1932

Abstract

The ability to behave in a fluidlike manner fundamentally separates thermoset and thermoplastic polymers. Bridging this divide, covalent adaptable networks (CANs) structurally resemble thermosets with permanent covalent crosslinks but are able to flow in a manner that resembles thermoplastic behavior only when a dynamic chemical reaction is active. As a consequence, the rheological behavior of CANs becomes intrinsically tied to the dynamic reaction kinetics and the stimuli that are used to trigger those, including temperature, light, and chemical stimuli, providing unprecedented control over viscoelastic properties. CANs represent a highly capable material that serves as a powerful tool to improve mechanical properties and processing in a wide variety of polymer applications, including composites, hydrogels, and shape-memory polymers. This review aims to highlight the enabling material properties of CANs and the applied fields where the CAN concept has been embraced.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030217
2019-06-07
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/10/1/annurev-chembioeng-060718-030217.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030217&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Denissen W, Winne JM, Du Prez FE 2016. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7:30–38
    [Google Scholar]
  2. 2.
    Kloxin CJ, Scott TF, Adzima BJ, Bowman CN 2010. Covalent adaptable networks (CANs): a unique paradigm in cross-linked polymers. Macromolecules 43:2643–53
    [Google Scholar]
  3. 3.
    Zhang ZP, Rong MZ, Zhang MQ 2018. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci. 80:39–93
    [Google Scholar]
  4. 4.
    Zou WK, Dong JT, Luo YW, Zhao Q, Xie T 2017. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 29:1606100:
    [Google Scholar]
  5. 5.
    Tobolsky AV. 1956. Stress relaxation studies of the viscoelastic properties of polymers. J. Appl. Phys. 27:673–85
    [Google Scholar]
  6. 6.
    Kloxin CJ, Bowman CN. 2013. Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42:7161–73
    [Google Scholar]
  7. 7.
    Wojtecki RJ, Meador MA, Rowan SJ 2011. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 10:14–27
    [Google Scholar]
  8. 8.
    Wang H, Heilshorn SC. 2015. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 27:3717–36
    [Google Scholar]
  9. 9.
    Zhao Q, Qi HJ, Xie T 2015. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50:79–120
    [Google Scholar]
  10. 10.
    Jin Y, Wang Q, Taynton P, Zhang W 2014. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc. Chem. Res. 47:1575–86
    [Google Scholar]
  11. 11.
    Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF 2002. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41:898–952
    [Google Scholar]
  12. 12.
    Adzima BJ, Aguirre HA, Kloxin CJ, Scott TF, Bowman CN 2008. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network. Macromolecules 41:9112–17
    [Google Scholar]
  13. 13.
    Chen XX, Dam MA, Ono K, Mal A, Shen HB et al. 2002. A thermally re-mendable cross-linked polymeric material. Science 295:1698–702
    [Google Scholar]
  14. 14.
    Liu H, Nelson AZ, Ren Y, Yang K, Ewoldt RH, Moore JS 2018. Dynamic remodeling of covalent networks via ring-opening metathesis polymerization. ACS Macro. Lett. 7:933–37
    [Google Scholar]
  15. 15.
    Schwartz JM, Phillips O, Engler A, Sutlief A, Lee J, Kohl PA 2017. Stable, high-molecular-weight poly(phthalaldehyde). J. Polym. Sci. A 55:1166–72
    [Google Scholar]
  16. 16.
    Zhu J-B, Watson EM, Tang J, Chen EY-X 2018. A synthetic polymer system with repeatable chemical recyclability. Science 360:398–403
    [Google Scholar]
  17. 17.
    Michal BT, Jaye CA, Spencer EJ, Rowan SJ 2013. Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro. Lett. 2:694–99
    [Google Scholar]
  18. 18.
    Martin R, Rekondo A, Ruiz de Luzuriaga A, Cabañero G, Grande HJ, Odriozola I 2014. The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. J. Mater. Chem. A 2:5710–15
    [Google Scholar]
  19. 19.
    Higaki Y, Otsuka H, Takahara A 2006. A thermodynamic polymer cross-linking system based on radically exchangeable covalent bonds. Macromolecules 39:2121–25
    [Google Scholar]
  20. 20.
    Zhang B, Digby ZA, Flum JA, Chakma P, Saul JM et al. 2016. Dynamic thiol–Michael chemistry for thermoresponsive rehealable and malleable networks. Macromolecules 49:6871–78
    [Google Scholar]
  21. 21.
    Ying H, Zhang Y, Cheng J 2014. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5:3218
    [Google Scholar]
  22. 22.
    Zhang YF, Ying HZ, Hart KR, Wu YX, Hsu AJ et al. 2016. Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds. Adv. Mater. 28:7646–51
    [Google Scholar]
  23. 23.
    Zheng N, Fang ZZ, Zou WK, Zhao Q, Xie T 2016. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed. 55:11421–25
    [Google Scholar]
  24. 24.
    Ji SB, Cao W, Yu Y, Xu HP 2015. Visible-light-induced self-healing diselenide-containing polyurethane elastomer. Adv. Mater. 27:7740–45
    [Google Scholar]
  25. 25.
    Fang Z, Zheng N, Zhao Q, Xie T 2017. Healable, reconfigurable, reprocessable thermoset shape memory polymer with highly tunable topological rearrangement kinetics. ACS Appl. Mater. Inter. 9:22077–82
    [Google Scholar]
  26. 26.
    Scott TF, Schneider AD, Cook WD, Bowman CN 2005. Photoinduced plasticity in cross-linked polymers. Science 308:1615–17
    [Google Scholar]
  27. 27.
    Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K 2011. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed. 123:1698–701
    [Google Scholar]
  28. 28.
    Fairbanks BD, Singh SP, Bowman CN, Anseth KS 2011. Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules 44:2444–50
    [Google Scholar]
  29. 29.
    Kloxin CJ, Scott TF, Park HY, Bowman CN 2011. Mechanophotopatterning on a photoresponsive elastomer. Adv. Mater. 23:1977–81
    [Google Scholar]
  30. 30.
    Meng Y, Fenoli CR, Aguirre-Soto A, Bowman CN, Anthamatten M 2014. Photoinduced diffusion through polymer networks. Adv. Mater. 26:6497–502
    [Google Scholar]
  31. 31.
    Montarnal D, Capelot M, Tournilhac F, Leibler L 2011. Silica-like malleable materials from permanent organic networks. Science 334:965–68
    [Google Scholar]
  32. 32.
    Worrell BT, McBride MK, Lyon GB, Cox LM, Wang C et al. 2018. Bistable and photoswitchable states of matter. Nat. Commun. 9:2804
    [Google Scholar]
  33. 33.
    Denissen W, Rivero G, Nicolay R, Leibler L, Winne JM, Du Prez FE 2015. Vinylogous urethane vitrimers. Adv. Funct. Mater. 25:2451–57
    [Google Scholar]
  34. 34.
    Lu YX, Tournilhac F, Leibler L, Guan ZB 2012. Making insoluble polymer networks malleable via olefin metathesis. J. Am. Chem. Soc. 134:8424–27
    [Google Scholar]
  35. 35.
    Cash JJ, Kubo T, Bapat AP, Sumerlin BS 2015. Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 48:2098–106
    [Google Scholar]
  36. 36.
    Rottger M, Domenech T, van der Weegen R, Nicolay ABR, Leibler L 2017. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356:62–65
    [Google Scholar]
  37. 37.
    Taynton P, Yu K, Shoemaker RK, Jin YH, Qi HJ, Zhang W 2014. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 26:3938–42
    [Google Scholar]
  38. 38.
    Li L, Chen X, Jin K, Torkelson JM 2018. Vitrimers designed both to strongly suppress creep and to recover original cross-link density after reprocessing: quantitative theory and experiments. Macromolecules 51:5537–46
    [Google Scholar]
  39. 39.
    Shi Q, Yu K, Kuang X, Mu X, Dunn CK et al. 2017. Recyclable 3D printing of vitrimer epoxy. Mater. Horiz. 4:598–607
    [Google Scholar]
  40. 40.
    Yang K, Grant JC, Lamey P, Joshi-Imre A, Lund BR et al. 2017. Diels-Alder reversible thermoset 3D printing: isotropic thermoset polymers via fused filament fabrication. Adv. Funct. Mater. 27:1700318
    [Google Scholar]
  41. 41.
    Tran TN, Rawstron E, Bourgeat-Lami E, Montarnal D 2018. Formation of cross-linked films from immiscible precursors through sintering of vitrimer nanoparticles. ACS Macro. Lett. 7:376–80
    [Google Scholar]
  42. 42.
    Velankar S, Pazos J, Cooper SL 1996. High-performance UV-curable urethane acrylates via deblocking chemistry. J. Appl. Polym. Sci. 62:1361–76
    [Google Scholar]
  43. 43.
    Rolland JP, Chen K, Poelma J, Goodrich J, Pinschmidt R et al. 2015. Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening Patent No. WO 2015/200179
  44. 44.
    Mullins MJ, Liu D, Sue HJ 2018. Chapter 2: mechanical properties of thermosets. Thermosets: Structure, Properties, and Applications Q Guo 35–68 New York: Elsevier, 2nd ed..
    [Google Scholar]
  45. 45.
    Andrews RD, Tobolsky AV, Hanson EE 1946. The theory of permanent set at elevated temperatures in natural and synthetic rubber vulcanizates. J. Appl. Phys. 17:352–61
    [Google Scholar]
  46. 46.
    Denissen W, Droesbeke M, Nicolay R, Leibler L, Winne JM, Du Prez FE 2017. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nat. Commun. 8:14857
    [Google Scholar]
  47. 47.
    Yan P, Zhao W, Fu X, Liu Z, Kong W et al. 2017. Multifunctional polyurethane-vitrimers completely based on transcarbamoylation of carbamates: thermally-induced dual-shape memory effect and self-welding. RSC Adv 7:26858–66
    [Google Scholar]
  48. 48.
    Billiet S, Hillewaere XKD, Teixeira RFA, Du Prez FE 2013. Chemistry of crosslinking processes for self-healing polymers. Macromol. Rapid Comm. 34:290–309
    [Google Scholar]
  49. 49.
    Guimard NK, Oehlenschlaeger KK, Zhou J, Hilf S, Schmidt FG, Barner-Kowollik C 2012. Current trends in the field of self-healing materials. Macromol. Chem. Phys. 213:131–43
    [Google Scholar]
  50. 50.
    Yang Y, Ding X, Urban MW 2015. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49:5034–59
    [Google Scholar]
  51. 51.
    Kuhl N, Bode S, Hager MD, Schubert US 2016. Self-healing polymers based on reversible covalent bonds. Self-Healing Materials MD Hager, S van der Zwaag, US Schubert 1–58 Cham, Switz.: Springer Int.
    [Google Scholar]
  52. 52.
    Roy N, Bruchmann B, Lehn J-M 2015. DYNAMERS: dynamic polymers as self-healing materials. Chem. Soc. Rev. 44:3786–807
    [Google Scholar]
  53. 53.
    Rivero G, Nguyen L-TT, Hillewaere XKD, Du Prez FE 2014. One-pot thermo-remendable shape memory polyurethanes. Macromolecules 47:2010–18
    [Google Scholar]
  54. 54.
    Liu Y-L, Chen Y-W. 2007. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromol. Chem. Phys. 208:224–32
    [Google Scholar]
  55. 55.
    Zhang B, Digby ZA, Flum JA, Foster EM, Sparks JL, Konkolewicz D 2015. Self-healing, malleable and creep limiting materials using both supramolecular and reversible covalent linkages. Polym. Chem. 6:7368–72
    [Google Scholar]
  56. 56.
    Amato DN, Strange GA, Swanson JP, Chavez AD, Roy SE et al. 2014. Synthesis and evaluation of thermally-responsive coatings based upon Diels–Alder chemistry and renewable materials. Polym. Chem. 5:69–76
    [Google Scholar]
  57. 57.
    Adzima BJ, Kloxin CJ, Bowman CN 2010. Externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating. Adv. Mater. 22:2784–87
    [Google Scholar]
  58. 58.
    Fuhrmann A, Göstl R, Wendt R, Kötteritzsch J, Hager MD et al. 2016. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light. Nat. Commun. 7:13623
    [Google Scholar]
  59. 59.
    Peterson AM, Jensen RE, Palmese GR 2010. Room-temperature healing of a thermosetting polymer using the Diels−Alder reaction. ACS Appl. Mater. Inter. 2:1141–49
    [Google Scholar]
  60. 60.
    Terryn S, Brancart J, Lefeber D, Van Assche G, Vanderborght B 2017. Self-healing soft pneumatic robots. Sci. Robot. 2:eaan4268
    [Google Scholar]
  61. 61.
    Rodriguez ED, Luo X, Mather PT 2011. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Inter. 3:152–61
    [Google Scholar]
  62. 62.
    Lyon GB, Baranek A, Bowman CN 2016. Scaffolded thermally remendable hybrid polymer networks. Adv. Funct. Mater. 26:1477–85
    [Google Scholar]
  63. 63.
    Martin R, Rekondo A, Ruiz de Luzuriaga A, Casuso P, Dupin D et al. 2016. Dynamic sulfur chemistry as a key tool in the design of self-healing polymers. Smart Mater. Struct. 25:084017
    [Google Scholar]
  64. 64.
    Lei ZQ, Xiang HP, Yuan YJ, Rong MZ, Zhang MQ 2014. Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem. Mater. 26:2038–46
    [Google Scholar]
  65. 65.
    Rekondo A, Martin R, Ruiz de Luzuriaga A, Cabañero G, Grande HJ, Odriozola I 2014. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 1:237–40
    [Google Scholar]
  66. 66.
    Michal BT, Spencer EJ, Rowan SJ 2016. Stimuli-responsive reversible two-level adhesion from a structurally dynamic shape-memory polymer. ACS Appl. Mater. Inter. 8:11041–49
    [Google Scholar]
  67. 67.
    Pepels M, Filot I, Klumperman B, Goossens H 2013. Self-healing systems based on disulfide–thiol exchange reactions. Polym. Chem. 4:4955–65
    [Google Scholar]
  68. 68.
    Capelot M, Montarnal D, Tournilhac F, Leibler L 2012. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 134:7664–67
    [Google Scholar]
  69. 69.
    Zhao Q, Zou WK, Luo YW, Xie T 2016. Shape memory polymer network with thermally distinct elasticity and plasticity. Sci. Adv. 2:e1501297
    [Google Scholar]
  70. 70.
    Lawton MI, Tillman KR, Mohammed HS, Kuang W, Shipp DA, Mather PT 2016. Anhydride-based reconfigurable shape memory elastomers. ACS Macro. Lett. 5:203–7
    [Google Scholar]
  71. 71.
    White TJ, Broer DJ. 2015. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14:1087
    [Google Scholar]
  72. 72.
    Pei ZQ, Yang Y, Chen QM, Terentjev EM, Wei Y, Ji Y 2014. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 13:36–41
    [Google Scholar]
  73. 73.
    Pei ZQ, Yang Y, Chen QM, Wei Y, Ji Y 2016. Regional shape control of strategically assembled multishape memory vitrimers. Adv. Mater. 28:156–60
    [Google Scholar]
  74. 74.
    Meng Y, Yang JC, Lewis CL, Jiang JS, Anthamatten M 2016. Photoinscription of chain anisotropy into polymer networks. Macromolecules 49:9100–7
    [Google Scholar]
  75. 75.
    Hanzon DW, He X, Yang H, Shi Q, Yu K 2017. Creep-induced anisotropy in covalent adaptable network polymers. Soft Matter 13:7061–73
    [Google Scholar]
  76. 76.
    Hanzon DW, Traugutt NA, McBride MK, Bowman CN, Yakacki CM, Yu K 2018. Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions. Soft Matter 14:951–60
    [Google Scholar]
  77. 77.
    Li YZ, Rios O, Keum JK, Chen JH, Kessler MR 2016. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl. Mater. Inter. 8:15750–57
    [Google Scholar]
  78. 78.
    Ube T, Kawasaki K, Ikeda T 2016. Photomobile liquid-crystalline elastomers with rearrangeable networks. Adv. Mater. 28:8212–17
    [Google Scholar]
  79. 79.
    Li YZ, Zhang YH, Rios O, Keum JK, Kessler MR 2017. Photo-responsive liquid crystalline epoxy networks with exchangeable disulfide bonds. RSC Adv 7:37248–54
    [Google Scholar]
  80. 80.
    Li Y, Zhang Y, Rios O, Keum JK, Kessler MR 2017. Liquid crystalline epoxy networks with exchangeable disulfide bonds. Soft Matter 13:5021–27
    [Google Scholar]
  81. 81.
    Wang ZJ, Tian HM, He QG, Cai SQ 2017. Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide bonds. ACS Appl. Mater. Inter. 9:33119–28
    [Google Scholar]
  82. 82.
    Wen ZB, McBride MK, Zhang XP, Han X, Martinez AM et al. 2018. Reconfigurable LC elastomers: using a thermally programmable monodomain to access two-way free-standing multiple shape memory polymers. Macromolecules 51:5812–19
    [Google Scholar]
  83. 83.
    McBride MK, Martinez AM, Cox L, Alim M, Childress K et al. 2018. A readily programmable, fully reversible shape-switching material. Sci. Adv. 4:eaat4634
    [Google Scholar]
  84. 84.
    Qian XJ, Chen QM, Yang Y, Xu YS, Li Z et al. 2018. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots. Adv. Mater. 30:1801103
    [Google Scholar]
  85. 85.
    Sowan N, Cox LM, Shah PK, Song HB, Stansbury JW, Bowman CN. 2018. Dynamic covalent chemistry at interfaces: development of tougher, healable composites through stress relaxation at the resin–silica nanoparticles interface. Adv. Mater. Interfaces 5:1800511
    [Google Scholar]
  86. 86.
    Fortman DJ, Brutman JP, De Hoe GX, Snyder RL, Dichtel WR, Hillmyer MA 2018. Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustain. Chem. Eng. 6:11145–59
    [Google Scholar]
  87. 87.
    Zhu CP, Xi C, Doro W, Wang TY, Zhang X et al. 2017. Tuning the physical properties of malleable and recyclable polyimine thermosets: the effect of solvent and monomer concentration. RSC Adv 7:48303–7
    [Google Scholar]
  88. 88.
    Taynton P, Ni HG, Zhu CP, Yu K, Loob S et al. 2016. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks. Adv. Mater. 28:2904–9
    [Google Scholar]
  89. 89.
    Lei X, Jin Y, Sun H, Zhang W 2017. Rehealable imide–imine hybrid polymers with full recyclability. J. Mater. Chem. A 5:21140–45
    [Google Scholar]
  90. 90.
    Ying H, Cheng J. 2014. Hydrolyzable polyureas bearing hindered urea bonds. J. Am. Chem. Soc. 136:16974–77
    [Google Scholar]
  91. 91.
    Zhang LH, Rowan SJ. 2017. Effect of sterics and degree of cross-linking on the mechanical properties of dynamic poly(alkylurea-urethane) networks. Macromolecules 50:5051–60
    [Google Scholar]
  92. 92.
    García JM, Jones GO, Virwani K, McCloskey BD, Boday DJ et al. 2014. Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science 344:732–35
    [Google Scholar]
  93. 93.
    Yuan Y, Sun Y, Yan S, Zhao J, Liu S et al. 2017. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites. Nat. Commun. 8:14657
    [Google Scholar]
  94. 94.
    Sastri VR, Tesoro GC. 1990. Reversible crosslinking in epoxy resins. II. New approaches. J. Appl. Polym. Sci. 39:1439–57
    [Google Scholar]
  95. 95.
    Tesoro GC, Sastri V. 1990. Reversible crosslinking in epoxy resins. I. Feasibility studies. J. Appl. Polym. Sci. 39:1425–37
    [Google Scholar]
  96. 96.
    Wang C, Mavila S, Worrell BT, Xi W, Goldman TM, Bowman CN 2018. Productive exchange of thiols and thioesters to form dynamic polythioester-based polymers. ACS Macro. Lett. 7:1312–16
    [Google Scholar]
  97. 97.
    Cramer NB, Stansbury JW, Bowman CN 2011. Recent advances and developments in composite dental restorative materials. J. Dent. Res. 90:402–16
    [Google Scholar]
  98. 98.
    Fu S-Y, Feng X-Q, Lauke B, Mai Y-W 2008. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites B Eng 39:933–61
    [Google Scholar]
  99. 99.
    Park HY, Kloxin CJ, Abuelyaman AS, Oxman JD, Bowman CN 2012. Novel dental restorative materials having low polymerization shrinkage stress via stress relaxation by addition-fragmentation chain transfer. Dent. Mater. 28:3–9
    [Google Scholar]
  100. 100.
    Park HY, Kloxin CJ, Abuelyaman AS, Oxman JD, Bowman CN 2012. Stress relaxation via addition-fragmentation chain transfer in high Tg, high conversion methacrylate-based systems. Macromolecules 45:5640–46
    [Google Scholar]
  101. 101.
    Park HY, Kloxin CJ, Fordney MF, Bowman CN 2012. Stress relaxation of trithiocarbonate-dimethacrylate-based dental composites. Dent. Mater. 28:888–93
    [Google Scholar]
  102. 102.
    Legrand A, Soulié-Ziakovic C. 2016. Silica–epoxy vitrimer nanocomposites. Macromolecules 49:5893–902
    [Google Scholar]
  103. 103.
    Qiu M, Wu S, Tang Z, Guo B 2018. Exchangeable interfacial crosslinks towards mechanically robust elastomer/carbon nanotubes vitrimers. Compos. Sci. Technol. 165:24–30
    [Google Scholar]
  104. 104.
    Ruiz de Luzuriaga A, Martin R, Markaide N, Rekondo A, Cabañero G et al. 2016. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 3:241–47
    [Google Scholar]
  105. 105.
    Chabert E, Vial J, Cauchois J-P, Mihaluta M, Tournilhac F 2016. Multiple welding of long fiber epoxy vitrimer composites. Soft Matter 12:4838–45
    [Google Scholar]
  106. 106.
    McKinnon DD, Domaille DW, Cha JN, Anseth KS 2014. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26:865–72
    [Google Scholar]
  107. 107.
    Wang LL, Highley CB, Yeh Y-C, Galarraga JH, Uman S, Burdick JA 2018. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J. Biomed. Mater. Res. A 106:865–75
    [Google Scholar]
  108. 108.
    Lou J, Liu F, Lindsay CD, Chaudhuri O, Heilshorn SC, Xia Y 2018. Dynamic hyaluronan hydrogels with temporally modulated high injectability and stability using a biocompatible catalyst. Adv. Mater. 30:1705215
    [Google Scholar]
  109. 109.
    Accardo JV, Kalow JA. 2018. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem. Sci. 9:5987–93
    [Google Scholar]
  110. 110.
    Drury JL, Mooney DJ. 2003. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–51
    [Google Scholar]
  111. 111.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA 2009. Hydrogels in regenerative medicine. Adv. Mater. 21:3307–29
    [Google Scholar]
  112. 112.
    Schoen I, Pruitt BL, Vogel V 2013. The yin-yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials. Annu. Rev. Mater. Res. 43:589–618
    [Google Scholar]
  113. 113.
    Forgacs G, Foty RA, Shafrir Y, Steinberg MS 1998. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74:2227–34
    [Google Scholar]
  114. 114.
    Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA et al. 2015. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15:326–34
    [Google Scholar]
  115. 115.
    Jencks WP. 1959. Studies on the mechanism of oxime and semicarbazone formation. J. Am. Chem. Soc. 81:475–81
    [Google Scholar]
  116. 116.
    Sander EG, Jencks WP. 1968. Equilibria for additions to the carbonyl group. J. Am. Chem. Soc. 90:6154–62
    [Google Scholar]
  117. 117.
    Crisalli P, Kool ET. 2013. Importance of ortho proton donors in catalysis of hydrazone formation. Org. Lett. 15:1646–49
    [Google Scholar]
  118. 118.
    Kool ET, Park D-H, Crisalli P 2013. Fast hydrazone reactants: Electronic and acid/base effects strongly influence rate at biological pH. J. Am. Chem. Soc. 135:17663–66
    [Google Scholar]
  119. 119.
    McKinnon DD, Domaille DW, Cha JN, Anseth KS 2014. Bis-aliphatic hydrazone-linked hydrogels form most rapidly at physiological pH: identifying the origin of hydrogel properties with small molecule kinetic studies. Chem. Mater. 26:2382–87
    [Google Scholar]
  120. 120.
    Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ 2000. Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33:4291–94
    [Google Scholar]
  121. 121.
    Lee KY, Alsberg E, Mooney DJ 2001. Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. J. Biomed. Mater. Res. 56:228–33
    [Google Scholar]
  122. 122.
    Lou J, Stowers R, Nam S, Xia Y, Chaudhuri O 2017. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154:213–22
    [Google Scholar]
  123. 123.
    Wang T, Turhan M, Gunasekaran S 2004. Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel. Polym. Int. 53:911–18
    [Google Scholar]
  124. 124.
    Tan H, Chu CR, Payne KA, Marra KG 2009. Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–506
    [Google Scholar]
  125. 125.
    Tseng T-C, Tao L, Hsieh F-Y, Wei Y, Chiu I-M, Hsu S-h 2015. An injectable, self-healing hydrogel to repair the central nervous system. Adv. Mater. 27:3518–24
    [Google Scholar]
  126. 126.
    Grover GN, Lam J, Nguyen TH, Segura T, Maynard HD 2012. Biocompatible hydrogels by oxime click chemistry. Biomacromolecules 13:3013–17
    [Google Scholar]
  127. 127.
    Lin N, Dufresne A. 2013. Supramolecular hydrogels from in situ host–guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules 14:871–80
    [Google Scholar]
  128. 128.
    Boehnke N, Cam C, Bat E, Segura T, Maynard HD 2015. Imine hydrogels with tunable degradability for tissue engineering. Biomacromolecules 16:2101–8
    [Google Scholar]
  129. 129.
    Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX et al. 2015. Novel biocompatible polysaccharide-based self-healing hydrogel. Adv. Funct. Mater. 25:1352–59
    [Google Scholar]
  130. 130.
    Yu F, Cao X, Du J, Wang G, Chen X 2015. Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels–Alder click reaction and acylhydrazone bond. ACS Appl. Mater. Inter. 7:24023–31
    [Google Scholar]
  131. 131.
    Deng G, Li F, Yu H, Liu F, Liu C et al. 2012. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro. Lett. 1:275–79
    [Google Scholar]
  132. 132.
    Barcan GA, Zhang X, Waymouth RM 2015. Structurally dynamic hydrogels derived from 1,2-dithiolanes. J. Am. Chem. Soc. 137:5650–53
    [Google Scholar]
  133. 133.
    Bracher PJ, Snyder PW, Bohall BR, Whitesides GM 2011. The relative rates of thiol–thioester exchange and hydrolysis for alkyl and aryl thioalkanoates in water. Orig. Life Evol. Biosph. 41:399–412
    [Google Scholar]
  134. 134.
    Brown TE, Carberry BJ, Worrell BT, Dudaryeva OY, McBride MK et al. 2018. Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials 178:496–503
    [Google Scholar]
  135. 135.
    Gandavarapu NR, Azagarsamy MA, Anseth KS 2014. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv. Mater. 26:2521–26
    [Google Scholar]
  136. 136.
    Grim JC, Brown TE, Aguado BA, Chapnick DA, Viert AL et al. 2018. A reversible and repeatable thiol–ene bioconjugation for dynamic patterning of signaling proteins in hydrogels. ACS Cent. Sci. 4:909–16
    [Google Scholar]
  137. 137.
    Brown TE, Marozas IA, Anseth KS 2017. Amplified photodegradation of cell-laden hydrogels via an addition-fragmentation chain transfer reaction. Adv. Mater. 29:1605001
    [Google Scholar]
  138. 138.
    Kölmel DK, Kool ET. 2017. Oximes and hydrazones in bioconjugation: mechanism and catalysis. Chem. Rev. 117:10358–76
    [Google Scholar]
  139. 139.
    Dirksen A, Dirksen S, Hackeng TM, Dawson PE 2006. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128:15602–3
    [Google Scholar]
  140. 140.
    Biswas A, Malferrari S, Kalaskar DM, Das AK 2018. Arylboronate esters mediated self-healable and biocompatible dynamic G-quadruplex hydrogels as promising 3D-bioinks. Chem. Commun. 54:1778–81
    [Google Scholar]
  141. 141.
    Chen Y, Wang W, Wu D, Nagao M, Hall DG et al. 2018. Injectable self-healing zwitterionic hydrogels based on dynamic benzoxaborole–sugar interactions with tunable mechanical properties. Biomacromolecules 19:596–605
    [Google Scholar]
  142. 142.
    Smithmyer ME, Deng CC, Cassel SE, LeValley PJ, Sumerlin BS, Kloxin AM 2018. Self-healing boronic acid-based hydrogels for 3D co-cultures. ACS Macro. Lett. 7:1105–10
    [Google Scholar]
  143. 143.
    Cornwell DJ, Daubney OJ, Smith DK 2015. Photopatterned multidomain gels: multi-component self-assembled hydrogels based on partially self-sorting 1,3:2,4-dibenzylidene-d-sorbitol derivatives. J. Am. Chem. Soc. 137:15486–92
    [Google Scholar]
  144. 144.
    Wulff G, Lauer M, Böhnke H 1984. Rapid proton transfer as cause of an unusually large neighboring group effect. Angew. Chem. Int. Ed. 23:741–42
    [Google Scholar]
  145. 145.
    Tang S, Ma H, Tu H-C, Wang H-R, Lin P-C, Anseth KS 2018. Adaptable fast relaxing boronate-based hydrogels for probing cell–matrix interactions. Adv. Sci. 5:1800638
    [Google Scholar]
  146. 146.
    Huang Z, Delparastan P, Burch P, Cheng J, Cao Y, Messersmith PB 2018. Injectable dynamic covalent hydrogels of boronic acid polymers cross-linked by bioactive plant-derived polyphenols. Biomater. Sci. 6:2487–95
    [Google Scholar]
  147. 147.
    Yan J, Springsteen G, Deeter S, Wang B 2004. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears. Tetrahedron 60:11205–9
    [Google Scholar]
  148. 148.
    He L, Fullenkamp DE, Rivera JG, Messersmith PB 2011. pH responsive self-healing hydrogels formed by boronate–catechol complexation. Chem. Commun. 47:7497–99
    [Google Scholar]
  149. 149.
    Vogel V, Sheetz M. 2006. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265–75
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060718-030217
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030217
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error