1932

Abstract

Hydrogen is an important part of any discussion on sustainability and reduction in emissions across major energy sectors. In addition to being a feedstock and process gas for many industrial processes, hydrogen is emerging as a fuel alternative for transportation applications. Renewable sources of hydrogen are therefore required to increase in capacity. Low-temperature electrolysis of water is currently the most mature method for carbon-free hydrogen generation and is reaching relevant scales to impact the energy landscape. However, costs still need to be reduced to be economical with traditional hydrogen sources. Operating cost reductions are enabled by the recent availability of low-cost sources of renewable energy, and the potential exists for a large reduction in capital cost withmaterial and manufacturing optimization. This article focuses on the current status and development needs by component for the low-temperature electrolysis options.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030241
2019-06-07
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/10/1/annurev-chembioeng-060718-030241.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030241&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pivovar B, Rustagi N, Satyapal S 2018. Hydrogen at Scale (H2@Scale): key to a clean, economic, and sustainable energy system. Electrochem. Soc. Interface 27:147–52
    [Google Scholar]
  2. 2.
    Int. Energy Agency 2007. Hydrogen production and distribution Energy Technol. Essent., Int. Energy Agency Paris: http://www.iea.org/publications/freepublications/publication/essentials5.pdf
    [Google Scholar]
  3. 3.
    Natl. Aeronaut. Space Adm 1996. Safety Standard for Oxygen and Oxygen Systems Washington, DC: Natl. Aeronaut. Space Adm https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19960021046.pdf
    [Google Scholar]
  4. 4.
    Carmo M, Fritz DL, Mergel J, Stolten D 2013. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38:124901–34
    [Google Scholar]
  5. 5.
    Ayers KE, Anderson EB, Capuano C, Carter B, Dalton L et al. 2010. Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans 33:13–15
    [Google Scholar]
  6. 6.
    Danilovic N, Ayers KE, Capuano C, Renner JN, Wiles L, Pertoso M 2016. (Plenary) challenges in going from laboratory to megawatt scale PEM electrolysis. ECS Trans 75:14395–402
    [Google Scholar]
  7. 7.
    Toops TJ, Brady MP, Zhang F-Y, Meyer HM, Ayers K et al. 2014. Evaluation of nitrided titanium separator plates for proton exchange membrane electrolyzer cells. J. Power Sources 272:954–60
    [Google Scholar]
  8. 8.
    Ayers K 2017. High performance platinum group metal free membrane electrode assemblies through control of interfacial processes Present., Proton OnSite June 7. https://www.hydrogen.energy.gov/pdfs/review17/pd123_ayers_2017_p.pdf
    [Google Scholar]
  9. 9.
    Kraglund MR, Aili D, Jankova K, Christensen E, Li Q, Jensen JO 2016. Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations. J. Electrochem. Soc. 163:11F3125–31
    [Google Scholar]
  10. 10.
    Aili D, Wright AG, Kraglund MR, Jankova K, Holdcroft S, Jensen JO 2017. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis. J. Mater. Chem. A 5:105055–66
    [Google Scholar]
  11. 11.
    Kusoglu A, Weber AZ 2017. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117:3987–1104
    [Google Scholar]
  12. 12.
    Schalenbach M, Carmo M, Fritz DL, Mergel J, Stolten D 2013. Pressurized PEM water electrolysis: efficiency and gas crossover. Int. J. Hydrog. Energy 38:3514921–33
    [Google Scholar]
  13. 13.
    Ayers KE, Moulthrop L, Anderson EB 2012. Hydrogen infrastructure challenges and solutions. ECS Trans 41:4675–83
    [Google Scholar]
  14. 14.
    Danilovic N, Subbaraman R, Strmcnik D, Stamenkovic V, Markovic N 2013. Electrocatalysis of the HER in acid and alkaline media. J. Serb. Chem. Soc. 78:122007–15
    [Google Scholar]
  15. 15.
    Lewinski KA, van der Vliet D, Luopa SM 2015. NSTF advances for PEM electrolysis—the effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers. ECS Trans 69:17893–917
    [Google Scholar]
  16. 16.
    Sasaki K, Naohara H, Cai Y, Choi YM, Liu P et al. 2010. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. 49:468602–7
    [Google Scholar]
  17. 17.
    Ayers KE, Renner JN, Danilovic N, Wang JX, Zhang Y et al. 2016. Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers. Catal. Today 262:121–32
    [Google Scholar]
  18. 18.
    Tymoczko J, Calle-Vallejo F, Schuhmann W, Bandarenka AS 2016. Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster. Nat. Commun. 7:10990
    [Google Scholar]
  19. 19.
    Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I 2007. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:5834100–2
    [Google Scholar]
  20. 20.
    Ng JWD, Hellstern TR, Kibsgaard J, Hinckley AC, Benck JD, Jaramillo TF 2015. Polymer electrolyte membrane electrolyzers utilizing non-precious Mo-based hydrogen evolution catalysts. ChemSusChem 8:203512–19
    [Google Scholar]
  21. 21.
    Corrales-Sánchez T, Ampurdanés J, Urakawa A 2014. MoS2-based materials as alternative cathode catalyst for PEM electrolysis. Int. J. Hydrog. Energy 39:3520837–43
    [Google Scholar]
  22. 22.
    Staszak-Jirkovský J, Malliakas CD, Lopes PP, Danilovic N, Kota SS et al. 2016. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15:2197–203
    [Google Scholar]
  23. 23.
    Najafi L, Bellani S, Oropesa‐Nuñez R, Ansaldo A, Prato M et al. 2018. Doped-MoSe2 nanoflakes/3D metal oxide-hydr(oxy)oxides hybrid catalysts for pH-universal electrochemical hydrogen evolution reaction. Adv. Energy Mater. 8:27 https://doi.org/10.1002/aenm.201801764
    [Crossref] [Google Scholar]
  24. 24.
    King LA, Hubert M, Capuano CB, Manco J, Danilovic N et al. 2018. Stable and active polymer electrolyte membrane electrolyzers utilizing transition metal phosphide hydrogen evolution catalysts. ECS Meet. Abstr. 2018–01:301808
    [Google Scholar]
  25. 25.
    Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE 2014. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53:215427–30
    [Google Scholar]
  26. 26.
    Miles MH, Klaus EA, Gunn BP, Locker JR, Serafin WE, Srinivasan S 1978. The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80°C in acid solutions. Electrochim. Acta 23:6521–26
    [Google Scholar]
  27. 27.
    Reier T, Nong HN, Teschner D, Schlögl R, Strasser P 2017. Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv. Energy Mater. 7:11601275
    [Google Scholar]
  28. 28.
    Danilovic N, Subbaraman R, Chang K-C, Chang SH, Kang YJ et al. 2014. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 5:142474–78
    [Google Scholar]
  29. 29.
    Cherevko S, Zeradjanin AR, Topalov AA, Kulyk N, Katsounaros I, Mayrhofer KJ 2014. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6:82219–23
    [Google Scholar]
  30. 30.
    Kim Y-T, Lopes PP, Park S-A, Lee A-Y, Lim J et al. 2017. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. Nat. Commun. 8:11449
    [Google Scholar]
  31. 31.
    Geiger S, Kasian O, Mingers AM, Nicley SS, Haenen K et al. 2017. Catalyst stability benchmarking for the oxygen evolution reaction: the importance of backing electrode material and dissolution in accelerated aging studies. ChemSusChem 10:21 https://doi.org/10.1002/cssc.201701523
    [Crossref] [Google Scholar]
  32. 32.
    Mo J, Kang Z, Retterer ST, Cullen DA, Toops TJ et al. 2016. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Sci. Adv. 2:11e1600690
    [Google Scholar]
  33. 33.
    Alia SM, Rasimick B, Ngo C, Neyerlin KC, Kocha SS et al. 2016. Activity and durability of iridium nanoparticles in the oxygen evolution reaction. J. Electrochem. Soc. 163:11F3105–12
    [Google Scholar]
  34. 34.
    Bernt M, Gasteiger HA 2016. Influence of ionomer content in IrO2/TiO2 electrodes on PEM water electrolyzer performance. J. Electrochem. Soc. 163:11F3179–89
    [Google Scholar]
  35. 35.
    Bernt M, Siebel A, Gasteiger HA 2018. Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings. J. Electrochem. Soc. 165:5F305–14
    [Google Scholar]
  36. 36.
    Lettenmeier P, Kolb S, Burggraf F, Gago AS, Friedrich KA 2016. Towards developing a backing layer for proton exchange membrane electrolyzers. J. Power Sources 311:153–58
    [Google Scholar]
  37. 37.
    Lewinski KA, Luopa SM, Sun F, Jentzsch C, van der Vliet DF 2018. High power water electrolysis as a new paradigm for operation of PEM electrolyzer: The story continues. ECS Meet. Abstr. 2018:01:291637
    [Google Scholar]
  38. 38.
    Yu H, Danilovic N, Wang Y, Willis W, Poozhikunnath A et al. 2018. Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading. Appl. Catal. B Environ. 239:133–46
    [Google Scholar]
  39. 39.
    Danilovic N, Subbaraman R, Chang KC, Chang SH, Kang Y et al. 2014. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem. Int. Ed. 53:5114016–21
    [Google Scholar]
  40. 40.
    Forgie R, Bugosh G, Neyerlin KC, Liu Z, Strasser P 2010. Bimetallic Ru electrocatalysts for the OER and electrolytic water splitting in acidic media. Electrochem. Solid-State Lett. 13:4B36–B39
    [Google Scholar]
  41. 41.
    Kötz R, Stucki S 1985. Oxygen evolution and corrosion on ruthenium-iridium alloys. J. Electrochem. Soc. 132:1103–7
    [Google Scholar]
  42. 42.
    Kötz R, Stucki S 1986. Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media. Electrochim. Acta 31:101311–16
    [Google Scholar]
  43. 43.
    Pi Y, Shao Q, Wang P, Guo J, Huang X 2017. General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting. Adv. Funct. Mater. 27:271700886
    [Google Scholar]
  44. 44.
    Ma Z, Zhang Y, Liu S, Xu W, Wu L et al. 2018. Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts. J. Electroanal. Chem. 819:296–305
    [Google Scholar]
  45. 45.
    Oakton E, Lebedev D, Povia M, Abbott DF, Fabbri E et al. 2017. IrO2-TiO2: a high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction. ACS Catal 7:42346–52
    [Google Scholar]
  46. 46.
    Lebedev D, Povia M, Waltar K, Abdala PM, Castelli IE et al. 2017. Highly active and stable iridium pyrochlores for oxygen evolution reaction. Chem. Mater. 29:125182–91
    [Google Scholar]
  47. 47.
    Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J et al. 2016. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353:63031011–14
    [Google Scholar]
  48. 48.
    Alia SM, Shulda S, Ngo C, Pylypenko S, Pivovar BS 2018. Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts. ACS Catal 8:32111–20
    [Google Scholar]
  49. 49.
    Pi Y, Zhang N, Guo S, Guo J, Huang X 2016. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett 16:74424–30
    [Google Scholar]
  50. 50.
    Abbott DF, Lebedev D, Waltar K, Povia M, Nachtegaal M et al. 2016. Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS. Chem. Mater. 28:186591–604
    [Google Scholar]
  51. 51.
    Geiger S, Kasian O, Shrestha BR, Mingers AM, Mayrhofer KJJ, Cherevko S 2016. Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction. J. Electrochem. Soc. 163:11F3132–38
    [Google Scholar]
  52. 52.
    Xu H 2016. High performance, long-lifetime catalysts for proton exchange membrane electrolysis Annu. Merit Proc., Dep. Energy Washington, DC: https://www.hydrogen.energy.gov/pdfs/review16/pd103_xu_2016_o.pdf
    [Google Scholar]
  53. 53.
    Heakal FE-T, Awad KA 2011. Electrochemical corrosion and passivation behavior of titanium and its Ti-6Al-4V alloy in low and highly concentrated HBr solutions. Int. J. Electrochem. Sci. 6:6483
    [Google Scholar]
  54. 54.
    Kuphasuk C, Oshida Y, Andres CJ, Hovijitra ST, Barco MT, Brown DT 2001. Electrochemical corrosion of titanium and titanium-based alloys. J. Prosthet. Dent. 85:2195–202
    [Google Scholar]
  55. 55.
    Jung H-Y, Huang S-Y, Popov BN 2010. High-durability titanium bipolar plate modified by electrochemical deposition of platinum for unitized regenerative fuel cell (URFC). J. Power Sources 195:71950–56
    [Google Scholar]
  56. 56.
    Jung H-Y, Huang S-Y, Ganesan P, Popov BN 2009. Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation. J. Power Sources 194:2972–75
    [Google Scholar]
  57. 57.
    Wang S-H, Peng J, Lui W-B, Zhang J-S 2006. Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells. J. Power Sources 162:1486–91
    [Google Scholar]
  58. 58.
    Rakousky C, Reimer U, Wippermann K, Carmo M, Lueke W, Stolten D 2016. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis. J. Power Sources 326:120–28
    [Google Scholar]
  59. 59.
    Tjarks GH, Stolten D, Weßling M 2017. PEM-Elektrolyse-Systeme zur Anwendung in Power-to-Gas Anlagen PhD Thesis, Forsch. Jülich GmbH Zentralbibl: http://publications.rwth-aachen.de/record/689617/files/689617.pdf
    [Google Scholar]
  60. 60.
    Tjarks G, Gibelhaus A, Lanzerath F, Müller M, Bardow A, Stolten D 2018. Energetically-optimal PEM electrolyzer pressure in power-to-gas plants. Appl. Energy 218:192–98
    [Google Scholar]
  61. 61.
    Ayers KE, Dalton L, Parker M 2017. Direct electrochemical compression of hydrogen and oxygen via PEM water electrolysis. ECS Meet. Abstr. 2017–02:371664
    [Google Scholar]
  62. 62.
    Borgardt E, Panchenko O, Hackemüller FJ, Giffin J, Bram M et al. 2018. Mechanical characterization and durability of sintered porous transport layers for polymer electrolyte membrane electrolysis. J. Power Sources 374:84–91
    [Google Scholar]
  63. 63.
    Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R et al. 2007. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107:103904–51
    [Google Scholar]
  64. 64.
    Babic U, Suermann M, Büchi FN, Gubler L, Schmidt TJ 2017. Critical review—identifying critical gaps for polymer electrolyte water electrolysis development. J. Electrochem. Soc. 164:4F387–99
    [Google Scholar]
  65. 65.
    Park S, Lee J-W, Popov BN 2012. A review of gas diffusion layer in PEM fuel cells: materials and designs. Int. J. Hydrog. Energy 37:75850–65
    [Google Scholar]
  66. 66.
    Rakousky C, Keeley GP, Wippermann K, Carmo M, Stolten D 2018. The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers. Electrochim. Acta 278:324–31
    [Google Scholar]
  67. 67.
    Rakousky C, Reimer U, Wippermann K, Kuhri S, Carmo M et al. 2017. Polymer electrolyte membrane water electrolysis: restraining degradation in the presence of fluctuating power. J. Power Sources 342:38–47
    [Google Scholar]
  68. 68.
    Pharoah JG, Karan K, Sun W 2006. On effective transport coefficients in PEM fuel cell electrodes: anisotropy of the porous transport layers. J. Power Sources 161:1214–24
    [Google Scholar]
  69. 69.
    Burheim OS, Pharoah JG, Lampert H, Vie PJS, Kjelstrup S 2010. Through-plane thermal conductivity of PEMFC porous transport layers. J. Fuel Cell Sci. Technol. 8:2021013–11
    [Google Scholar]
  70. 70.
    Burheim OS, Ellila G, Fairweather JD, Labouriau A, Kjelstrup S, Pharoah JG 2013. Ageing and thermal conductivity of porous transport layers used for PEM fuel cells. J. Power Sources 221:356–65
    [Google Scholar]
  71. 71.
    Grigoriev SA, Millet P, Volobuev SA, Fateev VN 2009. Optimization of porous current collectors for PEM water electrolysers. Int. J. Hydrog. Energy 34:114968–73
    [Google Scholar]
  72. 72.
    Yang G, Yu S, Mo J, Kang Z, Dohrmann Y et al. 2018. Bipolar plate development with additive manufacturing and protective coating for durable and high-efficiency hydrogen production. J. Power Sources 396:590–98
    [Google Scholar]
  73. 73.
    Burdzik A, Stähler M, Friedrich I, Carmo M, Stolten D 2018. Homogeneity analysis of square meter-sized electrodes for PEM electrolysis and PEM fuel cells. J. Coat. Technol. Res. 15:61423–32
    [Google Scholar]
  74. 74.
    Yang G, Mo J, Kang Z, Dohrmann Y, List FA et al. 2018. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting. Appl. Energy 215:202–10
    [Google Scholar]
  75. 75.
    Ziegler C, Thiele S, Zengerle R 2011. Direct three-dimensional reconstruction of a nanoporous catalyst layer for a polymer electrolyte fuel cell. J. Power Sources 196:42094–97
    [Google Scholar]
  76. 76.
    Hegge F, Moroni R, Trinke P, Bensmann B, Hanke-Rauschenbach R et al. 2018. Three-dimensional microstructure analysis of a polymer electrolyte membrane water electrolyzer anode. J. Power Sources 393:62–66
    [Google Scholar]
  77. 77.
    Breitwieser M, Klingele M, Vierrath S, Zengerle R, Thiele S 2018. Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches. Adv. Energy Mater. 8:41701257
    [Google Scholar]
  78. 78.
    Fullenkamp P 2017. U.S. clean energy hydrogen and fuel cell technologies: a competitiveness analysis Present., GLWN June 6. https://www.hydrogen.energy.gov/pdfs/review17/mn014_fullenkamp_2017_o.pdf
    [Google Scholar]
  79. 79.
    Collela W, James B, Moton J, Saur G, Ramsden T 2014. Techno-Economic Analysis of PEM Electrolysis for Hydrogen Production Arlington, VA: Strateg. Anal. Inc https://www.energy.gov/sites/prod/files/2014/08/f18/fcto_2014_electrolytic_h2_wkshp_colella1.pdf
    [Google Scholar]
  80. 80.
    Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S 2017. Future cost and performance of water electrolysis: an expert elicitation study. Int. J. Hydrog. Energy 42:5230470–92
    [Google Scholar]
  81. 81.
    Buttler A, Spliethoff H 2017. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew. Sustain. Energy Rev. 82:2440–54
    [Google Scholar]
  82. 82.
    Schalenbach M, Tjarks G, Carmo M, Lueke W, Mueller M, Stolten D 2016. Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis. J. Electrochem. Soc. 163:11F3197–F208
    [Google Scholar]
  83. 83.
    Smolinka T 2014. Water electrolysis: status and potential for development Presented at the Fraunhofer-Institut für Solare Energiesysteme ISE Brussels: April 3. https://www.fch.europa.eu/sites/default/files/2%20Water%20Electrolysis%20Status%20and%20Potential%20for%20Development.pdf
    [Google Scholar]
  84. 84.
    Omasta TJ, Wang L, Peng X, Lewis CA, Varcoe JR, Mustain WE 2018. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. J. Power Sources 375:205–13
    [Google Scholar]
  85. 85.
    US Dep. Energy 2016. 2016 Alkaline Membrane Fuel Cell Workshop Summ. Rep., US Dep. Energy Washington, DC: https://www.energy.gov/sites/prod/files/2016/10/f33/fcto_2016_amfcw_report.pdf
    [Google Scholar]
  86. 86.
    Trotochaud L, Young SL, Ranney JK, Boettcher SW 2014. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136:186744–53
    [Google Scholar]
  87. 87.
    Subbaraman R, Danilovic N, Lopes PP, Tripkovic D, Strmcnik D et al. 2012. Origin of anomalous activities for electrocatalysts in alkaline electrolytes. J. Phys. Chem. C 116:4222231–37
    [Google Scholar]
  88. 88.
    Burke MS, Zou S, Enman LJ, Kellon JE, Gabor CA et al. 2015. Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 6:183737–42
    [Google Scholar]
  89. 89.
    Subbaraman R, Tripkovic D, Strmcnik D, Chang K-C, Uchimura M et al. 2011. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334:60601256–60
    [Google Scholar]
  90. 90.
    Chen R, Yang C, Cai W, Wang H-Y, Miao J et al. 2017. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett 2:51070–75
    [Google Scholar]
  91. 91.
    Zeng K, Zhang D 2010. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36:3307–26
    [Google Scholar]
  92. 92.
    Gorlin Y, Herranz J, Durst J, Rheinländer PJ, Gasteiger HA 2015. (Invited) investigation of hydrogen oxidation and evolution reaction activity on iridium metal in alkaline electrolyte. ECS Meet. Abstr. 2015–01:321845
    [Google Scholar]
  93. 93.
    Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N et al. 2013. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5:300–6
    [Google Scholar]
  94. 94.
    Xu B, Zheng J, Yan Y, Zhuang Z, Sheng W 2016. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2:e1501602
    [Google Scholar]
  95. 95.
    Danilovic N, Subbaraman R, Strmcnik D, Chang K-C, Paulikas AP et al. 2012. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. 124:5012663–66
    [Google Scholar]
  96. 96.
    Schwämmlein JN, El-Sayed HA, Stühmeier BM, Wagenbauer KF, Dietz H, Gasteiger HA 2016. Origin of superior activity of Ru@Pt core-shell nanoparticles towards hydrogen oxidation in alkaline media. ECS Trans 75:14971–82
    [Google Scholar]
  97. 97.
    Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP et al. 2012. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11:6550–57
    [Google Scholar]
  98. 98.
    Bowen CT, Davis HJ, Henshaw BF, Lachance R, LeRoy RL, Renaud R 1984. Developments in advanced alkaline water electrolysis. Int. J. Hydrog. Energy 9:159–66
    [Google Scholar]
  99. 99.
    Pavlic AA, Adkins H 1946. Preparation of a Raney nickel catalyst. J. Am. Chem. Soc. 68:81471
    [Google Scholar]
  100. 100.
    Wang G, Parrondo J, He C, Li Y, Ramani V 2017. Pt/C/Ni(OH)2 bi-functional electrocatalyst for enhanced hydrogen evolution reaction activity under alkaline conditions. J. Electrochem. Soc. 164:13F1307–15
    [Google Scholar]
  101. 101.
    Bates MK, Jia Q, Ramaswamy N, Allen RJ, Mukerjee S 2015. Composite Ni/NiO-Cr2O3 catalyst for alkaline hydrogen evolution reaction. J. Phys. Chem. C 119:105467–77
    [Google Scholar]
  102. 102.
    Pavel CC, Cecconi F, Emiliani C, Santiccioli S, Scaffidi A et al. 2014. Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Angew. Chem. Int. Ed. 53:51378–81
    [Google Scholar]
  103. 103.
    Parrondo J, Arges CG, Niedzwiecki M, Anderson EB, Ayers KE, Ramani V 2014. Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis. RSC Adv 4:199875–79
    [Google Scholar]
  104. 104.
    Hoefner T, Schalenbach M, Carmo M, Maier W, Stolten D 2015. Development of the anion exchange membrane water electrolysis. ECS Meet. Abstr. 227:1238
    [Google Scholar]
  105. 105.
    Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y 2012. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3:3399–404
    [Google Scholar]
  106. 106.
    Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J-P et al. 2016. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262:170–80
    [Google Scholar]
  107. 107.
    Parrondo J, George M, Capuano C, Ayers KE, Ramani V 2015. Pyrochlore electrocatalysts for efficient alkaline water electrolysis. J. Mater. Chem. A 3:2010819–28
    [Google Scholar]
  108. 108.
    Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B-J et al. 2017. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16:9925–31
    [Google Scholar]
  109. 109.
    Zou S, Burke MS, Kast MG, Fan J, Danilovic N, Boettcher SW 2015. Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 27:238011–20
    [Google Scholar]
  110. 110.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y 2011. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:60611383–85
    [Google Scholar]
  111. 111.
    Serov A, Andersen NI, Roy AJ, Matanovic I, Artyushkova K, Atanassov P 2015. CuCo2O4 ORR/OER bi-functional catalyst: influence of synthetic approach on performance. J. Electrochem. Soc. 162:4F449–F54
    [Google Scholar]
  112. 112.
    McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF 2015. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137:134347–57
    [Google Scholar]
  113. 113.
    Lu Z, Wang H, Kong D, Yan K, Hsu P-C et al. 2014. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 5:4345
    [Google Scholar]
  114. 114.
    Bates MK, Jia Q, Doan H, Liang W, Mukerjee S 2016. Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal 6:1155–61
    [Google Scholar]
  115. 115.
    Augustyn V, Therese S, Turner TC, Manthiram A 2015. Nickel-rich layered LiNi1−x MxO2 (M = Mn, Fe, and Co) electrocatalysts with high oxygen evolution reaction activity. J. Mater. Chem. A 3:3216604–12
    [Google Scholar]
  116. 116.
    Gardner G, Al-Sharab J, Danilovic N, Go YB, Ayers K et al. 2016. Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides. Energy Environ. Sci. 9:1184–92
    [Google Scholar]
  117. 117.
    Mohamed R, Cheng X, Fabbri E, Levecque P, Kötz R et al. 2015. Electrocatalysis of perovskites: the influence of carbon on the oxygen evolution activity. J. Electrochem. Soc. 162:6F579–86
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060718-030241
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030241
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error