ceramic structures. J. Am. Ceram. Soc. 89:123599–609
    [Google Scholar]
  54. 54.
    Nguyen DT, Meyers C, Yee TD, Dudukovic NA, Destino JF et al. 2017. 3D‐printed transparent glass. Adv. Mater. 29:261701181
    [Google Scholar]
  55. 55.
    Dudukovic NA, Wong LL, Nguyen DT, Destino JF, Yee TD et al. 2018. Predicting nanoparticle suspension viscoelasticity for multimaterial 3D printing of silica–titania glass. ACS Appl. Nano Mater. 1:84038–44
    [Google Scholar]
  56. 56.
    Naficy S, Jalili R, Aboutalebi SH, Gorkin RA III, Konstantinov K et al. 2014. Graphene oxide dispersions: tuning rheology to enable fabrication. Mater. Horiz. 1:3326–31
    [Google Scholar]
  57. 57.
    Zhao X, Evans JRG, Edirisinghe MJ, Song J-H 2002. Direct ink‐jet printing of vertical walls. J. Am. Ceram. Soc. 85:82113–15
    [Google Scholar]
  58. 58.
    Song JH, Edirisinghe MJ, Evans JR 1999. Formulation and multilayer jet printing of ceramic inks. J. Am. Ceram. Soc. 82:123374–80
    [Google Scholar]
  59. 59.
    Teng WD, Edirisinghe MJ, Evans JR 1997. Optimization of dispersion and viscosity of a ceramic jet printing ink. J. Am. Ceram. Soc. 80:2486–94
    [Google Scholar]
  60. 60.
    Wang T, Derby B. 2005. Ink‐jet printing and sintering of PZT. J. Am. Ceram. Soc. 88:82053–58
    [Google Scholar]
  61. 61.
    Lee DH, Derby B. 2004. Preparation of PZT suspensions for direct ink jet printing. J. Eur. Ceram. Soc. 24:61069–72
    [Google Scholar]
  62. 62.
    Seerden KAM, Reis N, Evans JRG, Grant PS, Halloran JW, Derby B 2001. Ink‐jet printing of wax‐based alumina suspensions. J. Am. Ceram. Soc. 84:112514–20
    [Google Scholar]
  63. 63.
    Singh M, Haverinen HM, Dhagat P, Jabbour GE 2010. Inkjet printing—process and its applications. Adv. Mater. 22:6673–85
    [Google Scholar]
  64. 64.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M et al. 2000. High-resolution inkjet printing of all-polymer transistor circuits. Science 290:54992123–26
    [Google Scholar]
  65. 65.
    Huang L, Huang Y, Liang J, Wan X, Chen Y 2011. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res 4:7675–84
    [Google Scholar]
  66. 66.
    Calvert P. 2001. Inkjet printing for materials and devices. Chem. Mater. 13:103299–305
    [Google Scholar]
  67. 67.
    Boland T, Xy T, Damon B, Cui X 2006. Application of inkjet printing to tissue engineering. Biotechnol. J. Healthc. Nutr. Technol. 1:9910–17
    [Google Scholar]
  68. 68.
    Ho CC, Murata K, Stiengart DA, Evans JW, Wright PK 2009. A super ink jet printed zinc–silver 3D microbattery. J. Micromech. Microeng. 19:9094013
    [Google Scholar]
  69. 69.
    Saleh MS, Hu C, Panat R 2017. Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Sci. Adv. 3:3e1601986
    [Google Scholar]
  70. 70.
    Zhang Q, Zhang F, Medarametla SP, Li H, Zhou C, Lin D 2016. 3D printing of graphene aerogels. Small 12:131702–8
    [Google Scholar]
  71. 71.
    Agarwala MK, Bandyopadhyay A, van Weeren R, Safari A, Danforth SC et al. 1996. FDC, rapid fabrication of structural components. Am. Ceram. Soc. Bull. 75:1160–65
    [Google Scholar]
  72. 72.
    Rangarajan S, Qi G, Venkataraman N, Safari A, Danforth SC 2000. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics. J. Am. Ceram. Soc. 83:71663–69
    [Google Scholar]
  73. 73.
    Greulich M, Greul M, Pintat T 1995. Fast, functional prototypes via multiphase jet solidification. Rapid Prototyp. J. 1:120–25
    [Google Scholar]
  74. 74.
    Cao Y, Zhou L, Wang X, Li X, Zeng X 2009. MicroPen direct-write deposition of polyimide. Microelectron. Eng. 86:101989–93
    [Google Scholar]
  75. 75.
    Lewis JA. 2006. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16:172193–204
    [Google Scholar]
  76. 76.
    Lewis JA, Gratson GM. 2004. Direct writing in three dimensions. Mater. Today 7:7–832–39
    [Google Scholar]
  77. 77.
    Gratson GM, Xu M, Lewis JA 2004. Microperiodic structures: direct writing of three-dimensional webs. Nature 428:6981386
    [Google Scholar]
  78. 78.
    Tan ATL, Beroz J, Kolle M, Hart AJ 2018. Direct‐write freeform colloidal assembly. Adv. Mater. 30:1803620
    [Google Scholar]
  79. 79.
    Ahn BY, Duoss EB, Motala MJ, Guo X, Park S-I et al. 2009. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:59211590–93
    [Google Scholar]
  80. 80.
    Minas C, Carnelli D, Tervoort E, Studart AR 2016. 3D printing of emulsions and foams into hierarchical porous ceramics. Adv. Mater. 28:459993–99
    [Google Scholar]
  81. 81.
    Zhu C, Han Y-J, Duoss EB, Golobic AM, Kuntz JD et al. 2015. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6:6962
    [Google Scholar]
  82. 82.
    Zhu C, Liu T, Qian F, Chen W, Chandrasekaran S et al. 2017. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15:107–20
    [Google Scholar]
  83. 83.
    Zhu C, Liu T, Qian F, Han TY-J, Duoss EB et al. 2016. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16:63448–56
    [Google Scholar]
  84. 84.
    Lin Y, Liu F, Casano G, Bhavsar R, Kinloch IA, Derby B 2016. Pristine graphene aerogels by room‐temperature freeze gelation. Adv. Mater. 28:367993–8000
    [Google Scholar]
  85. 85.
    Schaffner M, Rühs PA, Coulter F, Kilcher S, Studart AR 2017. 3D printing of bacteria into functional complex materials. Sci. Adv. 3:12eaao6804
    [Google Scholar]
  86. 86.
    Davey WP. 1919. Process for making and applying japan US Patent No. US1294627A
  87. 87.
    Hope P. 2006. The role of particle filtration in industrial scale EPD processes. Key Eng. Mater. 314:251–56
    [Google Scholar]
  88. 88.
    Kitabatake T, Uchikoshi T, Munakata F, Sakka Y, Hirosaki N 2010. Emission color tuning of laminated and mixed SiAlON phosphor films by electrophoretic deposition. J. Ceram. Soc. Jpn. 118:13731–4
    [Google Scholar]
  89. 89.
    Talbot JB. 2012. Electrophoretic deposition of phosphors for information displays and solid state lighting. Electrophoretic Deposition of Nanomaterials JH Dickerson, AR Boccaccini 267–94 New York: Springer Sci. Bus. Media
    [Google Scholar]
  90. 90.
    Chen Y, Au J, Kazlas P, Ritenour A, Gates H, McCreary M 2003. Electronic paper: flexible active-matrix electronic ink display. Nature 423:6936136
    [Google Scholar]
  91. 91.
    Bar G, Strum G, Gvishi R, Larina N, Lokshin V et al. 2009. A new approach for design of organic electrochromic devices with inter-digitated electrode structure. Solar Energy Mater. Solar Cells 93:122118–24
    [Google Scholar]
  92. 92.
    Han J, Lee E, Dudoff JK, Bagge-Hansen M, Lee JRI et al. 2017. Tunable amorphous photonic materials with pigmentary colloidal nanostructures. Adv. Opt. Mater. 5:71600838
    [Google Scholar]
  93. 93.
    Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010. Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano 4:105962–68
    [Google Scholar]
  94. 94.
    Chiu W-H, Lee K-M, Hsieh W-F 2011. High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions. J. Power Sourc. 196:73683–87
    [Google Scholar]
  95. 95.
    Morikawa H, Tsuihiji N, Mitsui T, Kanamura K 2004. Preparation of membrane electrode assembly for fuel cell by using electrophoretic deposition process. J. Electrochem. Soc. 151:10A1733–37
    [Google Scholar]
  96. 96.
    Zhitomirsky I, Petric A. 2000. Electrophoretic deposition of ceramic materials for fuel cell applications. J. Eur. Ceram. Soc. 20:122055–61
    [Google Scholar]
  97. 97.
    Hadar R, Golodnitsky D, Mazor H, Ripenbein T, Ardel G et al. 2012. Development and characterization of composite YSZ–PEI electrophoretically deposited membrane for Li-ion battery. J. Phys. Chem. B 117:61577–84
    [Google Scholar]
  98. 98.
    Sullivan KT, Zhu C, Tanaka DJ, Kuntz JD, Duoss EB, Gash AE 2012. Electrophoretic deposition of thermites onto micro-engineered electrodes prepared by direct-ink writing. J. Phys. Chem. B 117:61686–93
    [Google Scholar]
  99. 99.
    Sullivan KT, Zhu C, Duoss EB, Gash AE, Kolesky DB et al. 2016. Controlling material reactivity using architecture. Adv. Mater. 28:101934–39
    [Google Scholar]
  100. 100.
    Boccaccini A, Keim S, Ma R, Li Y, Zhitomirsky I 2010. Electrophoretic deposition of biomaterials. J. R. Soc. Interface 7:Suppl. 5S581–S613
    [Google Scholar]
  101. 101.
    Ammam M, Fransaer J. 2011. AC-electrophoretic deposition of metalloenzymes: catalase as a case study for the sensitive and selective detection of H2O2. Sens. Actuators B Chem. 160:11063–69
    [Google Scholar]
  102. 102.
    Poortinga AT, Bos R, Busscher HJ 2000. Controlled electrophoretic deposition of bacteria to surfaces for the design of biofilms. Biotechnol. Bioeng. 67:1117–20
    [Google Scholar]
  103. 103.
    Neirinck B, Van Mellaert L, Fransaer J, Van der Biest O, Anné J, Vleugels J 2009. Electrophoretic deposition of bacterial cells. Electrochem. Commun. 11:91842–45
    [Google Scholar]
  104. 104.
    Anné G, Vanmeesel K, Vleugels J, Van der Biest O 2005. Electrophoretic deposition as a novel near net shaping technique for functionally graded biomaterials. Key Eng. Mater. 314:213–18
    [Google Scholar]
  105. 105.
    Nold A, Zeiner J, Assion T, Clasen R 2010. Electrophoretic deposition as rapid prototyping method. J. Eur. Ceram. Soc. 30:51163–70
    [Google Scholar]
  106. 106.
    Pascall AJ, Mora J, Jackson JA, Kuntz JD 2015. Light directed electrophoretic deposition for additive manufacturing: spatially localized deposition control with photoconductive counter electrodes. Key Eng. Mater. 654:261–67
    [Google Scholar]
  107. 107.
    Pascall AJ, Qian F, Wang G, Worsley MA, Li Y, Kuntz JD 2014. Light‐directed electrophoretic deposition: a new additive manufacturing technique for arbitrarily patterned 3D composites. Adv. Mater. 26:142252–56
    [Google Scholar]
  108. 108.
    Krejci AJ, Yager KG, Ruggiero C, Dickerson JH 2014. X-ray scattering as a liquid and solid phase probe of ordering within sub-monolayers of iron oxide nanoparticles fabricated by electrophoretic deposition. Nanoscale 6:84047–51
    [Google Scholar]
  109. 109.
    Yu Y, Yu D, Sadigh B, Orme CA 2018. Space-and time-resolved small angle X-ray scattering to probe assembly of silver nanocrystal superlattices. Nat. Commun. 9:14211
    [Google Scholar]
  110. 110.
    Wu K, Wang Y, Zhitomirsky I 2010. Electrophoretic deposition of TiO2 and composite TiO2–MnO2 films using benzoic acid and phenolic molecules as charging additives. J. Colloid Interface Sci. 352:2371–78
    [Google Scholar]
  111. 111.
    Joung YS, Buie CR. 2011. Electrophoretic deposition of unstable colloidal suspensions for superhydrophobic surfaces. Langmuir 27:74156–63
    [Google Scholar]
  112. 112.
    Koura N, Tsukamoto T, Shoji H, Hotta T 1995. Preparation of various oxide films by an electrophoretic deposition method: a study of the mechanism. Jpn. J. Appl. Phys. 34:3R1643
    [Google Scholar]
  113. 113.
    Dusoulier L, Cloots R, Vertruyen B, Moreno R, Burgos-Montes O, Ferrari B 2011. YBa2Cu3O7−x dispersion in iodine acetone for electrophoretic deposition: surface charging mechanism in a halogenated organic media. J. Eur. Ceram. Soc. 31:61075–86
    [Google Scholar]
  114. 114.
    Vilarinho PM, Fu Z, Wu A, Kingon AI 2012. Critical role of suspension media in electrophoretic deposition: the example of low loss dielectric BaNd2Ti5O14 thick films. J. Phys. Chem. B 117:61670–79
    [Google Scholar]
  115. 115.
    Tang F, Uchikoshi T, Sakka Y 2002. Electrophoretic deposition behavior of aqueous nanosized zinc oxide suspensions. J. Am. Ceram. Soc. 85:92161–65
    [Google Scholar]
  116. 116.
    Zhang Y, Lin X, Chen W, Wang L 2016. Aqueous electrophoretic deposition of ZrB2-SiC nano-composites in pulsed DC electric fields. Adv. Automob. Eng. S1:003 https://doi.org/10.4172/2167-7670
    [Crossref] [Google Scholar]
  117. 117.
    Wu K, Zhitomirsky I. 2011. Electrophoretic deposition of ceramic nanoparticles. Int. J. Appl. Ceram. Technol. 8:4920–27
    [Google Scholar]
  118. 118.
    Sander JS, Erb RM, Li L, Gurijala A, Chiang Y-M 2016. High-performance battery electrodes via magnetic templating. Nat. Energy 1:816099
    [Google Scholar]
  119. 119.
    Porter MM, Yeh M, Strawson J, Goehring T, Lujan S et al. 2012. Magnetic freeze casting inspired by nature. Mater. Sci. Eng. A 556:741–50
    [Google Scholar]
  120. 120.
    Le Ferrand H, Bouville F, Niebel TP, Studart AR 2015. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat. Mater. 14:111172
    [Google Scholar]
  121. 121.
    Martin JJ, Fiore BE, Erb RM 2015. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat. Commun. 6:8641
    [Google Scholar]
  122. 122.
    Kokkinis D, Schaffner M, Studart AR 2015. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 6:8643
    [Google Scholar]
  123. 123.
    Melde K, Choi E, Wu Z, Palagi S, Qiu T, Fischer P 2018. Acoustic fabrication via the assembly and fusion of particles. Adv. Mater. 30:31704507
    [Google Scholar]
  124. 124.
    Greenhall J, Raeymaekers B. 2017. 3D printing macroscale engineered materials using ultrasound directed self‐assembly and stereolithography. Adv. Mater. Technol. 2:91700122
    [Google Scholar]
  125. 125.
    Collino RR, Ray TR, Fleming RC, Cornell JD, Compton BG, Begley MR 2016. Deposition of ordered two-phase materials using microfluidic print nozzles with acoustic focusing. Extreme Mech. Lett. 8:96–106
    [Google Scholar]
  126. 126.
    Foresti D, Kroll KT, Amissah R, Sillani F, Homan KA et al. 2018. Acoustophoretic printing. Sci. Adv. 4:8eaat1659
    [Google Scholar]
  127. 127.
    Jacobs PF. 1992. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography Southfield, MI: Soc. Manuf. Eng.
  128. 128.
    Kotz F, Arnold K, Bauer W, Schild D, Keller N et al. 2017. Three-dimensional printing of transparent fused silica glass. Nature 544:7650337
    [Google Scholar]
  129. 129.
    Wang K, Zou W, Quan B, Yu A, Wu H et al. 2011. An all‐solid‐state flexible micro‐supercapacitor on a chip. Adv. Energy Mater. 1:61068–72
    [Google Scholar]
  130. 130.
    Sun C, Fang N, Wu DM, Zhang X 2005. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens. Actuators A Phys. 121:1113–20
    [Google Scholar]
  131. 131.
    Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J et al. 2014. Ultralight, ultrastiff mechanical metamaterials. Science 344:61901373–77
    [Google Scholar]
  132. 132.
    Hensleigh RM, Cui H, Oakdale JS, Ye JC, Campbell PG et al. 2018. Additive manufacturing of complex micro-architected graphene aerogels. Mater. Horiz. 5:61035–41
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060718-030133
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error