1932

Abstract

Polymers play an essential role in drug formulation and production of medical devices, implants, and diagnostics. Following drug discovery, an appropriate formulation is selected to enable drug delivery. This task can be exceedingly challenging owing to the large number of potential delivery methods and formulation and process variables that can interact in complex ways. This evolving solubility challenge has inspired an increasing emphasis on the developability of drug candidates in early discovery as well as various advanced drug solubilization strategies. Among the latter, formulation approaches that lead to prolonged drug supersaturation to maximize the driving force for sustained intestinal absorption of an oral product, or to allow sufficient time for injection after reconstitution of a parenteral lyophile formulation, have attracted increasing interest. Although several kinetic and thermodynamic components are involved in stabilizing amorphous dispersions, it is generally assumed that maximum physical stability, defined in terms of inhibition of drug crystallization, requires that the drug and excipient remain intimately mixed. Phase separation of the drug from its excipient may be the first step that ultimately leads to crystallization. We discuss the role of advanced thermodynamics using two examples: ASD and vitamin E–stabilized ultrahigh–molecular weight polyethylene implants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030304
2019-06-07
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/10/1/annurev-chembioeng-060718-030304.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030304&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Langer R, Tirrell DA. 2004. Designing materials for biology and medicine. Nature 428:487–92
    [Google Scholar]
  2. 2.
    Ratner BD, Bryant SJ. 2004. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6:41–75
    [Google Scholar]
  3. 3.
    Ulery BD, Nair LS, Laurencin CT 2011. Biomedical applications of biodegradable polymers. J. Polym. Sci. B 49:832–64
    [Google Scholar]
  4. 4.
    Park K. 2014. Controlled drug delivery systems: past forward and future back. J. Control. Release 190:3–8
    [Google Scholar]
  5. 5.
    Yalkowski SH. 1999. Solubility and Solubilization in Aqueous Media New York: Oxford Univ. Press
    [Google Scholar]
  6. 6.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE 2001. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70:1–20
    [Google Scholar]
  7. 7.
    Woodruff MA, Hutmacher DW. 2010. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 35:1217–56
    [Google Scholar]
  8. 8.
    Anderson BD. 2018. Predicting solubility/miscibility in amorphous dispersions: It is time to move beyond regular solution theories. J. Pharm. Sci. 107:24–33
    [Google Scholar]
  9. 9.
    Newman A. 2015. Pharmaceutical Amorphous Solid Dispersions Hoboken, NJ: Wiley. , 1st ed..
    [Google Scholar]
  10. 10.
    Baird JA, Taylor LS. 2012. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv. Drug Deliv. Rev. 64:396–421
    [Google Scholar]
  11. 11.
    Meng F, Dave V, Chauhan H 2015. Qualitative and quantitative methods to determine miscibility in amorphous drug-polymer systems. Eur. J. Pharm. Sci. 77:106–11
    [Google Scholar]
  12. 12.
    Taylor LS, Zhang GGZ. 2016. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv. Drug Deliv. Rev. 101:122–42
    [Google Scholar]
  13. 13.
    Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y et al. 2004. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat. Mater. 3:829–36
    [Google Scholar]
  14. 14.
    Kurtz SM 2015. UHMWPE Biomaterials Handbook Cambridge, MA: Academic. , 3rd ed..
    [Google Scholar]
  15. 15.
    Prausnitz JM, Lichtenthaler RN, de Azevedo EG 1999. Molecular Thermodynamics of Fluid-Phase Equilibria Int. Ser. Phys. Chem. Eng. Sci Upper Saddle River, NJ: Prentice Hall. , 3rd ed..
    [Google Scholar]
  16. 16.
    Senger JV, Kayser RF, Peters CJ, White HJ, eds. 2000. Equations of State for Fluids and Fluid Mixtures Amsterdam: Elsevier
    [Google Scholar]
  17. 17.
    Gmehling J, Kolbe B, Kleiber M, Rarey J 2012. Chemical Thermodynamics for Process Simulation Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  18. 18.
    Müller EA, Gubbins KE. 2001. Molecular-based equations of state for associating fluids: a review of SAFT and related approaches. Ind. Eng. Chem. Res. 40:2193–211
    [Google Scholar]
  19. 19.
    Gross J, Sadowski G. 2001. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40:1244–60
    [Google Scholar]
  20. 20.
    Gross J, Sadowski G. 2002. Modeling polymer systems using the perturbed-chain statistical associating fluid theory equation of state. Ind. Eng. Chem. Res. 41:1084–93
    [Google Scholar]
  21. 21.
    Flory PJ. 1953. Principles of Polymer Chemistry Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  22. 22.
    Koningsveld R, Stockmayer W, Nies E 2001. Polymer Phase Diagram: A Textbook Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  23. 23.
    Dudowicz J, Freed KF. 1991. Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions: 1. Lattice cluster theory of compressible systems. Macromolecules 24:5076–95
    [Google Scholar]
  24. 24.
    Foreman KW, Freed KF. 2007. Lattice cluster theory of multicomponent polymer systems: chain semiflexibility and specific interactions. Adv. Chem. Phys. 103:335–90
    [Google Scholar]
  25. 25.
    Enders S, Zeiner T. 2011. Application of lattice cluster theory to the calculation of miscibility - and interfacial behavior of polymer containing systems. Polymer Phase Behavior TP Ehlers, JK Wilhelm 1–74 Hauppauge, NY: Nova Sci.
    [Google Scholar]
  26. 26.
    Dudowicz J, Freed KF, Madden WG 1990. Role of molecular structure on the thermodynamic properties of melts, blends, and concentrated polymer solutions: comparison of Monte Carlo simulations with the cluster theory for the lattice model. Macromolecules 23:4803–19
    [Google Scholar]
  27. 27.
    Buta D, Freed KF, Szleifer I 2001. Monte Carlo test of the lattice cluster theory: thermodynamic properties of binary polymer blends. J. Chem. Phys. 114:1424–31
    [Google Scholar]
  28. 28.
    Browarzik D. 2009. Calculation of excess functions and phase equilibria in binary and ternary mixtures with one associating component. J. Mol. Liq. 146:95–104
    [Google Scholar]
  29. 29.
    Browarzik D. 2010. Extension of the chemical associating lattice model (CALM) to cross association. J. Mol. Liq. 156:171–78
    [Google Scholar]
  30. 30.
    Zeiner T, Browarzik D, Enders S 2009. Calculation of the liquid-liquid equilibrium of aqueous solutions of hyperbranched polymers. Fluid Phase Equilib 286:127–33
    [Google Scholar]
  31. 31.
    Zeiner T, Schrader P, Enders S, Browarzik D 2011. Phase- and interfacial behavior of hyperbranched polymer solutions. Fluid Phase Equilib 302:321–30
    [Google Scholar]
  32. 32.
    Zeiner T, Enders S. 2011. Phase-behavior of hyperbranched polymer solutions in mixed solvents. Chem. Eng. Sci. 66:5244–52
    [Google Scholar]
  33. 33.
    Zeiner T, Browarzik C, Browarzik D, Enders S 2011. Calculation of the liquid-liquid equilibrium of solutions of hyperbranched polymers with the lattice-cluster theory combined with an association model. J. Chem. Thermodyn. 43:1969–76
    [Google Scholar]
  34. 34.
    Enders S, Langenbach K, Schrader P, Zeiner T 2012. Phase diagrams for systems containing hyperbranched polymers. Polymers 4:72–115
    [Google Scholar]
  35. 35.
    Browarzik C, Browarzik D, Enders S 2012. Liquid-liquid phase equilibria of hyperbranched polymers—experimental study and modelling. Fluid Phase Equilib 328:49–60
    [Google Scholar]
  36. 36.
    Schrader P, Zeiner T, Browarzik C, Puyan MJ, Enders S 2012. Phase behavior of hyperbranched polymer in demixed solvent. Mol. Phys. 110:1359–73
    [Google Scholar]
  37. 37.
    Browarzik D, Langenbach K, Browarzik C, Enders S 2013. Modeling of the branching influence on liquid-liquid equilibrium of binary and ternary polymer solutions by lattice cluster theory. J. Chem. Thermodyn. 62:56–63
    [Google Scholar]
  38. 38.
    Goetsch T, Zimmermann P, Enders S, Zeiner T 2016. Tunable extraction systems based on hyperbranched polymers. Chem. Eng. Process. Process Intensif. 99:175–82
    [Google Scholar]
  39. 39.
    Goetsch T, Danzer A, Zimmermann P, Köhler A, Kissing K et al. 2017. Liquid-liquid equilibrium and interfacial tension of hexane isomers-methanol systems. Ind. Eng. Chem. Res. 56:9743–52
    [Google Scholar]
  40. 40.
    Langenbach K, Enders S, Browarzik C, Browarzik D 2013. Calculation of the high pressure phase equilibrium in hyperbranched polymer systems with the lattice-cluster theory. J. Chem. Thermodyn. 59:107–13
    [Google Scholar]
  41. 41.
    Langenbach K, Browarzik D, Sailer J, Enders S 2014. New formulation of the lattice cluster theory equation of state for multi-component systems. Fluid Phase Equilib 362:196–212
    [Google Scholar]
  42. 42.
    Walowski C, Langenbach K, Browarzik D, Enders S 2016. Cloud point pressure in the system poly-ethylene + ethylene—impact of branching. Fluid Phase Equilib 428:38–47
    [Google Scholar]
  43. 43.
    Zimmermann P, Goetsch T, Zeiner T, Enders S 2017. Modelling of adsorption isotherms of branched molecules using density-functional theory. Mol. Phys. 115:1389–407
    [Google Scholar]
  44. 44.
    Zimmermann P, Walowski C, Enders S 2018. Impact of higher order diagrams on phase equilibrium calculations for small molecules using lattice cluster theory. J. Chem. Phys. 148:094103
    [Google Scholar]
  45. 45.
    Flory PJ. 1949. Thermodynamics of crystallization in high polymers. IV. A theory of crystalline states and fusion in polymers, copolymers, and their mixtures with diluents. J. Chem. Phys. 17:223–40
    [Google Scholar]
  46. 46.
    Fischlschweiger M, Enders S. 2014. Theory for solubility of semi-crystalline and branched polymers in one solvent. Macromolecules 47:7625–36
    [Google Scholar]
  47. 47.
    Sarzotti DM, Soares JBP, Simon LC, Britto LD 2004. Analysis of the chemical composition distribution of ethylene/α-olefin copolymers by solution differential scanning calorimetry: an alternative technique to Crystaf. Polymer 45:4787–99
    [Google Scholar]
  48. 48.
    Fischlschweiger M, Enders S, Zeiner T 2014. Solubility calculations of branched and linear amino acids using lattice cluster theory. Mol. Phys. 112:2282–96
    [Google Scholar]
  49. 49.
    Fischlschweiger M, Enders S. 2015. Solid-liquid phase equilibria of binary hydrocarbon mixtures predicted by lattice cluster theory. J. Mol. Liq. 212:436–43
    [Google Scholar]
  50. 50.
    Fischlschweiger M, Enders S. 2014. Solid-liquid equilibria of crystalline and semi-crystalline monodisperse polymers, taking into account the molecular architecture by application of the lattice cluster theory. Mol. Phys. 24:3109–19
    [Google Scholar]
  51. 51.
    Fischlschweiger M, Enders S. 2016. Ternary solid-liquid equilibria of semicrystalline, branched polymer solvent mixtures—a theoretical study by means of lattice cluster theory. J. Chem. Eng. Data 61:4270–80
    [Google Scholar]
  52. 52.
    Enders S, Browarzik D. 2014. Modeling of liquid-liquid equilibrium of polydisperse hyperbranched polymer solutions by lattice cluster theory. J. Chem. Thermodyn. 79:124–34
    [Google Scholar]
  53. 53.
    Goetsch T, Zimmermann P, van den Bongard R, Enders S, Zeiner T 2016. Superposition of liquid-liquid and solid-liquid equilibria of linear and branched molecules: binary systems. Ind. Eng. Chem. Res. 55:11167–74
    [Google Scholar]
  54. 54.
    Langenbach K, Fischlschweiger M, Enders S 2016. Prediction of the solid-liquid-liquid equilibria of linear and branched semi-crystalline poly-ethylene in solutions of diphenyl ether by lattice cluster theory. Mol. Phys. 114:2717–23
    [Google Scholar]
  55. 55.
    Fornasiero F, Ung M, Radke CJ, Prausnitz JM 2005. Glass-transition temperatures for soft-contact-lens materials. Dependence on water content. Polymer 46:4845–52
    [Google Scholar]
  56. 56.
    Gordon M, Taylor JS. 1952. Ideal copolymers and the second-order transitions of synthetic rubbers. Part 1. Non-crystalline copolymers. J. Appl. Chem. 2:493–500
    [Google Scholar]
  57. 57.
    Schneider HA, Di Marzio EA 1992. The glass temperature of polymer blends: comparison of both the free volume and the entropy predictions with data. Polymer 33:3453–61
    [Google Scholar]
  58. 58.
    Kauzmann W. 1948. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43:219–56
    [Google Scholar]
  59. 59.
    Debenedetti PG, Stillinger FH. 2001. Supercooled liquids and the glass transition. Nature 410:259–67
    [Google Scholar]
  60. 60.
    Sanchez IC, O'Keefe SP. 2016. Theoretical rationale for a thermodynamic glass state. J. Phys. Chem. B 120:9443–49
    [Google Scholar]
  61. 61.
    Dudowicz J, Freed KF, Douglas JF 2008. Lattice cluster theory of multicomponent polymer systems: chain semiflexibility and specific interactions. Adv. Chem. Phys. 137:125–222
    [Google Scholar]
  62. 62.
    Gibbs JH, DiMarzio EA. 1958. Nature of the glass transition and the glassy state. J. Chem. Phys. 28:373–83
    [Google Scholar]
  63. 63.
    Adam G, Gibbs JH. 1965. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43:139–46
    [Google Scholar]
  64. 64.
    Kirkwood JG, Buff FP. 1951. The statistical mechanical theory of solutions. I. J. Chem. Phys. 19:774–77
    [Google Scholar]
  65. 65.
    Dudowicz J, Douglas JF, Freed KF 2014. Two glass transitions in miscible polymer blends. J. Chem. Phys. 140:244905
    [Google Scholar]
  66. 66.
    Marsac PJ, Shamblin SL, Taylor LS 2006. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm. Res. 23:2417–26
    [Google Scholar]
  67. 67.
    Yoshioka S, Aso Y. 2007. Correlations between molecular mobility and chemical degradation during storage of amorphous pharmaceuticals. J. Pharm. Sci. 96:960–81
    [Google Scholar]
  68. 68.
    Pikal MJ, Shah S. 1990. The collapse temperature in freeze drying: dependence on measurement methodology and water removal from the glassy phase. J. Phys. Chem. 62:165–86
    [Google Scholar]
  69. 69.
    Chiou WL, Riegelman S. 1971. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 60:1281–303
    [Google Scholar]
  70. 70.
    Leuner C, Dressman J. 2000. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50:47–60
    [Google Scholar]
  71. 71.
    Patterson JE, James MB, Forster AH, Lancaster RW, Butler JM, Rades T 2007. Preparation of glass solutions of three poorly water-soluble drugs by spray drying, melt extrusion and ball-milling. Int. J. Pharm. 336:22–34
    [Google Scholar]
  72. 72.
    DeBoyace K, Wildfong PLD. 2018. The application of modeling and prediction to the formation and stability of amorphous solid dispersions. J. Pharm. Sci. 107:57–74
    [Google Scholar]
  73. 73.
    Konno H, Taylor LS. 2006. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J. Pharm. Sci. 95:2692–705
    [Google Scholar]
  74. 74.
    Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P et al. 2001. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 12:261–69
    [Google Scholar]
  75. 75.
    Huang J, Wigent RJ, Schwartz JB 2008. Drug polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. J. Pharm. Sci. 97:251–62
    [Google Scholar]
  76. 76.
    Marsac PJ, Rumondor AC, Nivens DE, Kestur US, Stanciu L, Taylor LS 2010. Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). J. Pharm. Sci. 99:169–85
    [Google Scholar]
  77. 77.
    Rumondor ACF, Wikstrom H, van Eerdenbrugh B, Taylor LS 2011. Understanding the tendency of amorphous solid dispersions to undergo amorphous-amorphous phase separation in the presence of absorbed moisture. AAPS PharmSciTech 12:1209–19
    [Google Scholar]
  78. 78.
    Rumondor ACF, Marsac PJ, Stanford LA, Taylor LS 2009. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol. Pharm. 6:1492–505
    [Google Scholar]
  79. 79.
    Prudic A, Ji Y, Sadowski G 2014. Thermodynamic phase behavior of API/polymer solid dispersions. Mol. Pharm. 11:2294–304
    [Google Scholar]
  80. 80.
    Prudic A, Kleetz T, Korf M, Ji Y, Sadowski G 2014. Influence of copolymer composition on the phase behavior of solid dispersions. Mol. Pharm. 11:4189–98
    [Google Scholar]
  81. 81.
    Paus R, Ji Y, Vahle L, Sadowski G 2015. Predicting the solubility advantage of amorphous pharmaceuticals: a novel thermodynamic approach. Mol. Pharm. 12:2823–33
    [Google Scholar]
  82. 82.
    Ji Y, Paus R, Prudic A, Lübbert C, Sadowski G 2015. A novel approach for analyzing the dissolution mechanism of solid dispersions. Pharm. Res. 32:2559–78
    [Google Scholar]
  83. 83.
    Prudic A, Lesniak AK, Ji Y, Sadowski G 2015. Thermodynamic phase behaviour of indomethacin/PLGA formulations. Eur. J. Pharm. Sci. Biopharm. 93:88–94
    [Google Scholar]
  84. 84.
    Prudic A, Ji Y, Luebbert C, Sadowski G 2015. Influence of humidity on the phase behavior of API/polymer formulations. Eur. J. Pharm. Biopharm. 94:352–62
    [Google Scholar]
  85. 85.
    Paus R, Ji Y. 2016. Modeling and predicting the influence of variable factors on dissolution of crystalline pharmaceuticals. Chem. Eng. Sci. 145:10–20
    [Google Scholar]
  86. 86.
    Luebbert C, Huxoll F, Sadowski G 2017. Amorphous-amorphous phase separation in API/polymer formulations. Molecules 22:296
    [Google Scholar]
  87. 87.
    Lehmkemper K, Kyeremateng SO, Heinzerling O, Degenhardt M, Sadowski G 2017. Impact of polymer type and relative humidity on the long-term physical stability of amorphous solid dispersions. Mol. Pharm. 14:4374–86
    [Google Scholar]
  88. 88.
    Luebbert C, Sadowski G. 2017. Moisture-induced phase separation and recrystallization in amorphous solid dispersions. Int. J. Pharm. 532:635–46
    [Google Scholar]
  89. 89.
    Lehmkemper K, Kyeremateng SO, Heinzerling O, Degenhardt M, Sadowski G 2017. Long-term physical stability of PVP- and PVPVA-amorphous solid dispersions. Mol. Pharm. 14:157–71
    [Google Scholar]
  90. 90.
    Lehmkemper K, Kyeremateng SO, Degenhardt M, Sadowski G 2018. Influence of low-molecular-weight excipients on the phase behavior of PVPVA64 amorphous solid dispersions. Pharm. Res. 35:25
    [Google Scholar]
  91. 91.
    Luebbert C, Sadowski G. 2018. In-situ determination of crystallization kinetics in ASDs via water sorption experiments. Eur. J. Pharm. Biopharm. 127:183–93
    [Google Scholar]
  92. 92.
    Chen H, Pui Y, Liu C, Chen Z, Su CC et al. 2018. Moisture-induced amorphous phase separation of amorphous solid dispersions: molecular mechanism, microstructure, and its impact on dissolution performance. J. Pharm. Sci. 107:317–26
    [Google Scholar]
  93. 93.
    Kyeremateng SO, Pudlas M, Woehrle GH 2014. A fast and reliable empirical approach for estimating solubility of crystalline drugs in polymers for hot melt extrusion formulations. J. Pharm. Sci. 103:2847–58
    [Google Scholar]
  94. 94.
    Yoshioka M, Hancock BC, Zografi G 1994. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J. Pharm. Sci. 83:1700–5
    [Google Scholar]
  95. 95.
    Miyazaki T, Yoshioka S, Aso Y, Kawanishi T 2006. Crystallization rate of amorphous nifedipine analogues unrelated to the glass transition temperature. Int. J. Pharm. 336:191–95
    [Google Scholar]
  96. 96.
    Hancock B, Christensen K. 1998. Estimating the critical molecular mobility temperature (Tk) of amorphous pharmaceuticals. Pharm. Res. 15:1649–51
    [Google Scholar]
  97. 97.
    Trasi NS, Baird JA, Kestur US, Taylor LS 2014. Factor influencing crystal growth rates from undercooled liquids of pharmaceutical compounds. J. Phys. Chem. B 118:9974–82
    [Google Scholar]
  98. 98.
    Wyttenbach N, Kuentz M. 2017. Glass-forming ability of compounds in marketed amorphous drug products. Eur. J. Pharm. Biopharm. 112:204–8
    [Google Scholar]
  99. 99.
    Rumondor A, Ivanisevic I, Bates S, Alonzo D, Taylor LS 2009. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm. Res. 26:2523–34
    [Google Scholar]
  100. 100.
    Mahlin D, Ponnambalam S, Hockerfelt MH, Bergstrom CA 2011. Toward in silico prediction of glass-forming ability from molecular structure alone: a screening tool in early drug development. Mol. Pharm. 8:498–506
    [Google Scholar]
  101. 101.
    Mahlin D, Bergstrom CA. 2013. Early drug development predictions of glass-forming ability and physical stability of drugs. Eur. J. Pharm. Sci. 49:323–32
    [Google Scholar]
  102. 102.
    Alhalaweh A, Alzghoul A, Kaialy W, Mahlin D, Bergstrom CA 2014. Computational predictions of glass-forming ability and crystallization tendency of drug molecules. Mol. Pharm. 11:3123–32
    [Google Scholar]
  103. 103.
    Bikiaris D, Papageorgiou GZ, Stergiou A, Pavlidou E, Karavas E et al. 2005. Physicochemical studies on solid dispersions of poorly water-soluble drugs evaluation of capabilities and limitations of thermal analysis techniques. Thermochim. Acta 439:58–67
    [Google Scholar]
  104. 104.
    Marsac PJ, Li T, Taylor LS 2009. Estimation of drug polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm. Res. 26:139–51
    [Google Scholar]
  105. 105.
    Bhugra C, Pikal MJ. 2008. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J. Pharm. Sci. 97:1329–49
    [Google Scholar]
  106. 106.
    Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T 2009. Correlating thermodynamic and kinetic parameters with amorphous stability. Eur. J. Pharm. Sci. 37:492–98
    [Google Scholar]
  107. 107.
    Zhou D, Zhang GGZ, Law D, Grant DJW, Schmitt EA 2002. Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J. Pharm. Sci. 91:1863–73
    [Google Scholar]
  108. 108.
    Shamblin SL, Tang XL, Chang LQ, Hancock BC, Pikal MJ 1999. Characterization of the time-scales of molecular motion in pharmaceutically important glasses. J. Phys. Chem. B 103:4113–21
    [Google Scholar]
  109. 109.
    Mao C, Chamarthy SP, Byrn SR, Pinal R 2007. Calorimetric study and modelling of molecular mobility in amorphous organic pharmaceutical compounds using a modified Adam-Gibbs approach. J. Phys. Chem. B 111:13243–52
    [Google Scholar]
  110. 110.
    Striegel A, Yau W, Kirkland J, Bly D 2009. Modern Size-Exclusion Liquid Chromatography Hoboken, NJ: Wiley
    [Google Scholar]
  111. 111.
    Pasch H, Malik M, Macko T 2013. Recent advances in high-temperature fractionation of polyolefins. Adv. Polym. Sci. 251:77–140
    [Google Scholar]
  112. 112.
    Fischlschweiger M. 2015. A molecular physics theory for crystallization based polymer separation PhD Thesis, Tech. Univ. Berlin Berlin, Ger:.
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060718-030304
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030304
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error