Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. IEA (Int. Energy Agency). 2009. Energy Technology Transitions for Industry: Strategies for the Next Industrial Revolution Paris: IEA
  2. 2. IEA (Int. Energy Agency). 2013. Tracking Clean Energy Progress 2013. IEA Input to the Clean Energy Ministerial Paris: IEA
  3. 3. IEA (Int. Energy Agency). 2014. Energy Technology Perspectives 2014 Paris: IEA
  4. Stankiewicz A, Moulijn JA. 4.  2002. Process intensification. Ind. Eng. Chem. Res. 41:1920–24 [Google Scholar]
  5. Reay D, Ramshaw C, Harvey A. 5.  2008. Process Intensification: Engineering for Efficiency, Sustainability and Flexibility New York: Butterworth-Heinemann
  6. Siirola JJ. 6.  1995. An industrial perspective on process synthesis. AIChE Symp. Ser. 91:222–33 [Google Scholar]
  7. Harmsen GJ, Korevaar G, Lemkowitz SM. 7.  2004. Process intensification contributions to sustainable development. Re-engineering the Chemical Processing Plant: Process Intensification A Stankiewicz, JA Moulijn 495–522 New York: Marcel Dekker [Google Scholar]
  8. Harmsen J. 8.  2010. Process intensification in the petrochemicals industry: drivers and hurdles for commercial implementation. Chem. Eng. Process. 49:70–73 [Google Scholar]
  9. 9. US Dep. Energy. 2015. Process intensification. Chapter 6: technology assessments. Quadrennial Technology Review 2015 US Dep. Energy 1–29 Washington, DC: US Dep. Energy https://energy.gov/sites/prod/files/2015/11/f27/QTR2015-6J-Process-Intensification.pdf [Google Scholar]
  10. Ramshaw C. 10.  1983. HIGEE distillation—an example of process intensification. Chem. Eng. 389:13–14 [Google Scholar]
  11. Stankiewicz AI, Moulijn JA. 11.  2000. Process intensification: transforming chemical engineering. Chem. Eng. Prog. 96:22–34 [Google Scholar]
  12. Tsouris C, Porcelli JV. 12.  2003. Process intensification—Has its time finally come?. Chem. Eng. Prog. 99:50–55 [Google Scholar]
  13. Portha JF, Falk L, Commenge JM. 13.  2014. Local and global process intensification. Chem. Eng. Process. 84:1–13 [Google Scholar]
  14. Baldea M. 14.  2015. From process integration to process intensification. Comput. Chem. Eng. 81:104–14 [Google Scholar]
  15. Cross W, Ramshaw C. 15.  1986. Process intensification: laminar flow heat transfer. Chem. Eng. Res. Des. 64:293–301 [Google Scholar]
  16. Jachuck RJ, Lee J, Kolokotsa D, Ramshaw C, Valachis P, Yanniotis S. 16.  1997. Process intensification for energy saving. Appl. Ther. Eng. 17:861–67 [Google Scholar]
  17. Reay D. 17.  2008. The role of process intensification in cutting greenhouse gas emissions. Appl. Ther. Eng. 28:2011–19 [Google Scholar]
  18. Ponce-Ortega JM, Al-Thubaiti MM, El-Halwagi MM. 18.  2012. Process intensification: new understanding and systematic approach. Chem. Eng. Process. 53:63–75 [Google Scholar]
  19. Moulijn JA, Stankiewicz A, Grievink J, Górak A. 19.  2008. Process intensification and process systems engineering: a friendly symbiosis. Comput. Chem. Eng. 32:3–11 [Google Scholar]
  20. Gerven TV, Stankiewicz A. 20.  2009. Structure, energy, synergy, time—the fundamentals of process intensification. Ind. Eng. Chem. Res. 48:2465–74 [Google Scholar]
  21. Stankiewicz A. 21.  2003. Reactive separations for process intensification: an industrial perspective. Chem. Eng. Process. 42:137–44 [Google Scholar]
  22. Yildirim Ö, Kiss AA, Kenig EY. 22.  2011. Dividing wall columns in chemical process industry: a review on current activities. Sep. Purif. Technol. 80:403–17 [Google Scholar]
  23. Harper JB, Easton CJ, Lincoln SF. 23.  2003. A cyclodextrin-based molecular reactor to template the formation of indigoid dyes. Tetrahedron Lett 44:5815–18 [Google Scholar]
  24. Barr L, Dumanski PG, Easton CJ, Harper JB, Lee K. 24.  et al. 2004. Cyclodextrin molecular reactors. J. Incl. Phenom. Macrocycl. Chem. 50:19–24 [Google Scholar]
  25. Górak A, Stankiewicz A. 25.  2011. Intensified reaction and separation systems. Annu. Rev. Chem. Biomol. Eng. 2:431–51 [Google Scholar]
  26. Rivas DF, Kuhn S. 26.  2016. Synergy of microfluidics and ultrasound. Top. Curr. Chem. 374:1–30 [Google Scholar]
  27. 27. European Federation of Chemical Engineering. 2008. European roadmap for process intensification Frankfurt: DECHEMA http://efce.info/efce_media/-p-531-EGOTEC-juaogjr2ecs2b1ljpebr3qmvs2.pdf?rewrite_engine=id
  28. Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G. 28.  2003. Static mixers in the process industries—a review. Chem. Eng. Res. Des. 81:787–826 [Google Scholar]
  29. Kandhai D, Vidal DJE, Hoekstra AG, Hoefsloot H, Iedema P, Sloot PMA. 29.  1999. Lattice‐Boltzmann and finite element simulations of fluid flow in a SMRX static mixer reactor. Int. J. Numer. Methods Fluids 31:1019–33 [Google Scholar]
  30. Mutsakis M, Streiff A, Schneider G. 30.  1986. Advances in static mixing technology. Chem. Eng. Prog. 82:42–48 [Google Scholar]
  31. Liu P, Wu J, Yang G, Shao H. 31.  2017. Comparison of static mixing reaction and reactive extrusion technique for ring-opening polymerization of l-lactide. Mater. Lett. 186:372–74 [Google Scholar]
  32. Jensen KF. 32.  2001. Microreaction engineering—Is small better?. Chem. Eng. Sci. 56:293–303 [Google Scholar]
  33. Lerou JJ, Tonkovich AL, Silva L, Perry S, McDaniel J. 33.  2010. Microchannel reactor architecture enables greener processes. Chem. Eng. Sci. 65:380–85 [Google Scholar]
  34. Pohar A, Plazl I. 34.  2009. Process intensification through microreactor application. Chem. Biochem. Eng. Q. 23:537–44 [Google Scholar]
  35. Anxionnaz Z, Cabassud M, Gourdon C, Tochon P. 35.  2008. Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art. Chem. Eng. Process. 47:2029–50 [Google Scholar]
  36. Ferrouillat S, Tochon P, Della Valle D, Peerhossaini H. 36.  2006. Open loop thermal control of exothermal chemical reactions in multifunctional heat exchangers. Int. J. Heat Mass Transf. 49:2479–90 [Google Scholar]
  37. Lee S, Liang L, Riestenberg D, West OR, Tsouris C, Adams E. 37.  2003. CO2 hydrate composite for ocean carbon sequestration. Environ. Sci. Technol. 37:3701–8 [Google Scholar]
  38. West OR, Tsouris C, Lee S, McCallum SD, Liang L. 38.  2003. Negatively buoyant CO2-hydrate composite for ocean carbon sequestration. AIChE J 49:283–85 [Google Scholar]
  39. Tsouris C, Brewer P, Peltzer E, Walz P, Riestenberg D. 39.  et al. 2004. Hydrate composite particles for ocean carbon sequestration: field verification. Environ. Sci. Technol. 38:2470–75 [Google Scholar]
  40. Riestenberg D, Chiu E, Gborigi M, Liang L, West OR, Tsouris C. 40.  2004. Investigation of jet breakup and droplet size distribution of liquid CO2 and water systems—implications for CO2 hydrate formation for ocean carbon sequestration. Am. Mineral. 89:1240–46 [Google Scholar]
  41. Riestenberg DE, Tsouris C, Brewer PG, Peltzer ET, Walz P. 41.  et al. 2005. Field studies on the formation of sinking CO2 particles for ocean carbon sequestration: effects of injector geometry on particle density and dissolution rate and model simulation of plume behavior. Environ. Sci. Technol. 39:7287–93 [Google Scholar]
  42. Szymcek P, McCallum SD, Taboada-Serrano P, Tsouris C. 42.  2008. A pilot-scale continuous-jet hydrate reactor. Chem. Eng. J. 135:71–77 [Google Scholar]
  43. Taboada-Serrano P, Ulrich S, Szymcek P, McCallum SD, Phelps TJ. 43.  et al. 2009. A multi-phase, micro-dispersion reactor for the continuous production of methane gas hydrate. Ind. Eng. Chem. Res. 48:6448–52 [Google Scholar]
  44. Harvianto GR, Ahmad F, Lee M. 44.  2016. Vapor permeation–distillation hybrid processes for cost-effective isopropanol dehydration: modeling, simulation and optimization. J. Membr. Sci. 497:108–19 [Google Scholar]
  45. Ramshaw C, Mallinson RH. 45.  1981. Mass transfer process US Patent No. 4283255
  46. Rao DP, Bhowal A, Goswami PS. 46.  2004. Process intensification in rotating packed beds (HIGEE): an appraisal. Ind. Eng. Chem. Res. 43:1150–62 [Google Scholar]
  47. Aoune A, Ramshaw C. 47.  1999. Process intensification: heat and mass transfer characteristics of liquid films on rotating discs. Int. J. Heat Mass Transf. 42:2543–56 [Google Scholar]
  48. Qiu Z, Petera J, Weatherley LR. 48.  2012. Biodiesel synthesis in an intensified spinning disk reactor. Chem. Eng. J. 210:597–609 [Google Scholar]
  49. Birdwell JF Jr., McFarlane J, Hunt RD, Luo H, DePaoli DW. 49.  et al. 2006. Separation of ionic liquid dispersions in centrifugal solvent extraction contactors. Sep. Sci. Technol. 41:2205–23 [Google Scholar]
  50. Birdwell JF Jr., McFarlane J, Jennings H, Tsouris C. 50.  2012. Integrated reactor and centrifugal separator and uses thereof US Patent No. 8097219
  51. McFarlane J, Tsouris C, Birdwell JF Jr., Schuh DL, Jennings HL. 51.  et al. 2010. Production of biodiesel at the kinetic limit in a centrifugal reactor/separator. Ind. Eng. Chem. Res. 49:3160–69 [Google Scholar]
  52. Tsouris C, McFarlane J, Birdwell JF Jr., Jennings HL. 52.  2008. Continuous production of biodiesel via an intensified reactive/extractive process. Proc. Int. Solvent Extr. Conf. 2008 Tucson, AZ, Sep. 15–19
  53. Thompson LH, Doraiswamy LK. 53.  1999. Sonochemistry: science and engineering. Ind. Eng. Chem. Res. 38:1215–49 [Google Scholar]
  54. Riera E, Golas Y, Blanco A, Gallego JA, Blasco M, Mulet A. 54.  2004. Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrason. Sonochem. 11:241–44 [Google Scholar]
  55. Riera E, Blanco A, García J, Benedito J, Mulet A. 55.  et al. 2010. High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes. Ultrasonics 50:306–9 [Google Scholar]
  56. Shin WT, Yiacoumi S, Tsouris C. 56.  2004. Electric-field effects on interfaces: electrospray and electrocoalescence. Curr. Opin. Colloid Interface Sci. 9:249–55 [Google Scholar]
  57. Tsouris C, Borole AP, Kaufman EN, DePaoli DW. 57.  1999. An electrically driven gas-liquid-liquid contactor for bioreactor and other applications. Ind. Eng. Chem. Res. 38:1877–83 [Google Scholar]
  58. Weatherley LR. 58.  1993. Electrically enhanced mass transfer. Heat Recov. Syst. CHP 13:515–37 [Google Scholar]
  59. Weatherley LR, Rooney DW, Niekerk MV. 59.  1997. Clean synthesis of fatty acids in an intensive lipase‐catalysed bioreactor. J. Chem. Technol. Biotechnol. 68:437–41 [Google Scholar]
  60. Liu Z, Nueraihemaiti A, Chen M, Du J, Fan X, Tao C. 60.  2015. Hydrometallurgical leaching process intensified by an electric field for converter vanadium slag. Hydrometallurgy 155:56–60 [Google Scholar]
  61. Liu Z, Li Y, Chen M, Nueraihemaiti A, Du J. 61.  et al. 2016. Enhanced leaching of vanadium slag in acidic solution by electro-oxidation. Hydrometallurgy 159:1–5 [Google Scholar]
  62. DePaoli DW, Tsouris C, Feng JQ. 62.  1998. Method of electrically producing dispersions of nonconductive fluids into conductive fluids US Patent No. 5762775
  63. Feng JQ, DePaoli DW, Tsouris C, Scott TC. 63.  1995. Spraying fine fluid particles in insulating fluid systems by electrostatic polarization forces. J. Appl. Phys. 78:2860–62 [Google Scholar]
  64. Kaufman EN, Harkins JB, Rodriguez M, Tsouris C, Selvaraj PT, Murphy SE. 64.  1997. Development of an electro-spray bioreactor for crude oil processing. Fuel Process. Technol. 52:127–44 [Google Scholar]
  65. Shin WT, Yiacoumi S, Tsouris C. 65.  1997. Experiments on electrostatic dispersion of air in water. Ind. Eng. Chem. Res. 36:3647–55 [Google Scholar]
  66. Tsouris C, DePaoli DW, Feng JQ, Basaran OA, Scott TC. 66.  1994. Electrostatic spraying of nonconductive fluids into conductive fluids. AIChE J 40:1920–23 [Google Scholar]
  67. Tsouris C, DePaoli DW, Feng JQ, Scott TC. 67.  1995. Experimental investigation of electrostatic dispersion of nonconductive fluids into conductive fluids. Ind. Eng. Chem. Res. 34:1394–403 [Google Scholar]
  68. Tsouris C, Neal SH, Shah VM, Spurrier MA, Lee MK. 68.  1997. Comparison of liquid-liquid dispersions formed by a stirred tank and electrostatic spraying. Chem. Eng. Commun. 160:175–97 [Google Scholar]
  69. Tsouris C, Shin WT, Yiacoumi S. 69.  1998. Pumping, spraying, and mixing of fluids by electric fields. Can. J. Chem. Eng. 76:589–99 [Google Scholar]
  70. Tsouris C, Shin WT, Yiacoumi S, DePaoli DW. 70.  2000. Electrohydrodynamic velocity and pumping measurements in water and alcohols. J. Colloid Interface Sci. 229:335–45 [Google Scholar]
  71. Weatherley LR, Campbell I, Kirton D, Slaughter JC. 71.  1990. Electrically enhanced extraction of penicillin G into dichloromethane. J. Chem. Technol. Biotechnol. 48:427–38 [Google Scholar]
  72. Weatherley LR, Rooney D. 72.  2008. Enzymatic catalysis and electrostatic process intensification for processing of natural oils. Chem. Eng. J. 135:25–32 [Google Scholar]
  73. Bazhal M, Vorobiev E. 73.  2000. Electrical treatment of apple cossettes for intensifying juice pressing. J. Sci. Food Agric. 80:1668–74 [Google Scholar]
  74. DePaoli DW, Hu MZC, Tsouris C. 74.  2001. Method for the production of ultrafine particles by electrohydrodynamic micromixing US Patent No. 6265025
  75. Depaoli DW, Tsouris C, Hu MZC. 75.  2003. EHD micromixing reactor for particle synthesis. Powder Technol 135:302–9 [Google Scholar]
  76. Tsouris C, Culbertson CT, DePaoli DW, Jacobson SC, De Almeida VF, Ramsey JM. 76.  2003. Electrohydrodynamic mixing in microchannels. AIChE J 49:2181–86 [Google Scholar]
  77. Blankenship KD, Shah VM, Tsouris C. 77.  1999. Distillation under electric fields. Sep. Sci. Technol. 34:1393–409 [Google Scholar]
  78. Blankenship KD, DePaoli DW, Hylton JO, Tsouris C. 78.  1999. Effect of electrode configurations on phase equilibria with applied electric fields. Sep. Purif. Technol. 15:283–94 [Google Scholar]
  79. Tsouris C, Blankenship KD, Dong J, DePaoli DW. 79.  2001. Enhancement of distillation efficiency by application of an electric field. Ind. Eng. Chem. Res. 40:3843–47 [Google Scholar]
  80. Hou CH, Liang C, Yiacoumi S, Dai S, Tsouris C. 80.  2006. Electrosorption capacitance of nanostructured carbon-based materials. J. Colloid Interface Sci. 302:54–61 [Google Scholar]
  81. Mayes RT, Tsouris C, Kiggans JO Jr., Mahurin SM, DePaoli DW, Dai S. 81.  2010. Hierarchical ordered mesoporous carbon from phloroglucinol-glyoxal and its application in capacitive deionization of brackish water. J. Mater. Chem. 20:8674–78 [Google Scholar]
  82. Sharma K, Mayes R, Kiggans J, Yiacoumi S, Gabitto J. 82.  et al. 2013. Influence of temperature on the electrosorption of ions from aqueous solutions using mesoporous carbon materials. Sep. Purif. Technol. 116:206–13 [Google Scholar]
  83. Sharma K, Kim YH, Gabitto J, Mayes RT, Yiacoumi S. 83.  et al. 2015. Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions. Langmuir 31:1038–47 [Google Scholar]
  84. Sharma K, Kim YH, Yiacoumi S, Gabitto J, Bilheux HZ. 84.  et al. 2016. Analysis and simulation of a blue energy cycle. Renew. Energy 91:249–60 [Google Scholar]
  85. Yang KL, Ying TY, Yiacoumi S, Tsouris C, Vittoratos ES. 85.  2001. Electrosorption of ions from aqueous solutions by carbon aerogel: an electrical double-layer model. Langmuir 17:1961–69 [Google Scholar]
  86. Yang KL, Yiacoumi S, Tsouris C. 86.  2003. Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry. J. Electroanal. Chem. 540:159–67 [Google Scholar]
  87. Ying TY, Yiacoumi S, Tsouris C. 87.  2002. An electrochemical method for the formation of magnetite particles. J. Dispers. Sci. Technol. 23:569–76 [Google Scholar]
  88. Wang X, Lee JS, Tsouris C, DePaoli DW, Dai S. 88.  2010. Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions. J. Mater. Chem. 20:4602–8 [Google Scholar]
  89. Tsouris C, Mayes R, Kiggans J, Sharma K, Yiacoumi S. 89.  et al. 2011. Mesoporous carbon for capacitive deionization of saline water. Environ. Sci. Technol. 45:10243–49 [Google Scholar]
  90. Tsouris C, Mayes RT, Kiggans JO, DePaoli DW, Bourcier W, Campbell R. 90.  2014. Increasing ion sorption and desorption rates of conductive electrodes US Patent No. 8920622
  91. Tsouris C, Dong J. 91.  2000. Effects of electric fields on phase inversion of liquid–liquid dispersions. Chem. Eng. Sci. 55:3571–74 [Google Scholar]
  92. Tsouris C, Dong J. 92.  2002. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions US Patent No. 6495617
  93. Dong J, Tsouris C. 93.  2001. Phase inversion of liquid–liquid dispersions under applied electric fields. J. Dispers. Sci. Technol. 22:57–69 [Google Scholar]
  94. Tsouris C, Yiacoumi S, Scott T. 94.  1995. Kinetics of heterogeneous magnetic flocculation using a bivariate population-balance equation. Chem. Eng. Commun. 137:147–59 [Google Scholar]
  95. Tsouris C, Scott TC. 95.  1995. Flocculation of paramagnetic particles in a magnetic field. J. Colloid Interface Sci. 171:319–30 [Google Scholar]
  96. Ying TY, Yiacoumi S, Tsouris C. 96.  2000. High-gradient magnetically seeded filtration. Chem. Eng. Sci. 55:1101–13 [Google Scholar]
  97. Tsouris C, Noonan J, Ying JY, Yiacoumi S. 97.  2006. Surfactant effects on the mechanism of particle capture in high-gradient magnetic filtration. Sep. Purif. Technol. 51:201–9 [Google Scholar]
  98. Taboada-Serrano P, Tsouris C, Contescu C, McFarlane J. 98.  2013. Magnetic filtration process, magnetic filtering material, and methods for forming magnetic filtering material US Patent No. 8551617
  99. Ozokwelu D. 99.  2014. High efficiency modular chemical processes (HEMCP) Washington, DC: US Dep. Energy12 https://energy.gov/sites/prod/files/2014/10/f18/hemcp-topic-overview.pdf
  100. Teng H, Yamasaki A, Shindo Y. 100.  1996. Stability of the hydrate layer formed on the surface of a CO2 droplet in high-pressure, low-temperature water. Chem. Eng. Sci. 51:4979–86 [Google Scholar]
  101. Gabitto J, Riestenberg D, Lee S, Liang L, Tsouris C. 101.  2005. Ocean disposal of CO2: conditions for producing sinking CO2 hydrate. J. Dispers. Sci. Technol. 25:703–12 [Google Scholar]
  102. Kim YJ, Choi JH. 102.  2010. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. Sep. Purif. Technol. 71:70–75 [Google Scholar]
  103. Jeon SI, Park HR, Yeo JG, Yang S, Cho CH. 103.  et al. 2013. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energ. Environ. Sci. 6:1471–75 [Google Scholar]
  104. Qiu Z, Zhao L, Weatherley L. 104.  2010. Process intensification technologies in continuous biodiesel production. Chem. Eng. Process. 49:323–30 [Google Scholar]
  105. Kim TI, Kim YH, Han M. 105.  2012. Development of novel oil washing process using bubble potential energy. Mar. Poll. Bull. 64:2325–32 [Google Scholar]
  106. Cherry RS, Hulle CT. 106.  1992. Cell death in the thin films of bursting bubbles. Biotechnol. Prog. 8:11–18 [Google Scholar]
  107. Kunas KT, Papoutsakis ET. 107.  1990. Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol. Bioeng. 36:476–83 [Google Scholar]
  108. Burns SE, Yiacoumi S, Tsouris C. 108.  1997. Microbubble generation for environmental and industrial separations. Sep. Purif. Technol. 11:221–32 [Google Scholar]
  109. Etchells JC. 109.  2005. Process intensification: safety pros and cons. Process. Saf. Environ. Prot. 83:85–89 [Google Scholar]
  110. Hendershot DC. 110.  2004. Process intensification for safety. Re-engineering the Chemical Processing Plant: Process Intensification A Stankiewicz, JA Moulijn 471–94 New York: Marcel Dekker [Google Scholar]
  111. Belluomini GJ, Pendergast JG, Domke CH, Ussing BR. 111.  2009. Performance of several ionic liquids for the separation of 1-octene from n-octane. Ind. Eng. Chem. Res. 48:11168–74 [Google Scholar]
  112. Mercer AC. 112.  1993. Process intensification—the UK programmes to encourage the development and use of intensified heat exchange equipment and technology. Heat Recov. Syst. CHP 13:539–45 [Google Scholar]
  113. Efthimeros GA, Tsahalis DT. 113.  2000. Intensified energy-saving technologies developed in EU-funded research: a review. Appl. Ther. Eng. 20:1607–13 [Google Scholar]
  114. 114. AIChE (Am. Inst. Chem. Eng.). 2016. U.S. Department of Energy taps AIChE to lead RAPID Modular Process Intensification Institute News Release, Dec. 9. http://www.aiche.org/about/press/releases/12–20–2016/us-department-energy-taps-aiche-lead-rapid-modular-process-intensification-institute
  115. Luyben WL, Hendershot DC. 115.  2004. Dynamic disadvantages of intensification in inherently safer process design. Ind. Eng. Chem. Res. 43:384–96 [Google Scholar]
  116. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC. 116.  2014. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal. Chem. 86:3124–30 [Google Scholar]
  117. Symes MD, Kitson PJ, Yan J, Richmond CJ, Cooper GJ. 117.  et al. 2012. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4:349–54 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error