1932

Abstract

The past two decades have witnessed a rapid development of microreactors. A substantial number of reactions have been tested in microchemical systems, revealing the advantages of controlled residence time, enhanced transport efficiency, high product yield, and inherent safety. This review defines the microchemical system and describes its components and applications as well as the basic structures of micromixers. We focus on mixing, flow dynamics, and mass and heat transfer in microreactors along with three strategies for scaling up microreactors: parallel numbering-up, consecutive numbering-up, and scale-out. We also propose a possible methodology to design microchemical systems. Finally, we provide a summary and future prospects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060816-101443
2017-06-07
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/8/1/annurev-chembioeng-060816-101443.html?itemId=/content/journals/10.1146/annurev-chembioeng-060816-101443&mimeType=html&fmt=ahah

Literature Cited

  1. Elvira KS, Casadevall i Solvas X, Wootton RCR, deMello AJ. 1.  2013. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 5:905–15 [Google Scholar]
  2. Gutmann B, Cantillo D, Kappe CO. 2.  2015. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem. Int. Ed. 54:6688–728 [Google Scholar]
  3. Ley SV, Fitzpatrick DE, Myers RM, Battilocchio C, Ingham RJ. 3.  2015. Machine-assisted organic synthesis. Angew. Chem. Int. Ed. 54:10122–36 [Google Scholar]
  4. Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM. 4.  2015. Organic synthesis: march of the machines. Angew. Chem. Int. Ed. 54:3449–64 [Google Scholar]
  5. Gunther A, Jensen KF. 5.  2006. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6:1487–503 [Google Scholar]
  6. Song H, Chen DL, Ismagilov RF. 6.  2006. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45:7336–56 [Google Scholar]
  7. Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q. 7.  2013. Novel process windows for enabling, accelerating, and uplifting flow chemistry. ChemSusChem 6:746–89 [Google Scholar]
  8. Pastre JC, Browne DL, Ley SV. 8.  2013. Flow chemistry syntheses of natural products. Chem. Soc. Rev. 42:8849–69 [Google Scholar]
  9. Hartman RL. 9.  2012. Managing solids in microreactors for the upstream continuous processing of fine chemicals. Org. Proc. Res. Dev. 16:870–87 [Google Scholar]
  10. Kulkarni AA. 10.  2014. Continuous flow nitration in miniaturized devices. Beilstein J. Org. Chem. 10:405–24 [Google Scholar]
  11. Bally F, Serra CA, Hessel V, Hadziioannou G. 11.  2011. Micromixer-assisted polymerization processes. Chem. Eng. Sci. 66:1449–62 [Google Scholar]
  12. Zhang J, Wang K, Lin X, Lu Y, Luo G. 12.  2014. Intensification of fast exothermic reaction by gas agitation in a microchemical system. AIChE J 60:2724–30 [Google Scholar]
  13. Tan J, Zhang JS, Lu YC, Xu JH, Luo GS. 13.  2012. Process intensification of catalytic hydrogenation of ethylanthraquinone with gas-liquid microdispersion. AIChE J 58:1326–35 [Google Scholar]
  14. Baumann M, Baxendale IR, Martin LJ, Ley SV. 14.  2009. Development of fluorination methods using continuous-flow microreactors. Tetrahedron 65:6611–25 [Google Scholar]
  15. Marre S, Roig Y, Aymonier C. 15.  2012. Supercritical microfluidics: opportunities in flow-through chemistry and materials science. J. Supercrit. Fluids 66:251–64 [Google Scholar]
  16. Cambie D, Bottecchia C, Straathof NJ, Hessel V, Noël T. 16.  2016. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 116:10276–341 [Google Scholar]
  17. Proctor LD, Warr AJ. 17.  2002. Development of a continuous process for the industrial generation of diazomethane. Org. Proc. Res. Dev. 6:884–92 [Google Scholar]
  18. Wille C, Gabski H-P, Haller T, Kim H, Unverdorben L, Winter R. 18.  2004. Synthesis of pigments in a three-stage microreactor pilot plant—an experimental technical report. Chem. Eng. J. 101:179–85 [Google Scholar]
  19. Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF. 19.  et al. 2016. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 352:61–67 [Google Scholar]
  20. Viviano M, Glasnov TN, Reichart B, Tekautz G, Kappe CO. 20.  2011. A scalable two-step continuous flow synthesis of nabumetone and related 4-aryl-2-butanones. Org. Proc. Res. Dev. 15:858–70 [Google Scholar]
  21. Levesque F, Seeberger PH. 21.  2012. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew. Chem. Int. Ed. 51:1706–9 [Google Scholar]
  22. Hopkin MD, Baxendale IR, Ley SV. 22.  2013. An expeditious synthesis of imatinib and analogues utilising flow chemistry methods. Org. Biomol. Chem. 11:1822–39 [Google Scholar]
  23. Murray PRD, Browne DL, Pastre JC, Butters C, Guthrie D, Ley SV. 23.  2013. Continuous flow-processing of organometallic reagents using an advanced peristaltic pumping system and the telescoped flow synthesis of (E/Z)-tamoxifen. Org. Proc. Res. Dev. 17:1192–208 [Google Scholar]
  24. Baumann M, Baxendale IR. 24.  2015. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J. Org. Chem. 11:1194–219 [Google Scholar]
  25. Correia CA, Gilmore K, McQuade DT, Seeberger PH. 25.  2015. A concise flow synthesis of efavirenz. Angew. Chem. Int. Ed. 54:4945–48 [Google Scholar]
  26. Ghislieri D, Gilmore K, Seeberger PH. 26.  2015. Chemical assembly systems: layered control for divergent, continuous, multistep syntheses of active pharmaceutical ingredients. Angew. Chem. Int. Ed. 54:678–82 [Google Scholar]
  27. Tonkovich ALY, Daymo EA. 27.  2009. Microreaction system for large-scale production. Microchemical Engineering in Practice TR Dietrich 299–323 Hoboken, NJ: Wiley [Google Scholar]
  28. Hartman RL, Jensen KF. 28.  2009. Microchemical systems for continuous-flow synthesis. Lab Chip 9:2495–507 [Google Scholar]
  29. Hessel V, Cortese, de Croon MHJM . 29.  2011. Novel process windows—concept, proposition and evaluation methodology, and intensified superheated processing. Chem. Eng. Sci. 66:1426–48 [Google Scholar]
  30. Jensen KF, Reizman BJ, Newman SG. 30.  2014. Tools for chemical synthesis in microsystems. Lab Chip 14:3206–12 [Google Scholar]
  31. Newman SG, Jensen KF. 31.  2013. The role of flow in green chemistry and engineering. Green Chem 15:1456–72 [Google Scholar]
  32. Sans V, Cronin L. 32.  2016. Towards dial-a-molecule by integrating continuous flow, analytics and self-optimisation. Chem. Soc. Rev. 45:2032–43 [Google Scholar]
  33. Gemoets HP, Su Y, Shang M, Hessel V, Luque R, Noel T. 33.  2016. Liquid phase oxidation chemistry in continuous-flow microreactors. Chem. Soc. Rev. 45:83–117 [Google Scholar]
  34. Kobayashi S. 34.  2016. Flow “fine” synthesis: high yielding and selective organic synthesis by flow methods. Chem. Asian J. 11:425–36 [Google Scholar]
  35. Rossetti I, Compagnoni M. 35.  2016. Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: flow chemistry. Chem. Eng. J. 296:56–70 [Google Scholar]
  36. Hartman RL, Naber JR, Zaborenko N, Buchwald SL, Jensen KF. 36.  2010. Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C−N bond formation in microreactors. Org. Proc. Res. Dev. 14:1347–57 [Google Scholar]
  37. Straathof NJ, Su Y, Hessel V, Noel T. 37.  2016. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors. Nat. Protoc. 11:10–21 [Google Scholar]
  38. Roth GP, Stalder R, Long TR, Sauer DR, Djuric SW. 38.  2013. Continuous-flow microfluidic electrochemical synthesis: investigating a new tool for oxidative chemistry. J. Flow Chem. 3:34–40 [Google Scholar]
  39. Zimmerman WB. 39.  2011. Electrochemical microfluidics. Chem. Eng. Sci. 66:1412–25 [Google Scholar]
  40. Watts K, Gattrell W, Wirth T. 40.  2011. A practical microreactor for electrochemistry in flow. Beilstein J. Org. Chem. 7:1108–14 [Google Scholar]
  41. Haber J, Kashid MN, Borhani N, Thome J, Krtschil U. 41.  et al. 2013. Infrared imaging of temperature profiles in microreactors for fast and exothermic reactions. Chem. Eng. J. 214:97–105 [Google Scholar]
  42. Zhang JS, Zhang CY, Liu GT, Luo GS. 42.  2016. Measuring enthalpy of fast exothermal reaction with infrared thermography in a microreactor. Chem. Eng. J. 295:384–90 [Google Scholar]
  43. McMullen JP, Jensen KF. 43.  2010. An automated microfluidic system for online optimization in chemical synthesis. Org. Proc. Res. Dev. 14:1169–76 [Google Scholar]
  44. Holmes N, Akien GR, Savage RJD, Stanetty C, Baxendale IR. 44.  et al. 2016. Online quantitative mass spectrometry for the rapid adaptive optimisation of automated flow reactors. React. Chem. Eng. 1:96–100 [Google Scholar]
  45. Sans V, Porwol L, Dragone V, Cronin L. 45.  2015. A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy. Chem. Sci. 6:1258–64 [Google Scholar]
  46. Abolhasani M, Coley CW, Xie L, Chen O, Bawendi MG, Jensen KF. 46.  2015. Oscillatory microprocessor for growth and in situ characterization of semiconductor nanocrystals. Chem. Mater. 27:6131–38 [Google Scholar]
  47. Moore JS, Jensen KF. 47.  2012. Automated multitrajectory method for reaction optimization in a microfluidic system using online IR analysis. Org. Proc. Res. Dev. 16:1409–15 [Google Scholar]
  48. Cervera-Padrell AE, Nielsen JP, Jønch Pedersen M, Müller Christensen K, Mortensen AR. 48.  et al. 2012. Monitoring and control of a continuous Grignard reaction for the synthesis of an active pharmaceutical ingredient intermediate using inline NIR spectroscopy. Org. Proc. Res. Dev. 16:901–14 [Google Scholar]
  49. Ewinger A, Rinke G, Urban A, Kerschbaum S. 49.  2013. In situ measurement of the temperature of water in microchannels using laser Raman spectroscopy. Chem. Eng. J. 223:129–34 [Google Scholar]
  50. Kumar N, Bansal A, Sarma GS, Rawal RK. 50.  2014. Chemometrics tools used in analytical chemistry: an overview. Talanta 123:186–99 [Google Scholar]
  51. Reizman BJ, Jensen KF. 51.  2016. Feedback in flow for accelerated reaction development. Acc. Chem. Res. 49:1786–96 [Google Scholar]
  52. Kenig EY, Su Y, Lautenschleger A, Chasanis P, Grünewald M. 52.  2013. Micro-separation of fluid systems: a state-of-the-art review. Sep. Purif. Technol. 120:245–64 [Google Scholar]
  53. Hartman RL, Naber JR, Buchwald SL, Jensen KF. 53.  2010. Multistep microchemical synthesis enabled by microfluidic distillation. Angew. Chem. Int. Ed. 49:899–903 [Google Scholar]
  54. O'Brien M, Koos P, Browne DL, Ley SV. 54.  2012. A prototype continuous-flow liquid-liquid extraction system using open-source technology. Org. Biomol. Chem. 10:7031–36 [Google Scholar]
  55. Kashid MN, Harshe YM, Agar DW. 55.  2007. Liquid−liquid slug flow in a capillary: an alternative to suspended drop or film contactors. Ind. Eng. Chem. Res. 46:8420–30 [Google Scholar]
  56. Adamo A, Heider PL, Weeranoppanant N, Jensen KF. 56.  2013. Membrane-based, liquid–liquid separator with integrated pressure control. Ind. Eng. Chem. Res. 52:10802–8 [Google Scholar]
  57. Singh J, Kockmann N, Nigam KDP. 57.  2014. Novel three-dimensional microfluidic device for process intensification. Chem. Eng. Proc. Proc. Intensif. 86:78–89 [Google Scholar]
  58. Woitalka A, Kuhn S, Jensen KF. 58.  2014. Scalability of mass transfer in liquid–liquid flow. Chem. Eng. Sci. 116:1–8 [Google Scholar]
  59. Su Y, Zhao Y, Chen G, Yuan Q. 59.  2010. Liquid–liquid two-phase flow and mass transfer characteristics in packed microchannels. Chem. Eng. Sci. 65:3947–56 [Google Scholar]
  60. Losey MW, Schmidt MA, Jensen KF. 60.  2001. Microfabricated multiphase packed-bed reactors: characterization of mass transfer and reactions. Ind. Eng. Chem. Res. 40:2555–62 [Google Scholar]
  61. Shang M, Noël T, Wang Q, Su Y, Miyabayashi K. 61.  et al. 2015. 2- and 3-stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors. Chem. Eng. J. 260:454–62 [Google Scholar]
  62. van Herk D, Kreutzer MT, Makkee M, Moulijn JA. 62.  2005. Scaling down trickle bed reactors. Catal. Today 106:227–32 [Google Scholar]
  63. Opalka SM, Park JK, Longstreet AR, McQuade DT. 63.  2013. Continuous synthesis and use of N-heterocyclic carbene copper(I) complexes from insoluble Cu2O. Org. Lett. 15:996–99 [Google Scholar]
  64. McQuade DT, Seeberger PH. 64.  2013. Applying flow chemistry: methods, materials, and multistep synthesis. J. Org. Chem. 78:6384–89 [Google Scholar]
  65. Al-Rifai N, Galvanin F, Morad M, Cao E, Cattaneo S. 65.  et al. 2016. Hydrodynamic effects on three phase micro-packed bed reactor performance—gold–palladium catalysed benzyl alcohol oxidation. Chem. Eng. Sci. 149:129–42 [Google Scholar]
  66. Faridkhou A, Hamidipour M, Larachi F. 66.  2013. Hydrodynamics of gas–liquid micro-fixed beds—measurement approaches and technical challenges. Chem. Eng. J. 223:425–35 [Google Scholar]
  67. Bourne JR. 67.  2003. Mixing and the selectivity of chemical reactions. Org. Proc. Res. Dev. 7:471–508 [Google Scholar]
  68. Wang K, Xie L, Lu Y, Luo G. 68.  2013. Generating microbubbles in a co-flowing microfluidic device. Chem. Eng. Sci. 100:486–95 [Google Scholar]
  69. Panić S, Loebbecke S, Tuercke T, Antes J, Bošković D. 69.  2004. Experimental approaches to a better understanding of mixing performance of microfluidic devices. Chem. Eng. J. 101:409–19 [Google Scholar]
  70. Hessel V, Löwe H, Schönfeld F. 70.  2005. Micromixers—a review on passive and active mixing principles. Chem. Eng. Sci. 60:2479–501 [Google Scholar]
  71. Kockmann N, Gottsponer M, Roberge DM. 71.  2011. Scale-up concept of single-channel microreactors from process development to industrial production. Chem. Eng. J. 167:718–26 [Google Scholar]
  72. Kockmann N, Kiefer T, Engler M, Woias P. 72.  2006. Convective mixing and chemical reactions in microchannels with high flow rates. Sens. Actuators B: Chem. 117:495–508 [Google Scholar]
  73. Faridkhou A, Larachi F. 73.  2014. Two-phase flow hydrodynamic study in micro-packed beds—effect of bed geometry and particle size. Chem. Eng. Proc.: Proc. Intensif. 78:27–36 [Google Scholar]
  74. Tourvieille J-N, Philippe R, de Bellefon C. 74.  2015. Milli-channel with metal foams under an applied gas–liquid periodic flow: flow patterns, residence time distribution and pulsing properties. Chem. Eng. Sci. 126:406–26 [Google Scholar]
  75. Yang L, Shi Y, Abolhasani M, Jensen KF. 75.  2015. Characterization and modeling of multiphase flow in structured microreactors: a post microreactor case study. Lab Chip 15:3232–41 [Google Scholar]
  76. Zhao C-X, Middelberg APJ. 76.  2011. Two-phase microfluidic flows. Chem. Eng. Sci. 66:1394–411 [Google Scholar]
  77. Falk L, Commenge JM. 77.  2010. Performance comparison of micromixers. Chem. Eng. Sci. 65:405–11 [Google Scholar]
  78. Nieves-Remacha MJ, Kulkarni AA, Jensen KF. 78.  2012. Hydrodynamics of liquid–liquid dispersion in an advanced-flow reactor. Ind. Eng. Chem. Res. 51:16251–62 [Google Scholar]
  79. Dong Z, Yao C, Zhang Y, Chen G, Yuan Q, Xu J. 79.  2016. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors. AIChE J 62:1294–307 [Google Scholar]
  80. Jung JH, Destgeer G, Ha B, Park J, Sung HJ. 80.  2016. On-demand droplet splitting using surface acoustic waves. Lab Chip 16:3235–43 [Google Scholar]
  81. Oddy MH, Santiago JG, Mikkelsen JC. 81.  2001. Electrokinetic instability micromixing. Anal. Chem. 73:5822–32 [Google Scholar]
  82. Chung Y-C, Wu C-M, Lin S-H. 82.  2016. Particles sorting in micro channel using designed micro electromagnets of magnetic field gradient. J. Magn. Magn. Mater. 407:209–17 [Google Scholar]
  83. Nguyen N-T, Wu Z. 83.  2005. Micromixers—a review. J. Micromech. Microeng. 15:R1–16 [Google Scholar]
  84. Aubin J, Ferrando M, Jiricny V. 84.  2010. Current methods for characterising mixing and flow in microchannels. Chem. Eng. Sci. 65:2065–93 [Google Scholar]
  85. Lin XY, Wang K, Zhang JS, Luo GS. 85.  2015. Liquid–liquid mixing enhancement rules by microbubbles in three typical micro-mixers. Chem. Eng. Sci. 127:60–71 [Google Scholar]
  86. Fournier MC, Falk L, Villermaux J. 86.  1996. A new parallel competing reaction system for assessing micromixing efficiency—determination of micromixing time by a simple mixing model. Chem. Eng. Sci. 51:5187–92 [Google Scholar]
  87. Fournier MC, Falk L, Villermaux J. 87.  1996. A new parallel competing reaction system for assessing micromixing efficiency—experimental approach. Chem. Eng. Sci. 51:5053–64 [Google Scholar]
  88. Zhang JS, Wang K, Lu YC, Luo GS. 88.  2010. Characterization and modeling of micromixing performance in micropore dispersion reactors. Chem. Eng. Proc.: Proc. Intensif. 49:740–47 [Google Scholar]
  89. Hoffmann M, Schlüter M, Räbiger N. 89.  2006. Experimental investigation of liquid–liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV. Chem. Eng. Sci. 61:2968–76 [Google Scholar]
  90. Lin X, Zhang J, Wang K, Luo G. 90.  2016. Determination of the micromixing scale in a microdevice by numerical simulation and experiments. Chem. Eng. Technol. 39:909–17 [Google Scholar]
  91. Zhao S, Riaud A, Luo G, Jin Y, Cheng Y. 91.  2015. Simulation of liquid mixing inside micro-droplets by a lattice Boltzmann method. Chem. Eng. Sci. 131:118–28 [Google Scholar]
  92. Schwolow S, Hollmann J, Schenkel B, Röder T. 92.  2012. Application-oriented analysis of mixing performance in microreactors. Org. Proc. Res. Dev. 16:1513–22 [Google Scholar]
  93. Nagy KD, Shen B, Jamison TF, Jensen KF. 93.  2012. Mixing and dispersion in small-scale flow systems. Org. Proc. Res. Dev. 16:976–81 [Google Scholar]
  94. Yue J, Chen G, Yuan Q, Luo L, Gonthier Y. 94.  2007. Hydrodynamics and mass transfer characteristics in gas–liquid flow through a rectangular microchannel. Chem. Eng. Sci. 62:2096–108 [Google Scholar]
  95. Thorsen T, Roberts RW, Arnold FH, Quake SR. 95.  2001. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86:4163–66 [Google Scholar]
  96. Umbanhowar PB, Prasad V, Weitz DA. 96.  2000. Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16:347–51 [Google Scholar]
  97. Xu JH, Li SW, Tan J, Luo GS. 97.  2008. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid. Nanofluid. 5:711–17 [Google Scholar]
  98. Castro-Hernández E, Gundabala V, Fernández-Nieves A, Gordillo JM. 98.  2009. Scaling the drop size in coflow experiments. N. J. Phys. 11:075021 [Google Scholar]
  99. Tan J, Li SW, Wang K, Luo GS. 99.  2009. Gas–liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route. Chem. Eng. J. 146:428–33 [Google Scholar]
  100. Nieves-Remacha MJ, Kulkarni AA, Jensen KF. 100.  2013. Gas–liquid flow and mass transfer in an advanced-flow reactor. Ind. Eng. Chem. Res. 52:8996–9010 [Google Scholar]
  101. Pennemann H, Hardt S, Hessel V, Löb P, Weise F. 101.  2005. Micromixer based liquid/liquid dispersion. Chem. Eng. Technol. 28:501–8 [Google Scholar]
  102. Wu K-J, Nappo V, Kuhn S. 102.  2015. Hydrodynamic study of single- and two-phase flow in an advanced-flow reactor. Ind. Eng. Chem. Res. 54:7554–64 [Google Scholar]
  103. Wang X, Liu G, Wang K, Luo G. 103.  2015. Measurement of internal flow field during droplet formation process accompanied with mass transfer. Microfluid. Nanofluid. 19:757–66 [Google Scholar]
  104. Shao H, Y, Wang K, Luo G. 104.  2012. An experimental study of liquid-liquid microflow pattern maps accompanied with mass transfer. Chin. J. Chem. Eng. 20:18–26 [Google Scholar]
  105. Ward T, Faivre M, Stone HA. 105.  2010. Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction. Langmuir 26:9233–39 [Google Scholar]
  106. Kashid MN, Renken A, Kiwi-Minsker L. 106.  2011. Gas–liquid and liquid–liquid mass transfer in microstructured reactors. Chem. Eng. Sci. 66:3876–97 [Google Scholar]
  107. Charpentier J-C. 107.  1981. Mass-transfer rates in gas-liquid absorbers and reactors. Adv. Chem. Eng. 11:1–133 [Google Scholar]
  108. Ganapathy H, Shooshtari A, Dessiatoun S, Ohadi MM, Alshehhi M. 108.  2015. Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes. Chem. Eng. J. 266:258–70 [Google Scholar]
  109. Yang L, Tan J, Wang K, Luo G. 109.  2014. Mass transfer characteristics of bubbly flow in microchannels. Chem. Eng. Sci. 109:306–14 [Google Scholar]
  110. Verma RP, Sharma MM. 110.  1975. Mass transfer in packed liquid–liquid extraction columns. Chem. Eng. Sci. 30:279–92 [Google Scholar]
  111. Kashid MN, Renken A, Kiwi-Minsker L. 111.  2011. Influence of flow regime on mass transfer in different types of microchannels. Ind. Eng. Chem. Res. 50:6906–14 [Google Scholar]
  112. Kockmann N, Karlen S, Girard C, Roberge DM. 112.  2013. Liquid–liquid test reactions to characterize two-phase mixing in microchannels. Heat Transfer Eng 34:169–77 [Google Scholar]
  113. Born S, O'Neal E, Jensen KF. 113.  2014. Organic synthesis in small scale continuous flow: flow chemistry. Comprehensive Organic Synthesis 9 P Knochel, GA Molander 54–93 Waltham, MA: Elsevier, 2nd ed.. [Google Scholar]
  114. Hartman RL, McMullen JP, Jensen KF. 114.  2011. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 50:7502–19 [Google Scholar]
  115. Zhang C, Zhang J, Luo G. 115.  2016. Kinetic study and intensification of acetyl guaiacol nitration with nitric acid—acetic acid system in a microreactor. J. Flow Chem. 6:309–14 [Google Scholar]
  116. Zuidhof KT, de Croon MHJM, Schouten JC. 116.  2010. Beckmann rearrangement of cyclohexanone oxime to ϵ-caprolactam in microreactors. AIChE J 56:1297–304 [Google Scholar]
  117. Haber J, Jiang B, Maeder T, Borhani N, Thome J. 117.  et al. 2014. Intensification of highly exothermic fast reaction by multi-injection microstructured reactor. Chem. Eng. Proc.: Proc. Intensif. 84:14–23 [Google Scholar]
  118. Noël T, Su Y, Hessel V. 118.  2015. Beyond organometallic flow chemistry: the principles behind the use of continuous-flow reactors for synthesis. Top Organomet. Chem. 57:1–41 [Google Scholar]
  119. Kockmann N, Roberge DM. 119.  2011. Scale-up concept for modular microstructured reactors based on mixing, heat transfer, and reactor safety. Chem. Eng. Proc.: Proc. Intensif. 50:1017–26 [Google Scholar]
  120. Al-Rawashdeh M, Zalucky J, Müller C, Nijhuis TA, Hessel V, Schouten JC. 120.  2013. Phenylacetylene hydrogenation over [Rh(NBD)(PPh3)2]BF4 catalyst in a numbered-up microchannels reactor. Ind. Eng. Chem. Res. 52:11516–26 [Google Scholar]
  121. Wang K, Lu Y, Luo G. 121.  2014. Strategy for scaling-up of a microsieve dispersion reactor. Chem. Eng. Technol. 37:2116–22 [Google Scholar]
  122. Li S, Xu J, Wang Y, Luo G. 122.  2009. Liquid-liquid two-phase flow in pore array microstructured devices for scaling-up of nanoparticle preparation. AIChE J 55:3041–51 [Google Scholar]
  123. Wang K, Lu YC, Xu JH, Luo GS. 123.  2010. Droplet generation in micro-sieve dispersion device. Microfluid. Nanofluid. 10:1087–95 [Google Scholar]
  124. Zheng C, Zhao B, Wang K, Luo G. 124.  2015. Bubble generation rules in microfluidic devices with microsieve array as dispersion medium. AIChE J 61:1663–76 [Google Scholar]
  125. Krummradt H, Koop U, Stoldt J. 125.  2000. Experiences with the use of microreactors in organic synthesis. Microreaction Technology: Industrial Prospects W Ehrfeld 181–86 Berlin: Springer [Google Scholar]
  126. Sotowa K-I, Sugiyama S, Nakagawa K. 126.  2009. Flow uniformity in deep microchannel reactor under high throughput conditions. Org. Proc. Res. Dev. 13:1026–31 [Google Scholar]
  127. Liu G, Wang K, Lu Y, Luo G. 127.  2014. Liquid–liquid microflows and mass transfer performance in slit-like microchannels. Chem. Eng. J. 258:34–42 [Google Scholar]
  128. Calabrese GS, Pissavini S. 128.  2011. From batch to continuous flow processing in chemicals manufacturing. AIChE J 57:828–34 [Google Scholar]
  129. Zaborenko N, Bedore MW, Jamison TF, Jensen KF. 129.  2011. Kinetic and scale-up investigations of epoxide aminolysis in microreactors at high temperatures and pressures. Org. Proc. Res. Dev. 15:131–39 [Google Scholar]
  130. Sahoo HR, Kralj JG, Jensen KF. 130.  2007. Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angew. Chem. Int. Ed. 46:5704–8 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060816-101443
Loading
/content/journals/10.1146/annurev-chembioeng-060816-101443
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error