With technological advancement of thermocatalytic processes for valorizing renewable biomass carbon, development of effective separation technologies for selective recovery of bioproducts from complex reaction media and their purification becomes essential. The high thermal sensitivity of biomass intermediates and their low volatility and high reactivity, along with the use of dilute solutions, make the bioproducts separations energy intensive and expensive. Novel separation techniques, including solvent extraction in biphasic systems and reactive adsorption using zeolite and carbon sorbents, membranes, and chromatography, have been developed. In parallel with experimental efforts, multiscale simulations have been reported for predicting solvent selection and adsorption separation. We discuss various separations that are potentially valuable to future biorefineries and the factors controlling separation performance. Particular emphasis is given to current gaps and opportunities for future development.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Mettler MS, Paulsen AD, Vlachos DG, Dauenhauer PJ. 1.  2014. Tuning cellulose pyrolysis chemistry: selective decarbonylation via catalyst-impregnated pyrolysis. Catal. Sci. Technol. 4:3822–25 [Google Scholar]
  2. Deng W, Kennedy JR, Tsilomelekis G, Zheng W, Nikolakis V. 2.  2015. Cellulose hydrolysis in acidified LiBr molten salt hydrate media. Ind. Eng. Chem. Res. 54:5226–36 [Google Scholar]
  3. Saha B, Abu-Omar MM. 3.  2014. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38 [Google Scholar]
  4. Swift TD, Nguyen H, Erdman Z, Kruger JS, Nikolakis V, Vlachos DG. 4.  2016. Tandem Lewis acid/Bronsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta. J. Catal. 333:149–61 [Google Scholar]
  5. White JF, Holladay JE, Zacher AA, Frye JG Jr., Werpy TA. 5.  2014. Challenges in catalytic manufacture of renewable pyrrolidinones from fermentation derived succinate. Top. Catal. 57:1325–34 [Google Scholar]
  6. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S. 6.  2011. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787532 [Google Scholar]
  7. Ladisch MR, Svarczkopf JA. 7.  1991. Ethanol production and the cost of fermentable sugars from biomass. Bioresour. Technol. 36:83–95 [Google Scholar]
  8. Dornath P, Cho HJ, Paulsen A, Dauenhauer P, Fan W. 8.  2015. Efficient mechano-catalytic depolymerization of crystalline cellulose by formation of branched glucan chains. Green Chem 17:769–75 [Google Scholar]
  9. Harmer MA, Fan A, Liauw A, Kumar RK. 9.  2009. A new route to high yield sugars from biomass: Phosphoric-sulfuric acid. Chem. Commun. 2009:6610–12 [Google Scholar]
  10. Galkin MV, Samec JSM. 10.  2014. Selective route to 2-propenyl aryls directly from wood by a tandem organosolv and palladium-catalysed transfer hydrogenolysis. Chemsuschem 7:2154–58 [Google Scholar]
  11. Grilc M, Veryasov G, Likozar B, Jesih A, Levec J. 11.  2015. Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts. Appl. Catal. B Environ. 163:467–77 [Google Scholar]
  12. Dutta S, Wu KCW, Saha B. 12.  2014. Emerging strategies for breaking the 3D amorphous network of lignin. Catal. Sci. Technol. 4:3785–99 [Google Scholar]
  13. Parsell T, Yohe S, Degenstein J, Jarrell T, Klein I. 13.  et al. 2015. A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. Green Chem 17:1492–99 [Google Scholar]
  14. Wang A, Zhang T. 14.  2013. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc. Chem. Res. 46:1377–86 [Google Scholar]
  15. Tajvidi K, Hausoul PJC, Palkovits R. 15.  2014. Hydrogenolysis of cellulose over Cu-based catalysts—analysis of the reaction network. ChemSusChem 7:1311–17 [Google Scholar]
  16. Wang Y, Van de Vyver S, Sharma KK, Roman-Leshkov Y. 16.  2014. Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem 16:719–26 [Google Scholar]
  17. Jin X, Zhao M, Shen J, Yan W, He L. 17.  et al. 2015. Exceptional performance of bimetallic Pt1Cu3/TiO2 nanocatalysts for oxidation of gluconic acid and glucose with O2 to glucaric acid. J. Catal. 330:323–29 [Google Scholar]
  18. Cukalovic A, Stevens CV. 18.  2008. Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology. Biofuels Bioprod. Biorefining 2:505–29 [Google Scholar]
  19. De S, Dutta S, Patra AK, Bhaumik A, Saha B. 19.  2011. Self-assembly of mesoporous TiO2 nanospheres via aspartic acid templating pathway and its catalytic application for 5-hydroxymethyl-furfural synthesis. J. Mater. Chem. 21:17505–10 [Google Scholar]
  20. Hannah N, Nikolakis V, Vlachos DG. 20.  2016. Mechanistic insights into Lewis acid metal salt-catalyzed glucose chemistry in aqueous solution. ACS Catal 6:1497–504 [Google Scholar]
  21. Mazzotta MG, Gupta D, Saha B, Patra AK, Bhaumik A, Abu-Omar MM. 21.  2014. Efficient solid acid catalyst containing Lewis and Bronsted acid sites for the production of furfurals. ChemSusChem 7:2342–50 [Google Scholar]
  22. Dutta A, Gupta D, Patra AK, Saha B, Bhaumik A. 22.  2014. Synthesis of 5-hydroxymethylfurural from carbohydrates using large-pore mesoporous tin phosphate. ChemSusChem 7:925–33 [Google Scholar]
  23. Casanova O, Iborra S, Corma A. 23.  2009. Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem 2:1138–44 [Google Scholar]
  24. Saha B, Dutta S, Abu-Omar MM. 24.  2012. Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts. Catal. Sci. Technol. 2:79–81 [Google Scholar]
  25. Moreau C, Belgacem MN, Gandini A. 25.  2004. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal. 27:11–30 [Google Scholar]
  26. Ren H, Zhou Y, Liu L. 26.  2013. Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Bioresour. Technol. 129:616–19 [Google Scholar]
  27. Mellmer MA, Gallo JMR, Alonso DM, Dumesic JA. 27.  2015. Selective production of levulinic acid from furfuryl alcohol in THF solvent systems over H-ZSM-5. ACS Catal 5:3354–59 [Google Scholar]
  28. Tuteja J, Choudhary H, Nishimura S, Ebitani K. 28.  2014. Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source. ChemSusChem 7:96–100 [Google Scholar]
  29. Liu S, Amada Y, Tamura M, Nakagawa Y, Tomishige K. 29.  2014. One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir-ReOx/SiO2 bifunctional catalyst. Green Chem 16:617–26 [Google Scholar]
  30. Xu W, Wang H, Liu X, Ren J, Wang Y, Lu G. 30.  2011. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chem. Commun. 47:3924–26 [Google Scholar]
  31. Beerthuis R, Rothenberg G, Shiju NR. 31.  2015. Catalytic routes towards acrylic acid, adipic acid and epsilon-caprolactam starting from biorenewables. Green Chem 17:1341–61 [Google Scholar]
  32. Saha B, Abu-Omar MM. 32.  2015. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates. ChemSusChem 8:1133–42 [Google Scholar]
  33. Jae J, Zheng W, Lobo RF, Vlachos DG. 33.  2013. Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. ChemSusChem 6:1158–62 [Google Scholar]
  34. Jae J, Zheng W, Karim AM, Guo W, Lobo RF, Vlachos DG. 34.  2014. The role of Ru and RuO2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2,5-dimethylfuran. ChemCatChem 6:848–56 [Google Scholar]
  35. Saha B, Bohn CM, Abu-Omar MM. 35.  2014. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. ChemSusChem 7:3095–101 [Google Scholar]
  36. Lange J-P, van de Graaf WD, Haan RJ. 36.  2009. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts. ChemSusChem 2:437–41 [Google Scholar]
  37. Galletti AMR, Antonetti C, De Luise V, Martinelli M. 37.  2012. A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green Chem 14:688–94 [Google Scholar]
  38. Yan Z-P, Lin L, Liu S. 38.  2009. Synthesis of γ-valerolactone by hydrogenation of biomass-derived levulinic acid over Ru/C catalyst. Energy Fuels 23:3853–58 [Google Scholar]
  39. Sutton AD, Waldie FD, Wu R, Schlaf M, Silks LAP, Gordon JC. 39.  2013. The hydrodeoxygenation of bioderived furans into alkanes. Nat. Chem. 5:428–32 [Google Scholar]
  40. Bohre A, Dutta S, Saha B, Abu-Omar MM. 40.  2015. Upgrading furfurals to drop-in biofuels: an overview. ACS Sustain. Chem. Eng. 3:1263–77 [Google Scholar]
  41. Bohre A, Saha B, Abu-Omar MM. 41.  2015. Catalytic upgrading of 5-hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal-acid catalysts. ChemSusChem 8:4022–29 [Google Scholar]
  42. Klein I, Saha B, Abu-Omar MM. 42.  2015. Lignin depolymerization over Ni/C catalyst in methanol, a continuation: effect of substrate and catalyst loading. Catal. Sci. Technol. 5:3242–45 [Google Scholar]
  43. Olcese RN, Lardier G, Bettahar M, Ghanbaja J, Fontana S. 43.  et al. 2013. Aromatic chemicals by iron-catalyzed hydrotreatment of lignin pyrolysis vapor. ChemSusChem 6:1490–99 [Google Scholar]
  44. Stanzione JF III, Giangiulio PA, Sadler JM, La Scala JJ, Wool RP. 44.  2013. Lignin-based bio-oil mimic as biobased resin for composite applications. ACS Sustain. Chem. Eng. 1:419–26 [Google Scholar]
  45. Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V. 45.  et al. 2013. Insights into the interplay of Lewis and Bronsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J. Am. Chem. Soc. 135:3997–4006 [Google Scholar]
  46. Tsilomelekis G, Orella MJ, Lin Z, Cheng Z, Zheng W. 46.  et al. 2016. Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chem 18:1983–93 [Google Scholar]
  47. Metkar PS, Till EJ, Corbin DR, Pereira CJ, Hutchenson KW, Sengupta SK. 47.  2015. Reactive distillation process for the production of furfural using solid acid catalysts. Green Chem 17:1453–66 [Google Scholar]
  48. Roman-Leshkov Y, Dumesic JA. 48.  2009. Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Top. Catal. 52:297–303 [Google Scholar]
  49. Dumesic J, Alonso D, Bond J, Root T, Chia M. 49.  2011. Method to produce, recover and convert furan derivatives from aqueous solutions using alkylphenol extraction. US Patent No. US2012302765-A1, WO2012162001-A1, US8389749-B2
  50. Eisen EO, Joffe J. 50.  1966. Salt effects in liquid-liquid equilibria. J. Chem. Eng. 11:480–84 [Google Scholar]
  51. Tan TC, Aravinth S. 51.  1999. Liquid-liquid equilibria of water/acetic acid/1-butanol system—effects of sodium (potassium) chloride and correlations. Fluid Phase Equilib 163:243–57 [Google Scholar]
  52. Gorgenyi M, Dewulf J, Van Langenhove H, Heberger K. 52.  2006. Aqueous salting-out effect of inorganic cations and anions on non-electrolytes. Chemosphere 65:802–10 [Google Scholar]
  53. Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA. 53.  2007. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–85 [Google Scholar]
  54. Chheda JN, Román-Leshkov Y, Dumesic JA. 54.  2007. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–50 [Google Scholar]
  55. Tsilomelekis G, Josephson TR, Nikolakis V, Caratzoulas S. 55.  2014. Origin of 5-hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures. ChemSusChem 7:117–26 [Google Scholar]
  56. Josephson TR, Tsilomelekis G, Bagia C, Nikolakis V, Vlachos DG, Caratzoulas S. 56.  2014. Solvent-induced frequency shifts of 5-hydroxymethylfurfural deduced via infrared spectroscopy and ab initio calculations. J. Phys. Chem. A 118:12149–60 [Google Scholar]
  57. Mushrif SH, Caratzoulas S, Vlachos DG. 57.  2012. Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation. Phys. Chem. Chem. Phys. 14:2637–44 [Google Scholar]
  58. Chidambaram M, Bell AT. 58.  2010. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem 12:1253–62 [Google Scholar]
  59. Okano T, Qiao K, Bao Q, Tomida D, Hagiwara H, Yokoyama C. 59.  2013. Dehydration of fructose to 5-hydroxymethylfurfural (HMF) in an aqueous acetonitrile biphasic system in the presence of acidic ionic liquids. Appl. Catal. A Gen. 451:1–5 [Google Scholar]
  60. Brasholz M, von Kaenel K, Hornung CH, Saubern S, Tsanaktsidis J. 60.  2011. Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chem 13:1114–17 [Google Scholar]
  61. Parsell TH, Owen BC, Klein I, Jarrell TM, Marcum CL. 61.  et al. 2013. Cleavage and hydrodeoxygenation (HDO) of C-O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chem. Sci. 4:806–13 [Google Scholar]
  62. Román-Leshkov Y, Chheda JN, Dumesic JA. 62.  2006. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312:1933–37 [Google Scholar]
  63. Chheda JN, Román-Leshkov Y, Dumesic JA. 63.  2007. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides. Green Chem 9:342–50 [Google Scholar]
  64. Gürbüz EI, Wettstein SG, Dumesic JA. 64.  2012. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. ChemSusChem 5:383–87 [Google Scholar]
  65. Fredenslund A, Jones RL, Prausnitz JM. 65.  1975. Group‐contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J 21:1086–99 [Google Scholar]
  66. Gmehling J, Li J, Schiller M. 66.  1993. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res. 32:178–93 [Google Scholar]
  67. Hansch C, Leo A. 67.  1979. Substituent Constants for Correlation Analysis in Chemistry and Biology New York: Wiley [Google Scholar]
  68. Guo N, Caratzoulas S, Doren DJ, Sandler SI, Vlachos DG. 68.  2012. A perspective on the modeling of biomass processing. Energy Environ. Sci. 5:6703 [Google Scholar]
  69. Klamt A. 69.  1995. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99:2224–35 [Google Scholar]
  70. Klamt A, Eckert F. 70.  2000. COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib 172:43–72 [Google Scholar]
  71. Blumenthal LC, Jens CM, Ulbrich J, Schwering F, Langrehr V. 71.  et al. 2015. Systematic identification of solvents optimal for the extraction of 5-hydroxymethylfurfural from aqueous reactive solutions. ACS Sustain. Chem. Eng. 4:228–35 [Google Scholar]
  72. Lin S-T, Sandler SI. 72.  2002. A priori phase equilibrium prediction from a segment contribution solvation model. Ind. Eng. Chem. Res. 41:899–913 [Google Scholar]
  73. Wang S, Sandler SI, Chen C-C. 73.  2007. Refinement of COSMO-SAC and the applications. Ind. Eng. Chem. Res. 46:7275–88 [Google Scholar]
  74. Hsieh C-M, Sandler SI, Lin S-T. 74.  2010. Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilib 297:90–97 [Google Scholar]
  75. Xiong R, Sandler SI, Burnett RI. 75.  2014. An improvement to COSMO-SAC for predicting thermodynamic properties. Ind. Eng. Chem. Res. 53:8265–78 [Google Scholar]
  76. Xiong R, Miller J, León M, Nikolakis V, Sandler SI. 76.  2015. Evaluation of COSMO-SAC method for the prediction of the alcohol-water partition coefficients of the compounds encountered in aqueous phase fructose dehydration. Chem. Eng. Sci. 126:169–76 [Google Scholar]
  77. Wang S, Song Y, Chen C-C. 77.  2010. Extension of COSMO-SAC solvation model for electrolytes. Ind. Eng. Chem. Res. 50:176–87 [Google Scholar]
  78. Builes S, Sandler SI, Xiong R. 78.  2013. Isosteric heats of gas and liquid adsorption. Langmuir 29:10416–22 [Google Scholar]
  79. Scurto AM, Aki SN, Brennecke JF. 79.  2002. CO2 as a separation switch for ionic liquid/organic mixtures. J. Am. Chem. Soc. 124:10276–77 [Google Scholar]
  80. Hiraga Y, Hayasaka A, Sato Y, Watanabe M, Smith RL. 80.  2013. Partition coefficients of furan derivative compounds in 1-n-butyl-3-methylimidazolium chloride ([bmim][Cl])–supercritical CO2 biphasic systems and their correlation and prediction with the LSER-δ model. J. Supercrit. Fluids 79:32–40 [Google Scholar]
  81. Taft RW, Abboud J-LM, Kamlet MJ, Abraham MH. 81.  1985. Linear solvation energy relations. J. Solut. Chem. 14:153–86 [Google Scholar]
  82. Bai P, Siepmann JI, Deem MW. 82.  2013. Adsorption of glucose into zeolite beta from aqueous solution. AIChE J 59:3523–29 [Google Scholar]
  83. Bueno-Perez R, Gutierrez-Sevillano JJ, Dubbeldam D, Merkling PJ, Calero S. 83.  2015. Separation of amyl alcohol isomers in ZIF-77. ChemPhysChem 16:2735–38 [Google Scholar]
  84. DeJaco RF, Bai P, Tsapatsis M, Siepmann JI. 84.  2016. Adsorptive separation of 1-butanol from aqueous solutions using MFI- and FER-type zeolite frameworks: a Monte Carlo study. Langmuir 32:2093–101 [Google Scholar]
  85. Xiong R, Sandler SI, Vlachos DG. 85.  2011. Alcohol adsorption onto silicalite from aqueous solution. J. Phys. Chem. C 115:18659–69 [Google Scholar]
  86. Montes-Morán MA, Suárez D, Menéndez JA, Fuente E. 86.  2004. On the nature of basic sites on carbon surfaces: an overview. Carbon 42:1219–25 [Google Scholar]
  87. Shafeeyan MS, Daud W, Houshmand A, Shamiri A. 87.  2010. A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis 89:143–51 [Google Scholar]
  88. Vinke P, van Bekkum H. 88.  1992. The dehydration of fructose towards 5-hydroxymethylfurfural using activated carbon as adsorbent. Starch/Stärke 44:90–96 [Google Scholar]
  89. Dornath P, Fan W. 89.  2014. Dehydration of fructose into furans over zeolite catalyst using carbon black as adsorbent. Microporous Mesoporous Mater 191:10–17 [Google Scholar]
  90. Swift TD, Bagia C, Nikolakis V, Vlachos DG, Peklaris G. 90.  et al. 2013. Reactive adsorption for the selective dehydration of sugars to furans: modeling and experiments. AIChE J 59:3378–90 [Google Scholar]
  91. Zhang K, Agrawal M, Harper J, Chen R, Koros WJ. 91.  2011. Removal of the fermentation inhibitor, furfural, using activated carbon in cellulosic-ethanol production. Ind. Eng. Chem. Res. 50:14055–60 [Google Scholar]
  92. Boehm HP. 92.  2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon 40:145–49 [Google Scholar]
  93. Corma A, Iborra S, Velty A. 93.  2007. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107:2411–502 [Google Scholar]
  94. Rajabbeigi N, Ranjan R, Tsapatsis M. 94.  2012. Selective adsorption of HMF on porous carbons from fructose/DMSO mixtures. Microporous Mesoporous Mater 158:253–56 [Google Scholar]
  95. Yoo WC, Rajabbeigi N, Mallon EE, Tsapatsis M, Snyder MA. 95.  2014. Elucidating structure-properties relations for the design of highly selective carbon-based HMF sorbents. Microporous Mesoporous Mater 184:72–82 [Google Scholar]
  96. Chung P, Charmot A, Gazit OM, Katz A. 96.  2012. Glucan adsorption on mesoporous carbon nanoparticles: effect of chain length and internal surface. Langmuir 28:15222–32 [Google Scholar]
  97. Chung P, Charmot A, Click T, Lin Y, Bae Y. 97.  et al. 2015. Importance of internal porosity for glucan adsorption in mesoporous carbon materials. Langmuir 31:7288–95 [Google Scholar]
  98. Chung P, Yabushita M, To AH, Bae Y, Jankolovits J. 98.  et al. 2015. Long-chain glucan adsorption and depolymerization in zeolite-templated carbon catalysts. ACS Catal 5:6422–25 [Google Scholar]
  99. Crini G. 99.  2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97:1061–85 [Google Scholar]
  100. Detoni C, Gierlich CH, Rose M, Palkovits R. 100.  2014. Selective liquid phase adsorption of 5-hydroxymethylfurfural on nanoporous hyper-cross-linked polymers. ACS Sustain. Chem. Eng. 2:2407–15 [Google Scholar]
  101. Schute K, Rose M. 101.  2015. Metal-free and scalable synthesis of porous hyper-cross-linked polymers: towards applications in liquid-phase adsorption. ChemSusChem 8:3419–23 [Google Scholar]
  102. Ranjan R, Thust S, Gounaris CE, Woo M, Floudas CA. 102.  et al. 2009. Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery. Microporous Mesoporous Mater 122:143–48 [Google Scholar]
  103. Cheng Y, Lee T. 103.  1992. Separation of fructose and glucose mixture by zeolite Y. Biotechnol. Bioeng. 40:498–504 [Google Scholar]
  104. Ho C, Ching CB, Ruthven DM. 104.  1987. A comparative study of zeolite and resin adsorbents for the separation of fructose-glucose mixtures. Ind. Eng. Chem. Res. 26:1407–12 [Google Scholar]
  105. León M, Swift TD, Nikolakis V, Vlachos DG. 105.  2013. Adsorption of the compounds encountered in monosaccharide dehydration in zeolite beta. Langmuir 29:6597–605 [Google Scholar]
  106. Mallon EE, Jeon MY, Navarro M, Bhan A, Tsapatsis M. 106.  2013. Probing the relationship between silicalite-1 defects and polyol adsorption properties. Langmuir 29:6546–55 [Google Scholar]
  107. Berensmeier S, Buchholz K. 107.  2004. Separation of isomaltose from high sugar concentrated enzyme reaction mixture by dealuminated β-zeolite. Sep. Purif. Technol. 38:129–38 [Google Scholar]
  108. Yu M, Falconer JL, Noble RD. 108.  2005. Adsorption of liquid mixtures on silicalite-1 zeolite: a density-bottle method. Langmuir 21:7390–97 [Google Scholar]
  109. Keasler SJ, Bai P, Tsapatsis M, Siepmann JI. 109.  2014. Concentration effects on the selective extraction of ethanol from aqueous solution using silicalite-1 and decanol isomers. Fluid Phase Equilib 362:118–24 [Google Scholar]
  110. Murillo B, Zornoza B, de la Iglesia O, Téllez C, Coronas J. 110.  2016. Chemocatalysis of sugars to produce lactic acid derivatives on zeolitic imidazolate frameworks. J. Catal. 334:60–67 [Google Scholar]
  111. Dhakshinamoorthy A, Asiri AM, Garcia H. 111.  2014. Catalysis by metal–organic frameworks in water. Chem. Commun. 50:12800–14 [Google Scholar]
  112. Yabushita M, Li P, Bernales V, Kobayashi H, Fukuoka A. 112.  et al. 2016. Unprecedented selectivity in molecular recognition of carbohydrates by a metal–organic framework. Chem. Commun. 52:7094–97 [Google Scholar]
  113. Yabushita M, Li P, Kobayashi H, Fukuoka A, Farha OK, Katz A. 113.  2016. Complete furanics–sugar separations with metal–organic framework NU-1000. Chem. Commun. 52:11791–94 [Google Scholar]
  114. Ranjan R, Thust S, Gounaris CE, Woo M, Floudas CA. 114.  et al. 2009. Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery. Microporous Mesoporous Mater 122:143–48 [Google Scholar]
  115. Zhang K, Agrawal M, Harper J, Chen R, Koros WJ. 115.  2011. Removal of the fermentation inhibitor, furfural, using activated carbon in cellulosic-ethanol production. Ind. Eng. Chem. Res. 50:14055–60 [Google Scholar]
  116. Yabushita M, Li P, Bernales V, Kobayashi H, Fukuoka A. 116.  et al. 2016. Unprecedented selectivity in molecular recognition of carbohydrates by a metal–organic framework. Chem. Commun. 52:7094–97 [Google Scholar]
  117. Mallon EE, Babineau IJ, Kranz JI, Guefrachi Y, Siepmann JI. 117.  et al. 2011. Correlations for adsorption of oxygenates onto zeolites from aqueous solutions. J. Phys. Chem. B 115:11431–38 [Google Scholar]
  118. Krishna R, van Baten JM. 118.  2010. Hydrogen bonding effects in adsorption of water-alcohol mixtures in zeolites and the consequences for the characteristics of the Maxwell-Stefan diffusivities. Langmuir 26:10854–67 [Google Scholar]
  119. Bai P, Tsapatsis M, Siepmann JI. 119.  2012. Multicomponent adsorption of alcohols onto silicalite-1 from aqueous solution: isotherms, structural analysis, and assessment of ideal adsorbed solution theory. Langmuir 28:15566–76 [Google Scholar]
  120. Jossens L, Prausnitz JM, Fritz W, Schlunder EU, Myers AL. 120.  1978. Thermodynamics of multi-solute adsorption from dilute aqueous-solutions. Chem. Eng. Sci. 33:1097–106 [Google Scholar]
  121. Bai P, Jeon MY, Ren L, Knight C, Deem MW. 121.  et al. 2015. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling. Nat. Commun. 6:5912 [Google Scholar]
  122. Santander JE, Tsapatsis M, Auerbach SM. 122.  2013. Simulating adsorptive expansion of zeolites: application to biomass-derived solutions in contact with silicalite. Langmuir 29:4866–76 [Google Scholar]
  123. Sholl DS. 123.  2006. Understanding macroscopic diffusion of adsorbed molecules in crystalline nanoporous materials via atomistic simulations. Acc. Chem. Res. 39:403–11 [Google Scholar]
  124. Gee JA, Chung J, Nair S, Sholl DS. 124.  2013. Adsorption and diffusion of small alcohols in zeolitic imidazolate frameworks ZIF-8 and ZIF-90. J. Phys. Chem. C 117:3169–76 [Google Scholar]
  125. Wang Z, Yan Y. 125.  2016. Zeolite thin films and membranes: from fundamental to applications. Zeolites in Sustainable Chemistry F-S Xiao, X Meng 435–72 Berlin: Springer [Google Scholar]
  126. Wang Y, Widjojo N, Sukitpaneenit P, Chung T-S. 126.  2013. Membrane pervaporation. Separation and Purification Technologies in Biorefineries S Ramaswamy, H-J Huang, BV Ramarao 259–89 New York: Wiley [Google Scholar]
  127. Caro J, Noack M, Kölsch P. 127.  2005. Zeolite membranes: from the laboratory scale to technical applications. Adsorption 11:215–27 [Google Scholar]
  128. Gascon J, Kapteijn F, Zornoza B, Sebastián V, Casado C, Coronas J. 128.  2012. Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chem. Mater. 24:2829–44 [Google Scholar]
  129. Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M. 129.  2015. Zeolite membranes—a review and comparison with MOFs. Chem. Soc. Rev. 44:7128–54 [Google Scholar]
  130. Haelssig JB, Tremblay AY, Thibault J, Huang X-M. 130.  2011. Membrane dephlegmation: a hybrid membrane separation process for efficient ethanol recovery. J. Membr. Sci. 381:226–36 [Google Scholar]
  131. Karan S, Jiang Z, Livingston AG. 131.  2015. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348:1347–51 [Google Scholar]
  132. Liu DE, Cerretani C, Tellez R, Scheer AP, Sciamanna S. 132.  et al. 2015. Analysis of countercurrent membrane vapor extraction of a dilute aqueous biosolute. AIChE J 61:2795–809 [Google Scholar]
  133. Hu S, Guan Y, Cai D, Li S, Qin P. 133.  et al. 2015. A novel method for furfural recovery via gas stripping assisted vapor permeation by a polydimethylsiloxane membrane. Sci. Rep. 5:9428–36 [Google Scholar]
  134. Wang A, Balsara NP, Bell AT. 134.  2016. Pervaporation-assisted catalytic conversion of xylose to furfural. Green Chem 18:4073–85 [Google Scholar]
  135. Williams PT, Nugranad N. 135.  2000. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25:493–513 [Google Scholar]
  136. Williams PT, Onwudili J. 136.  2005. Composition of products from the supercritical water gasification of glucose: a model biomass compound. Ind. Eng. Chem. Res. 44:8739–49 [Google Scholar]
  137. Chen SF, Mowery RA, Castleberry VA, van Walsum GP, Chambliss CK. 137.  2006. High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates. J. Chromatogr. A 1104:54–61 [Google Scholar]
  138. Wang S, Wang Y, Leng F, Chen J, Qiu K, Zhou J. 138.  2016. Separation and enrichment of catechol and sugars from bio-oil aqueous phase. Bioresources 11:1707–20 [Google Scholar]
  139. Xie Y, Phelps D, Lee CH, Sedlak M, Ho N, Wang NHL. 139.  2005. Comparison of two adsorbents for sugar recovery from biomass hydrolyzate. Ind. Eng. Chem. Res. 44:6816–23 [Google Scholar]
  140. Xie Y, Chin CY, Phelps DSC, Lee CH, Lee KB. 140.  et al. 2005. A five-zone simulated moving bed for the isolation of six sugars from biomass hydrolyzate. Ind. Eng. Chem. Res. 44:9904–20 [Google Scholar]
  141. Wu J, Peng Q, Arlt W, Minceva M. 141.  2009. Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth. J. Chromatogr. A 1216:8793–805 [Google Scholar]
  142. Laatikainen M, Heinonen J, Sainio T. 142.  2011. Modeling of chromatographic separation of concentrated-acid hydrolysates. Sep. Purif. Technol. 80:610–19 [Google Scholar]
  143. Rafferty JL, Siepmann JI, Schure MR. 143.  2011. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. J. Chromatogr. A 1218:2203–13 [Google Scholar]
  144. Hilaly AK, Soper JG, Sandage RD. 144.  2009. Separation of a mixture of polyhydric alcohols. US Patent No. WO2009064335A1

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error