1932

Abstract

Industrial biotechnology has the potential to decrease our reliance on petroleum for fuel and bio-based chemical production and also enable valorization of waste streams. Anaerobic microorganisms thrive in resource-limited environments and offer an array of novel bioactivities in this regard that could revolutionize biomanufacturing. However, they have not been adopted for widespread industrial use owing to their strict growth requirements, limited number of available strains, difficulty in scale-up, and genetic intractability. This review provides an overview of current and future uses for anaerobes in biotechnology and bioprocessing in the postgenomic era. We focus on the recently characterized anaerobic fungi (Neocallimastigomycota) native to the digestive tract of large herbivores, which possess a trove of enzymes, pathways, transporters, and other biomolecules that can be harnessed for numerous biotechnological applications. Resolving current genetic intractability, scale-up, and cultivation challenges will unlock the potential of these lignocellulolytic fungi and other nonmodel micro-organisms to accelerate bio-based production.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030340
2019-06-07
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/10/1/annurev-chembioeng-060718-030340.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030340&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Rogers JN, Stokes B, Dunn J, Cai H, Wu M et al. 2017. An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy. Biofuels Bioprod. Biorefining 11:1110–28
    [Google Scholar]
  2. 2.
    Scarlat N, Dallemand JF, Monforti-Ferrario F, Nita V 2015. The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ. Dev. 15:3–34
    [Google Scholar]
  3. 3.
    Festel G. 2018. Economic aspects of industrial biotechnology. Advances in Biochemical Engineering/Biotechnology Berlin, Ger: Springer
    [Google Scholar]
  4. 4.
    Aguilar A, Wohlgemuth R, Twardowski T 2018. Perspectives on bioeconomy. N. Biotechnol. 40:181–84
    [Google Scholar]
  5. 5.
    Kilbane JJ II 2016. Future applications of biotechnology to the energy industry. Front. Microbiol. 7:86
    [Google Scholar]
  6. 6.
    Burk MJ, Van Dien S 2016. Biotechnology for chemical production: challenges and opportunities. Trends Biotechnol 34:3187–90
    [Google Scholar]
  7. 7.
    Chen W, Mulchandani A, Deshusses MA 2005. Environmental biotechnology: challenges and opportunities for chemical engineers. AIChE J 51:3690–95
    [Google Scholar]
  8. 8.
    Dvořák P, Nikel PI, Damborský J, de Lorenzo V 2017. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 35:7845–66
    [Google Scholar]
  9. 9.
    Chen X, Zhou L, Tian K, Kumar A, Singh S et al. 2013. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol. Adv. 31:81200–23
    [Google Scholar]
  10. 10.
    Song AA-L, In LLA, Lim SHE, Rahim RA 2017. A review on Lactococcus lactis: from food to factory. Microb. Cell Fact. 16:155
    [Google Scholar]
  11. 11.
    Hong K-K, Nielsen J. 2012. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 69:162671–90
    [Google Scholar]
  12. 12.
    Gonçalves FAG, Colen G, Takahashi JA 2014. Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci. World J. 2014:476207
    [Google Scholar]
  13. 13.
    Cairns TC, Nai C, Meyer V 2018. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol. Biotechnol. 5:113
    [Google Scholar]
  14. 14.
    Meyer V, Wu B, Ram AFJ 2011. Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol. Lett. 33:3469–76
    [Google Scholar]
  15. 15.
    Nielsen J, Keasling JD, Ajikumar PK, Xiao W-H, Tyo KE et al. 2016. Engineering cellular metabolism. Cell 164:61185–97
    [Google Scholar]
  16. 16.
    Baron S 1996. Medical Microbiology Galveston: Univ. Tex. Med. Branch Galveston
    [Google Scholar]
  17. 17.
    Rampelotto PH. 2013. Extremophiles and extreme environments. Life 3:3482–85
    [Google Scholar]
  18. 18.
    Horikoshi K, Grant WD, William D, Horikoshi K 1998. Extremophiles: Microbial Life in Extreme Environments Hoboken, NJ: Wiley-Liss322 pp.
    [Google Scholar]
  19. 19.
    Soetaert W, Vandamme EJ, eds. 2010. Industrial Biotechnology: Sustainable Growth and Economic Success Weinheim, Ger: Wiley-VCH499 pp.
    [Google Scholar]
  20. 20.
    Green E, Minton N, Heeg D 2017. Making Clostridia great again. Ind. Biotechnol. 13:252–56
    [Google Scholar]
  21. 21.
    Phillips JR, Atiyeh HK, Tanner RS, Torres JR, Saxena J et al. 2015. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour. Technol. 190:114–21
    [Google Scholar]
  22. 22.
    Fisher AK, Freedman BG, Bevan DR, Senger RS 2014. A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput. Struct. Biotechnol. J. 11:1891–99
    [Google Scholar]
  23. 23.
    Levy SE, Myers RM. 2016. Advancements in next-generation sequencing. Annu. Rev. Genom. Hum. Genet. 17:195–115
    [Google Scholar]
  24. 24.
    Carroll D. 2017. Genome editing: past, present, and future. Yale J. Biol. Med. 90:4653–59
    [Google Scholar]
  25. 25.
    Gordon GLR, Phillips MW. 1998. The role of anaerobic gut fungi in ruminants. Nutr. Res. Rev. 11:01133–68
    [Google Scholar]
  26. 26.
    Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N et al. 2014. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 90:11–17
    [Google Scholar]
  27. 27.
    Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS 2010. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4:101225–35
    [Google Scholar]
  28. 28.
    Mountfort DO, Orpin CG. 1994. Anaerobic Fungi: Biology, Ecology, and Function New York: Marcel Dekker290 pp.
    [Google Scholar]
  29. 29.
    Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D et al. 2016. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351:62781192–95
    [Google Scholar]
  30. 30.
    Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA et al. 2013. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl. Environ. Microbiol. 79:154620–34
    [Google Scholar]
  31. 31.
    Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R et al. 2017. A parts list for fungal cellulosomes revealed by comparative genomics. Nat. Microbiol. 2:17087
    [Google Scholar]
  32. 32.
    Seppälä S, Solomon KV, Gilmore SP, Henske JK, O'Malley MA 2016. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters. Microb. Cell Fact. 15:1212
    [Google Scholar]
  33. 33.
    Sauer M. 2016. Industrial production of acetone and butanol by fermentation—100 years later. FEMS Microbiol. Lett. 363:13fnw134
    [Google Scholar]
  34. 34.
    Hatti-Kaul R, Mattiasson B. 2016. Anaerobes in industrial- and environmental biotechnology. Anaerobes in Biotechology, Vol. 156 R Hatti-Kaul, G Mamo, B Mattiasson 1–33 Cham, Switz.: Springer
    [Google Scholar]
  35. 35.
    Jiang Y, Liu J, Jiang W, Yang Y, Yang S 2015. Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol. Adv. 33:71493–501
    [Google Scholar]
  36. 36.
    Simet A. 2016. Minnesota n-butanol plant comes online. Biomass Magazine Dec. 9. http://biomassmagazine.com/articles/14006/minnesota-n-butanol-plant-comes-online
    [Google Scholar]
  37. 37.
    Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Ścibisz I 2018. Propionibacterium spp.—source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl. Microbiol. Biotechnol. 102:2515–38
    [Google Scholar]
  38. 38.
    Lane J. 2015. Steel's big dog jumps into low carbon fuels: ArcelorMittal, LanzaTech, Primetals Technologies to construct $96M biofuel production facility. Biofuels Digest July 13. http://www.biofuelsdigest.com/bdigest/2015/07/13/steels-big-dog-jumps-into-low-carbon-fuels-arcelormittal-lanzatech-primetals-technologies-to-construct-96m-biofuel-production-facility/
    [Google Scholar]
  39. 39.
    Simpson SD, Forster RLS, Tran PL, Rowe MJ, Warner IL 2008. Bacteria and methods of use thereof US Patent No. 12742149
    [Google Scholar]
  40. 40.
    Lane J. 2016. Coskata's technology re-emerges as Synata Bio. Biofuels Digest Jan. 24. http://www.biofuelsdigest.com/bdigest/2016/01/24/coskatas-technology-re-emerges-as-synata-bio/
    [Google Scholar]
  41. 41.
    Sapp M. 2016. INEOS Bio selling 8 MGY demo plant in Florida. Biofuels Digest Sept. 6. http://www.biofuelsdigest.com/bdigest/2016/09/06/ineos-bio-selling-8-mgy-demo-plant-in-florida/
    [Google Scholar]
  42. 42.
    Lora Grando R, de Souza Antune AM, da Fonseca FV, Sánchez A, Barrena R, Font X 2017. Technology overview of biogas production in anaerobic digestion plants: a European evaluation of research and development. Renew. Sustain. Energy Rev. 80:44–53
    [Google Scholar]
  43. 43.
    Jiang X, Sommer SG, Christensen KV 2011. A review of the biogas industry in China. Energy Policy 39:106073–81
    [Google Scholar]
  44. 44.
    Tirado-Acevedo O, Chinn MS, Grunden AM 2010. Production of biofuels from synthesis gas using microbial catalysts. Adv. Appl. Microbiol. 70:57–92
    [Google Scholar]
  45. 45.
    Al Seadi T, Drosg B, Fuchs W, Rutz D, Janssen R 2013. Biogas digestate quality and utilization. The Biogas Handbook A Wellinger, J Murphy, D Baxter 267–301 Cambridge, UK: Woodhead
    [Google Scholar]
  46. 46.
    Ronga D, Setti L, Salvarani C, De Leo R, Bedin E et al. 2019. Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Sci. Hortic. 244:172–81
    [Google Scholar]
  47. 47.
    Binswanger S, Siegrist H, Lais P 1997. Simultane Nitrifikation/Denitrifikation von stark ammoniumbelasteten Abwässern ohne organische Kohlenstoffquellen. Korresp. Abwasser. 44:91573–80
    [Google Scholar]
  48. 48.
    Kartal B, Kuenen JG, van Loosdrecht MCM 2010. Sewage treatment with anammox. Science 328:5979702–3
    [Google Scholar]
  49. 49.
    Siegrist H, Salzgeber D, Eugster J, Joss A 2008. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Sci. Technol. 57:3383–88
    [Google Scholar]
  50. 50.
    Ritalahti KM, Löffler FE, Rasch EE, Koenigsberg SS 2005. Bioaugmentation for chlorinated ethene detoxification: bioaugmentation and molecular diagnostics in the bioremediation of chlorinated ethene-contaminated sites. Ind. Biotechnol. 1:2114–18
    [Google Scholar]
  51. 51.
    Falentin H, Deutsch S-M, Jan G, Loux V, Thierry A et al. 2010. The complete genome of Propionibacterium freudenreichii CIRM-BIA1, a hardy actinobacterium with food and probiotic applications. PLOS ONE 5:7e11748
    [Google Scholar]
  52. 52.
    Forssten SD, Sindelar CW, Ouwehand AC 2011. Probiotics from an industrial perspective. Anaerobe 17:6410–13
    [Google Scholar]
  53. 53.
    Bajagai YS, Klieve AV, Dart PJ, Bryden WL 2016. Probiotics in Animal Nutrition: Production, Impact and Regulation Rome: Food Agric. Organ89 pp.
    [Google Scholar]
  54. 54.
    Priya M, Haridas A, Manilal VB 2008. Anaerobic protozoa and their growth in biomethanation systems. Biodegradation 19:2179–85
    [Google Scholar]
  55. 55.
    Matthews C, Crispie F, Lewis E, Reid M, O'Toole PW, Cotter PD 2018. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 12:1–18
    [Google Scholar]
  56. 56.
    Yáñez-Ruiz DR, Abecia L, Newbold CJ 2015. Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front. Microbiol. 6:1133
    [Google Scholar]
  57. 57.
    Watkinson SC, Boddy L, Money N 2016. The Fungi Cambridge, MA: Academic. , 3rd ed..
    [Google Scholar]
  58. 58.
    Houston K, Tucker MR, Chowdhury J, Shirley N, Little A 2016. The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front. Plant Sci. 7:984
    [Google Scholar]
  59. 59.
    Keegstra K. 2010. Plant cell walls. Plant Physiol 154:2483–86
    [Google Scholar]
  60. 60.
    Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH et al. 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27:77–93
    [Google Scholar]
  61. 61.
    Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Faulds CB et al. 2011. Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol 155:2667–82
    [Google Scholar]
  62. 62.
    Campbell MM, Sederoff RR. Variation in lignin content and composition: mechanisms of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13
    [Google Scholar]
  63. 63.
    Benoit I, Culleton H, Zhou M, DiFalco M, Aguilar-Osorio G et al. 2015. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass. Biotechnol. Biofuels 8:1107
    [Google Scholar]
  64. 64.
    Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY et al. 2009. The fungi. Curr. Biol. 19:18R840–45
    [Google Scholar]
  65. 65.
    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS et al. 2014. Global diversity and geography of soil fungi. Science 346:62131256688
    [Google Scholar]
  66. 66.
    Wang Y, Liu J, Wang J, Gao G, Bartlam MG 2015. Distribution and diversity of fungi in freshwater sediments on a river catchment scale. Front. Microbiol. 6:329
    [Google Scholar]
  67. 67.
    Bates ST, Nash TH, Garcia-Pichel F 2012. Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia 104:2353–61
    [Google Scholar]
  68. 68.
    Ivarsson M, Bengtson S, Neubeck A 2016. The igneous oceanic crust—Earth's largest fungal habitat?. Fungal Ecol 20:249–55
    [Google Scholar]
  69. 69.
    Chaucheyras-Durand F, Ossa F. 2014. The rumen microbiome: composition, abundance, diversity, and new investigative tools. Prof. Anim. Sci. 30:11–12
    [Google Scholar]
  70. 70.
    Orpin CG. 1975. Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. . Microbiol 91:2249–62
    [Google Scholar]
  71. 71.
    Orpin CG. 1977. The occurrence of chitin in the cell walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. . J. Gen. Microbiol 99:1215–18
    [Google Scholar]
  72. 72.
    Wang X, Liu X, Groenewald JZ 2017. Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China. Antonie Van Leeuwenhoek 110:187–103
    [Google Scholar]
  73. 73.
    Kumar S, Indugu N, Vecchiarelli B, Pitta DW 2015. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front. Microbiol. 6:781
    [Google Scholar]
  74. 74.
    Tapio I, Snelling TJ, Strozzi F, Wallace RJ 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 8:17
    [Google Scholar]
  75. 75.
    Haitjema CH, Solomon KV, Henske JK, Theodorou MK, O'Malley MA 2014. Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol. Bioeng. 111:81471–82
    [Google Scholar]
  76. 76.
    Seppälä S, Wilken StE, Knop D, Solomon KV, O'Malley MA 2017. The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metab. Eng. 44:45–59
    [Google Scholar]
  77. 77.
    Xue GP, Gobius KS, Orpin CG 1992. A novel polysaccharide hydrolase cDNA (celD) from Neocallimastix patriciarum encoding three multi-functional catalytic domains with high endoglucanase, cellobiohydrolase and xylanase activities. J. Gen. Microbiol. 138:2397–403
    [Google Scholar]
  78. 78.
    Gilbert HJ, Hazlewood GP, Laurie JI, Orpin CG, Xue GP 1992. Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol. Microbiol. 6:152065–72
    [Google Scholar]
  79. 79.
    Li X-L, Ljungdahl LG, Ximenes EA, Chen H, Felix CR et al. 2004. Properties of a recombinant β-glucosidase from polycentric anaerobic fungus Orpinomyces PC-2 and its application for cellulose hydrolysis. Appl. Biochem. Biotechnol. 113–16:233–50
    [Google Scholar]
  80. 80.
    Cheng Y-S, Chen C-C, Huang C-H, Ko T-P, Luo W et al. 2014. Structural analysis of a glycoside hydrolase family 11 xylanase from Neocallimastix patriciarum: insights into the molecular basis of a thermophilic enzyme. J. Biol. Chem. 289:1611020–28
    [Google Scholar]
  81. 81.
    Morrison JM, Elshahed MS, Youssef NH 2016. Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from pretreated corn stover and switchgrass. Sci. Rep. 6:129217
    [Google Scholar]
  82. 82.
    O'Malley MA, Theodorou MK, Kaiser CA 2012. Evaluating expression and catalytic activity of anaerobic fungal fibrolytic enzymes cative to Piromyces sp. E2 in Saccharomyces cerevisiae. Environ. Prog. Sustain. Energy 31:137–46
    [Google Scholar]
  83. 83.
    Resch MG, Donohoe BS, Baker JO, Decker SR, Bayer EA et al. 2013. Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ. Sci. 6:61858–67
    [Google Scholar]
  84. 84.
    Gilmore SP, Henske JK, O'Malley MA 2015. Driving biomass breakdown through engineered cellulosomes. Bioengineered 6:4204–8
    [Google Scholar]
  85. 85.
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F et al. 2014. Lignin valorization: improving lignin processing in the biorefinery. Science 344:61851246843
    [Google Scholar]
  86. 86.
    Abejón R, Pérez-Acebo H, Clavijo L 2018. Alternatives for chemical and biochemical lignin valorization: hot topics from a bibliometric analysis of the research published during the 2000–2016 period. Processes 6:898
    [Google Scholar]
  87. 87.
    Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M 2012. Valorization of biomass: deriving more value from waste. Science 337:6095695–99
    [Google Scholar]
  88. 88.
    Scown CD, Gokhale AA, Willems PA, Horvath A, McKone TE 2014. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States cellulosic biofuels. Environ. Sci. Technol. 48:158446–55
    [Google Scholar]
  89. 89.
    Gardner JL, He W, Li C, Wong J, Sale KL et al. 2015. Calorimetric evaluation indicates that lignin conversion to advanced biofuels is vital to improving energy yields. RSC Adv 5:6351092–101
    [Google Scholar]
  90. 90.
    Liang L, Li C, Xu F, He Q, Yan J et al. 2017. Conversion of cellulose rich municipal solid waste blends using ionic liquids: feedstock convertibility and process scale-up. RSC Adv 7:5836585–93
    [Google Scholar]
  91. 91.
    Das L, Kolar P, Sharma-Shivappa R, Classen J, Osborne J 2017. Oxidative depolymerization of lignin using supported niobium catalysts. ChemEngineering 1:217
    [Google Scholar]
  92. 92.
    Luo H, Abu-Omar MM. 2017. Chemicals from lignin. Reference Module in Earth Systems and Environmental Sciences London: Elsevier
    [Google Scholar]
  93. 93.
    Kent MS, Zeng J, Rader N, Avina IC, Simoes CT et al. 2018. Efficient conversion of lignin into a water-soluble polymer by a chelator-mediated Fenton reaction: optimization of H2O2 use and performance as a dispersant. Green Chem 20:133024–37
    [Google Scholar]
  94. 94.
    Wang S, Shuai L, Saha B, Vlachos DG, Epps TH 2018. From tree to tape: direct synthesis of pressure sensitive adhesives from depolymerized raw lignocellulosic biomass. ACS Cent. Sci. 4:6701–8
    [Google Scholar]
  95. 95.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110:3552–99
    [Google Scholar]
  96. 96.
    Wu W, Dutta T, Varman AM, Eudes A, Manalansan B et al. 2017. Lignin valorization: two hybrid biochemical routes for the conversion of polymeric lignin into value-added chemicals. Sci. Rep. 7:11–13
    [Google Scholar]
  97. 97.
    Dutta T, Papa G, Wang E, Sun J, Isern NG et al. 2018. Characterization of lignin streams during bionic liquid-based pretreatment from grass, hardwood, and softwood. ACS Sustain. Chem. Eng. 6:33079–90
    [Google Scholar]
  98. 98.
    Kim KH, Dutta T, Sun J, Simmons B, Singh S 2018. Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem 20:4809–15
    [Google Scholar]
  99. 99.
    Silva COG, Vaz RP, Filho EXF 2018. Bringing plant cell wall-degrading enzymes into the lignocellulosic biorefinery concept. Biofuels Bioprod. Biorefining 12:2277–89
    [Google Scholar]
  100. 100.
    van Erven G, Nayan N, Sonnenberg ASM, Hendriks WH, Cone JW, Kabel MA 2018. Mechanistic insight in the selective delignification of wheat straw by three white-rot fungal species through quantitative 13C-IS py-GC-MS and whole cell wall HSQC NMR. Biotechnol. Biofuels 11:1262
    [Google Scholar]
  101. 101.
    Varman AM, He L, Follenfant R, Wu W, Wemmer S et al. 2016. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. PNAS 113:40E5802–11
    [Google Scholar]
  102. 102.
    Kumar M, Verma S, Gazara RK, Kumar M, Pandey A et al. 2018. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB. Biotechnol. Biofuels 11:11–23
    [Google Scholar]
  103. 103.
    Wendisch VF, Kim Y, Lee JH 2018. Chemicals from lignin: recent depolymerization techniques and upgrading extended pathways. Curr. Opin. Green Sustain. Chem. 14:33–39
    [Google Scholar]
  104. 104.
    Woo HL, Utturkar S, Klingeman D, Simmons BA, Deangelis KM, Brown SD 2014. Draft genome sequence of the lignin-degrading Burkholderia sp. strain LIG30, isolated from wet tropical forest soil. Microbiol. Resour. Announc. 2:31–2
    [Google Scholar]
  105. 105.
    Billings AF, Fortney JL, Hazen TC, Simmons B, Davenport KW et al. 2015. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov. Stand. Genom. Sci. 10:11–11
    [Google Scholar]
  106. 106.
    Henske JK, Gilmore SP, Haitjema CH, Solomon KV, O'Malley MA 2018. Biomass-degrading enzymes are catabolite repressed in anaerobic gut fungi. AIChE J 64:121–8
    [Google Scholar]
  107. 107.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J 2000. Molecular Cell Biology New York: W.H. Freeman. , 4th ed..
    [Google Scholar]
  108. 108.
    Kell DB, Swainston N, Pir P, Oliver SG 2015. Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol 33:4237–46
    [Google Scholar]
  109. 109.
    Boyarskiy S, Tullman-Ercek D. 2015. Getting pumped: membrane efflux transporters for enhanced biomolecule production. Curr. Opin. Chem. Biol. 28:15–19
    [Google Scholar]
  110. 110.
    Jones CM, Hernández Lozada NJ, Pfleger BF 2015. Efflux systems in bacteria and their metabolic engineering applications. Appl. Microbiol. Biotechnol. 99:229381–93
    [Google Scholar]
  111. 111.
    Steensels J, Snoek T, Meersman E, Picca Nicolino M, Voordeckers K, Verstrepen KJ 2014. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol. Rev. 38:5947–95
    [Google Scholar]
  112. 112.
    Runquist D, Fonseca C, Rådström P, Spencer-Martins I, Hahn-Hägerdal B 2009. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol 82:1123–30
    [Google Scholar]
  113. 113.
    Kayikci Ö, Nielsen J 2015. Glucose repression in Saccharomyces cerevisiae. . FEMS Yeast Res 15:6fov068
    [Google Scholar]
  114. 114.
    Ozcan S, Johnston M. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63:3554–69
    [Google Scholar]
  115. 115.
    Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. . FEBS Lett 464:3123–28
    [Google Scholar]
  116. 116.
    Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E 2014. Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose. PNAS 111:145159–64
    [Google Scholar]
  117. 117.
    Young EM, Tong A, Bui H, Spofford C, Alper HS 2014. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. PNAS 111:1131–36
    [Google Scholar]
  118. 118.
    Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA et al. 2009. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. . PNAS 106:5222157–62
    [Google Scholar]
  119. 119.
    Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JHD 2010. Cellodextrin transport in yeast for improved biofuel production. Science 330:600084–86
    [Google Scholar]
  120. 120.
    Kim H, Lee W-H, Galazka JM, Cate JHD, Jin Y-S 2014. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Appl. Microbiol. Biotechnol. 98:31087–94
    [Google Scholar]
  121. 121.
    Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttilä M, Ruohonen L 2007. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Microbiol. Biotechnol. 74:51041–52
    [Google Scholar]
  122. 122.
    Runquist D, Hahn-Hägerdal B, Rådström P 2010. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 3:15
    [Google Scholar]
  123. 123.
    Young EM, Comer AD, Huang H, Alper HS 2012. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae. Metab. Eng 14:4401–11
    [Google Scholar]
  124. 124.
    Hara KY, Kobayashi J, Yamada R, Sasaki D, Kuriya Y et al. 2017. Transporter engineering in biomass utilization by yeast. FEMS Yeast Res 17:7fox061
    [Google Scholar]
  125. 125.
    Chitsaz M, Brown MH. 2017. The role played by drug efflux pumps in bacterial multidrug resistance. Essays Biochem 61:1127–39
    [Google Scholar]
  126. 126.
    Blanco P, Hernando-Amado S, Reales-Calderon J, Corona F, Lira F et al. 2016. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4:114
    [Google Scholar]
  127. 127.
    Ro D-K, Ouellet M, Paradise EM, Burd H, Eng D et al. 2008. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol 8:183
    [Google Scholar]
  128. 128.
    Verwaal R, Jiang Y, Wang J, Daran J-M, Sandmann G et al. 2010. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response. Yeast 27:12983–98
    [Google Scholar]
  129. 129.
    Teixeira MC, Godinho CP, Cabrito TR, Mira NP, Sá-Correia I 2012. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Microb. Cell Fact. 11:98
    [Google Scholar]
  130. 130.
    Ling H, Chen B, Kang A, Lee J-M, Chang M 2013. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance. Biotechnol. Biofuels 6:195
    [Google Scholar]
  131. 131.
    Chen B, Ling H, Chang MW 2013. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol. Biofuels 6:121
    [Google Scholar]
  132. 132.
    Chen L-Q, Cheung LS, Feng L, Tanner W, Frommer WB 2015. Transport of sugars. Annu. Rev. Biochem. 84:1865–94
    [Google Scholar]
  133. 133.
    Tao Y, Cheung LS, Li S, Eom J-S, Chen L-Q et al. 2015. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527:7577259–63
    [Google Scholar]
  134. 134.
    Chen L-Q. 2014. Minireview SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol 201:1150–55
    [Google Scholar]
  135. 135.
    Xuan YH, Hu YB, Chen L-Q, Sosso D, Ducat DC et al. 2013. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. PNAS 110:39E3685–94
    [Google Scholar]
  136. 136.
    Feng L, Frommer WB. 2015. Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem. Sci. 40:8480–86
    [Google Scholar]
  137. 137.
    ter Beek J, Guskov A, Slotboom DJ 2014. Structural diversity of ABC transporters. J. Gen. Physiol. 143:4419–35
    [Google Scholar]
  138. 138.
    Harvey AL, Edrada-Ebel R, Quinn RJ 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14:2111–29
    [Google Scholar]
  139. 139.
    Schueffler A, Anke T. 2014. Fungal natural products in research and development. Nat. Prod. Rep. 31:101425–48
    [Google Scholar]
  140. 140.
    Barbero M, Artuso E, Prandi C 2018. Fungal anticancer metabolites: synthesis towards drug discovery. Curr. Med. Chem. 25:2141–85
    [Google Scholar]
  141. 141.
    Keller NP, Turner G, Bennett JW 2005. Fungal secondary metabolism—from biochemistry to genomics. Nat. Rev. Microbiol. 3:12937–47
    [Google Scholar]
  142. 142.
    Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC et al. 2010. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 47:9736–41
    [Google Scholar]
  143. 143.
    Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R et al. 2014. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:Database issueD699–704
    [Google Scholar]
  144. 144.
    Wasil Z, Pahirulzaman KAK, Butts C, Simpson TJ, Lazarus CM, Cox RJ 2013. One pathway, many compounds: heterologous expression of a fungal biosynthetic pathway reveals its intrinsic potential for diversity. Chem. Sci. 4:103845–56
    [Google Scholar]
  145. 145.
    Challis GL. 2008. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:61555–69
    [Google Scholar]
  146. 146.
    Alberti F, Khairudin K, Venegas ER, Davies JA, Hayes PM et al. 2017. Heterologous expression reveals the biosynthesis of the antibiotic pleuromutilin and generates bioactive semi-synthetic derivatives. Nat. Commun. 8:11831
    [Google Scholar]
  147. 147.
    Harvey CJB, Tang M, Schlecht U, Horecka J, Fischer CR et al. 2018. HEx: a heterologous expression platform for the discovery of fungal natural products. Sci. Adv. 4:4eaar5459
    [Google Scholar]
  148. 148.
    Bok JW, Ye R, Clevenger KD, Mead D, Wagner M et al. 2015. Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genom 16:1343
    [Google Scholar]
  149. 149.
    Clevenger KD, Bok JW, Ye R, Miley GP, Verdan MH et al. 2017. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat. Chem. Biol. 13:8895–901
    [Google Scholar]
  150. 150.
    Eyles TH, Vior NM, Truman AW 2018. Rapid and robust yeast-mediated pathway refactoring generates multiple new bottromycin-related metabolites. ACS Synth. Biol. 7:51211–18
    [Google Scholar]
  151. 151.
    Horbal L, Marques F, Nadmid S, Mendes MV, Luzhetskyy A 2018. Secondary metabolites overproduction through transcriptional gene cluster refactoring. Metab. Eng. 49:299–315
    [Google Scholar]
  152. 152.
    Bader J, Mast-Gerlach E, Popović MK, Bajpai R, Stahl U 2010. Relevance of microbial coculture fermentations in biotechnology. J. Appl. Microbiol. 109:2371–87
    [Google Scholar]
  153. 153.
    Sabra W, Dietz D, Tjahjasari D, Zeng AP 2010. Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng. Life Sci. 10:5407–21
    [Google Scholar]
  154. 154.
    Zhou K, Qiao K, Edgar S, Stephanopoulos G 2015. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33:4377–83
    [Google Scholar]
  155. 155.
    Tsoi R, Wu F, Zhang C, Bewick S, Karig D, You L 2018. Metabolic division of labor in microbial systems. PNAS 115:10201716888
    [Google Scholar]
  156. 156.
    Zhang H, Wang X. 2016. Modular co-culture engineering, a new approach for metabolic engineering. Metab. Eng. 37:114–21
    [Google Scholar]
  157. 157.
    Regot S, Macia J, Conde N, Furukawa K, Kjellén J et al. 2011. Distributed biological computation with multicellular engineered networks. Nature 469:7329207–11
    [Google Scholar]
  158. 158.
    Tamsir A, Tabor JJ, Voigt CA 2011. Robust multicellular computing using genetically encoded NOR gates and chemical “wires. .” Nature 469:7329212–15
    [Google Scholar]
  159. 159.
    Eiteman MA, Lee SA, Altman E 2008. A co-fermentation strategy to consume sugar mixtures effectively. J. Biol. Eng. 2:1–8
    [Google Scholar]
  160. 160.
    Tan C, Marguet P, You L 2009. Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 11:3842–48
    [Google Scholar]
  161. 161.
    Kleerebezem R, van Loosdrecht MC 2007. Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18:3207–12
    [Google Scholar]
  162. 162.
    Bernstein HC, Paulson SD, Carlson RP 2012. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157:1159–66
    [Google Scholar]
  163. 163.
    Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MHA et al. 2016. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35:55–63
    [Google Scholar]
  164. 164.
    Shade A, Peter H, Allison SD, Baho DL, Berga M et al. 2012. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3:1–19
    [Google Scholar]
  165. 165.
    Alain K, Querellou J. 2009. Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:4583–94
    [Google Scholar]
  166. 166.
    Park J, Kerner A, Burns MA, Lin XN 2011. Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLOS ONE 6:2e17019
    [Google Scholar]
  167. 167.
    Brenner K, You L, Arnold FH 2008. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:9483–89
    [Google Scholar]
  168. 168.
    Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA 2015. Better together: engineering and application of microbial symbioses. Curr. Opin. Biotechnol. 36:40–49
    [Google Scholar]
  169. 169.
    Henske JK, Wilken SE, Solomon KV, Smallwood CR, Shutthanandan V et al. 2018. Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose. Biotechnol. Bioeng. 115:4874–84
    [Google Scholar]
  170. 170.
    Ranganathan A, Smith OP, Youssef NH, Struchtemeyer CG, Atiyeh HK, Elshahed MS 2017. Utilizing anaerobic fungi for two-stage sugar extraction and biofuel production from lignocellulosic biomass. Front. Microbiol. 8:1–10
    [Google Scholar]
  171. 171.
    Kazda M, Langer S, Bengelsdorf FR 2014. Fungi open new possibilities for anaerobic fermentation of organic residues. Energy. Sustain. Soc. 4:16
    [Google Scholar]
  172. 172.
    Dollhofer V, Dandikas V, Dorn-In S, Bauer C, Lebuhn M, Bauer J 2018. Accelerated biogas production from lignocellulosic biomass after pre-treatment with Neocallimastix frontalis. Bioresour. Technol 264:219–27
    [Google Scholar]
  173. 173.
    Nkemka VN, Gilroyed B, Yanke J, Gruninger R, Vedres D et al. 2015. Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail. Bioresour. Technol. 185:79–88
    [Google Scholar]
  174. 174.
    Procházka J, Mrázek J, Štrosová L, Fliegerová K, Zábranská J, Dohányos M 2012. Enhanced biogas yield from energy crops with rumen anaerobic fungi. Eng. Life Sci. 12:3343–51
    [Google Scholar]
  175. 175.
    Davies DR, Theodorou MK, Lawrence MIG, Trinci APJ 1993. Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces. J. Gen. Microbiol. 139:61395–400
    [Google Scholar]
  176. 176.
    Seidel G, Tollnick C, Beyer M, Schügerl K 2002. Process engineering aspects of the production of cephalosporin C by Acremonium chrysogenum. Part II. Cultivation in diluted and enriched complex media. Process Biochem 38:2241–48
    [Google Scholar]
  177. 177.
    Potvina J, Fonchy E, Conway J, Champagne CP 1997. An automatic turbidimetric method to screen yeast extracts as fermentation nutrient ingredients. J. Microbiol. Methods 29:3153–60
    [Google Scholar]
  178. 178.
    Marvin-Sikkema FD, Lahpor GA, Kraak MN, Gottschal JC, Prins RA 1992. Characterization of an anaerobic fungus from llama faeces. J. Gen. Microbiol. 138:102235–41
    [Google Scholar]
  179. 179.
    Sijtsma L, Tan B. 1993. Degradation and utilization of grass cell walls by anaerobic fungi isolated from yak, llama and sheep. Anim. Feed Sci. Technol. 44:3–4221–36
    [Google Scholar]
  180. 180.
    McCabe BK, Kuek C, Gordon GLR, Phillips MW 2003. Production of β-glucosidase using immobilised Piromyces sp. KSX1 and Orpinomyces sp. 478P1 in repeat-batch culture. J. Ind. Microbiol. Biotechnol. 30:4205–9
    [Google Scholar]
  181. 181.
    Sridhar M, Kumar D. 2010. Production of fibrolytic enzymes in repeat-batch culture using immobilized zoospores of anaerobic rumen fungi. Ind. J. Biotechnol. 9:87–95
    [Google Scholar]
  182. 182.
    Vu VH, Pham TA, Kim K 2009. Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. Mycobiology 37:4267
    [Google Scholar]
  183. 183.
    Durand R, Rascle C, Fischer M, Fèvre M 1997. Transient expression of the β-glucuronidase gene after biolistic transformation of the anaerobic fungus Neocallimastix frontalis. Curr. Genet 31:2158–61
    [Google Scholar]
  184. 184.
    Fischer M, Durand R, Fèvre M 1995. Characterization of the “promoter region” of the enolase-encoding gene enol from the anaerobic fungus Neocallimastix frontalis: sequence and promoter analysis. Curr. Genet. 28:180–86
    [Google Scholar]
  185. 185.
    Li D, Tang Y, Lin J, Cai W 2017. Methods for genetic transformation of filamentous fungi. Microb. Cell Fact. 16:1168
    [Google Scholar]
  186. 186.
    Leis S, Dresch P, Peintner U, Fliegerová K, Sandbichler AM et al. 2014. Finding a robust strain for biomethanation: anaerobic fungi (Neocallimastigomycota) from the Alpine ibex (Capra ibex) and their associated methanogens. Anaerobe 29:34–43
    [Google Scholar]
  187. 187.
    Fullner KJ, Nester EW. 1996. Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J. Bacteriol 178:61498–504
    [Google Scholar]
  188. 188.
    Combier J-P, Melayah D, Raffier C, Gay G, Marmeisse R 2003. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. . FEMS Microbiol. Lett 220:1141–48
    [Google Scholar]
  189. 189.
    Kano S, Kurita T, Kanematsu S, Morinaga T 2011. Agrobacterium tumefaciens-mediated transformation of the violet root-rot fungus, Helicobasidium mompa, and the effect of activated carbon. Mycoscience 52:124–30
    [Google Scholar]
  190. 190.
    Michielse CB, Salim K, Ragas P, Ram AFJ, Kudla B et al. 2004. Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol. Genet. Genom. 271:4499–510
    [Google Scholar]
  191. 191.
    Webb J, Theodorou MK 1988. A rumen anaerobic fungus of the genus Neocallimastix: ultrastructure of the polyflagellate zoospore and young thallus. BioSystems 2134393–401
    [Google Scholar]
  192. 192.
    Calkins SS, Elledge NC, Mueller KE, Marek SM, Couger MB et al. 2018. Development of an RNA interference (RNAi) gene knockdown protocol in the anaerobic gut fungus Pecoramyces ruminantium strain C1A. PeerJ 6:e4276
    [Google Scholar]
  193. 193.
    Kandušer M, Miklavčič D. 2009. Electroporation in biological cell and tissue: an overview. Electrotechnologies for Extraction from Food Plants and Biomaterial E Vorobiev, N Lebovka 1–37 New York: Springer
    [Google Scholar]
  194. 194.
    Tsien RY. 1998. The green fluorescent protein. Annu. Rev. Biochem. 67:1509–44
    [Google Scholar]
  195. 195.
    Kremers G-J, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW 2011. Fluorescent proteins at a glance. J. Cell Sci. 124:Pt. 2157–60
    [Google Scholar]
  196. 196.
    Mukherjee A, Schroeder CM. 2015. Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr. Opin. Biotechnol. 31:16–23
    [Google Scholar]
  197. 197.
    Zhang Z, Moo-Young M, Chisti Y 1996. Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol. Adv 14:4401–35
    [Google Scholar]
  198. 198.
    Yoo JI, O'Malley MA. 2018. Tuning vector stability and integration frequency elevates functional GPCR production and homogeneity in Saccharomyces cerevisiae. ACS Synth. Biol 7:71763–72
    [Google Scholar]
  199. 199.
    Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S 2006. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair 5:9–101021–29
    [Google Scholar]
  200. 200.
    Krappmann S. 2007. Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol. Rev. 21:125–29
    [Google Scholar]
  201. 201.
    Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ 2006. Approaches to functional genomics in filamentous fungi. Cell Res 16:131–44
    [Google Scholar]
  202. 202.
    Snoek ISI, van der Krogt ZA, Touw H, Kerkman R, Pronk JT et al. 2009. Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet. Biol. 46:5418–26
    [Google Scholar]
  203. 203.
    da Silva Ferreira ME, Kress MRVZ, Savoldi M, Goldman MHS, Härtl A et al. 2006. The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5:1207–11
    [Google Scholar]
  204. 204.
    Fu J, Hettler E, Wickes BL 2006. Split marker transformation increases homologous integration frequency in Cryptococcus neoformans. Fungal Genet. Biol 43:3200–12
    [Google Scholar]
  205. 205.
    Romanos MA, Scorer CA, Clare JJ 1992. Foreign gene expression in yeast: a review. Yeast 8:6423–88
    [Google Scholar]
  206. 206.
    Tsukuda T, Carleton S, Fotheringham S, Holloman WK 1988. Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol. Cell. Biol 8:93703–9
    [Google Scholar]
  207. 207.
    Sibthorp C, Wu H, Cowley G, Wong PWH, Palaima P et al. 2013. Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters. BMC Genom 14:1847
    [Google Scholar]
  208. 208.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:6096816–21
    [Google Scholar]
  209. 209.
    Shapiro RS, Chavez A, Collins JJ 2018. CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nat. Rev. Microbiol. 16:6333–39
    [Google Scholar]
  210. 210.
    Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH 2015. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLOS ONE 10:7e0133085
    [Google Scholar]
  211. 211.
    Enkler L, Richer D, Marchand AL, Ferrandon D, Jossinet F 2016. Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system. Sci. Rep. 6:135766
    [Google Scholar]
  212. 212.
    Liu Q, Gao R, Li J, Lin L, Zhao J et al. 2017. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol. Biofuels 10:11
    [Google Scholar]
  213. 213.
    Liu R, Chen L, Jiang Y, Zhou Z, Zou G 2015. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:115007
    [Google Scholar]
  214. 214.
    Zheng Y-M, Lin F-L, Gao H, Zou G, Zhang J-W et al. 2017. Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology. Sci. Rep. 7:19250
    [Google Scholar]
  215. 215.
    Deng H, Gao R, Liao X, Cai Y 2017. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system. J. Biotechnol. 259:228–34
    [Google Scholar]
  216. 216.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:9827–32
    [Google Scholar]
  217. 217.
    Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31:3233–39
    [Google Scholar]
  218. 218.
    Nicholson MJ, Theodorou MK, Brookman JL 2005. Molecular analysis of the anaerobic rumen fungus Orpinomyces—insights into an AT-rich genome. Microbiology 151:1121–33
    [Google Scholar]
  219. 219.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:3759–71
    [Google Scholar]
  220. 220.
    Benz GT. 2011. Bioreactor design for chemical engineers. CEP Magazine Aug 21–26
    [Google Scholar]
  221. 221.
    Yang H, Wang Z, Lin M, Yang S-T 2018. Propionic acid production from soy molasses by Propionibacterium acidipropionici: fermentation kinetics and economic analysis. Bioresour. Technol. 250:1–9
    [Google Scholar]
  222. 222.
    Williams-Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Poole FL II et al. 2018. Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii. Metab. Eng. Commun 7:e00073
    [Google Scholar]
  223. 223.
    Xiong W, Reyes LH, Michener WE, Maness P-C, Chou KJ 2018. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously. Biotechnol. Bioeng. 115:71755–63
    [Google Scholar]
  224. 224.
    Reischl B, Ergal İ, Rittmann SK-MR 2018. Biohydrogen production characteristics of Desulfurococcus amylolyticus DSM 16532. Int. J. Hydrogen Energy 43:188747–53
    [Google Scholar]
  225. 225.
    Xiao Z, Cheng C, Bao T, Liu L, Wang B et al. 2018. Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis. Biotechnol. Biofuels 11:1164
    [Google Scholar]
  226. 226.
    Peng W, Li X, Liu T, Liu Y, Ren J et al. 2018. Biostabilization of cadmium contaminated sediments using indigenous sulfate reducing bacteria: efficiency and process. Chemosphere 201:697–707
    [Google Scholar]
  227. 227.
    De Luca E, Fiocchetti F, Rosa S, Aliboni A, Lona L et al. 2017. A novel photobioreactor system for hydrogen sulphide biogas clean-up. Int. J. Oil Gas Coal Technol. 14:1/262
    [Google Scholar]
  228. 228.
    Holmes DE, Orelana R, Giloteaux L, Wang L-Y, Shrestha P et al. 2018. Potential for Methanosarcina to contribute to uranium reduction during acetate-promoted groundwater bioremediation. Microb. Ecol. 76:3660–67
    [Google Scholar]
  229. 229.
    Li Z, Yoshida N, Wang A, Nan J, Liang B et al. 2015. Anaerobic mineralization of 2,4,6-tribromophenol to CO2 by a synthetic microbial community comprising Clostridium, Dehalobacter, and Desulfatiglans. Bioresour. Technol 176:225–32
    [Google Scholar]
  230. 230.
    Adetutu EM, Gundry TD, Patil SS, Golneshin A, Adigun J et al. 2015. Exploiting the intrinsic microbial degradative potential for field-based in situ dechlorination of trichloroethene contaminated groundwater. J. Hazard. Mater. 300:48–57
    [Google Scholar]
  231. 231.
    Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR 2010. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1:2e00103–10
    [Google Scholar]
  232. 232.
    Liu C, Gallagher JJ, Sakimoto KK, Nichols EM, Chang CJ et al. 2015. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 15:53634–39
    [Google Scholar]
  233. 233.
    Estevez-Canales M, Pinto D, Coradin T, Laberty-Robert C, Esteve-Núñez A 2018. Silica immobilization of Geobacter sulfurreducens for constructing ready-to-use artificial bioelectrodes. Microb. Biotechnol. 11:139–49
    [Google Scholar]
  234. 234.
    Sun L, Zeng X, Yan C, Sun X, Gong X et al. 2012. Crystal structure of a bacterial homolog of glucose transporters GLUT1–4. Nature 490:361–66
    [Google Scholar]
  235. 235.
    Meyer H-P, Minas W, Schmidhalter D 2016. Industrial-scale fermentation. Industrial Biotechnology: Products and Processes C Wittmann, JC Liao 3–53 Weinheim, Ger.: Wiley-VCH
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060718-030340
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030340
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error