The present review deals with recent advances in the rapidly growing field of aerogel research and technology. The major focus of the review lies in approaches that allow tailoring of aerogel properties to meet application-driven requirements. The decisive properties of aerogels are discussed with regard to existing and potential application areas. Various tailoring strategies, such as modulation of the pore structure, coating, surface modification, and post-treatment, are illustrated by results of the last decade. In view of commercialization of aerogel-based products, a panorama of current industrial aerogel suppliers is given, along with a discussion of possible alternative sources for raw materials and precursors. Finally, growing points and perspectives of the aerogel field are summarized.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kistler SS. 1.  1931. Coherent expanded aerogels and jellies. Nature 127:741 [Google Scholar]
  2. Mulik S, Sotiriou-Leventis C, Churu G, Lu H, Leventis N. 2.  2008. Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization. Chem. Mater. 20:155035–46 [Google Scholar]
  3. Everett DH. 3.  2009. Manual of symbols and terminology for physicochemical quantities and units, Appendix II: definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem. 31:577–638 [Google Scholar]
  4. Leventis N, Sadekar A, Chandrasekaran N, Sotiriou-Leventis C. 4.  2010. Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks. Chem. Mater. 22:92790–803 [Google Scholar]
  5. Liebner F, Aigner N, Schimper C, Potthast A, Rosenau T. 5.  2012. Bacterial cellulose aerogels: from lightweight dietary food to functional materials. Funct. Mater. Renew. Sources 1107:57–74 [Google Scholar]
  6. 6. PR Newswire 2012. Aerogel market - by form & application (building insulation, oil & gas, aerospace, automotive, industrial & cryogenic) - global trends & forecasts up till 2017 News Release, July 5 [Google Scholar]
  7. Venkataraman M, Mishra R, Kotresh TM, Militky J, Jamshaid H. 7.  2016. Aerogels for thermal insulation in high-performance textiles. Text. Prog. 48:255–118 [Google Scholar]
  8. Koebel M, Rigacci A, Achard P. 8.  2012. Aerogel-based thermal superinsulation: an overview. J. Sol-Gel Sci. Technol. 63:3315–39 [Google Scholar]
  9. Ulker Z, Erkey C. 9.  2014. An emerging platform for drug delivery: aerogel based systems. J. Control. Release 177:51–63 [Google Scholar]
  10. Maleki H, Durães L, García-González CA, del Gaudio P, Portugal A, Mahmoudi M. 10.  2016. Synthesis and biomedical applications of aerogels: possibilities and challenges. Adv. Colloid Interface Sci. 236:1–27 [Google Scholar]
  11. Mikkonen KS, Parikka K, Ghafar A, Tenkanen M. 11.  2013. Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci. Technol. 34:2124–36 [Google Scholar]
  12. Titirici M-M, White RJ, Brun N, Budarin VL, Su DS. 12.  et al. 2014. Sustainable carbon materials. Chem. Soc. Rev. 44:1250–90 [Google Scholar]
  13. Araby S, Qiu A, Wang R, Zhao Z, Wang C-H, Ma J. 13.  2016. Aerogels based on carbon nanomaterials. J. Mater. Sci. 51:209157–89 [Google Scholar]
  14. Gaponik N, Herrmann A-K, Eychmüller A. 14.  2012. Colloidal nanocrystal-based gels and aerogels: material aspects and application perspectives. J. Phys. Chem. Lett. 3:18–17 [Google Scholar]
  15. Zhu C, Du D, Eychmüller A, Lin Y. 15.  2015. Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 115:168896–943 [Google Scholar]
  16. Maleki H. 16.  2016. Recent advances in aerogels for environmental remediation applications: a review. Chem. Eng. J. 300:98–118 [Google Scholar]
  17. He Y, Li J, Luo K, Li L, Chen J, Li J. 17.  2016. Engineering reduced graphene oxide aerogel produced by effective γ-ray radiation-induced self-assembly and its application for continuous oil-water separation. Ind. Eng. Chem. Res. 55:133775–81 [Google Scholar]
  18. Aegerter MA, Leventis N, Koebel MM. 18.  2011. Aerogels Handbook New York: Springer929 [Google Scholar]
  19. Laskowski J, Milow B, Ratke L. 19.  2016. Aerogel-aerogel composites for normal temperature range thermal insulations. J. Non-Cryst. Solids. 441:42–48 [Google Scholar]
  20. Madyan OA, Fan M, Feo L, Hui D. 20.  2016. Physical properties of clay aerogel composites: an overview. Compos. B Eng. 102:29–37 [Google Scholar]
  21. Cuce E, Cuce PM, Wood CJ, Riffat SB. 21.  2014. Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew. Sustain. Energy Rev. 34:273–99 [Google Scholar]
  22. Berardi U. 22.  2015. The development of a monolithic aerogel glazed window for an energy retrofitting project. Appl. Energ. 154:603–15 [Google Scholar]
  23. Garay Martinez R, Goiti E, Reichenauer G, Zhao S, Koebel M, Barrio A. 23.  2016. Thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale. Energy Build 128:111–18 [Google Scholar]
  24. García-González CA, Alnaief M, Smirnova I. 24.  2011. Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 86:41425–38 [Google Scholar]
  25. Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP. 25.  et al. 2015. Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit. Fluids 106:152–59 [Google Scholar]
  26. Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP. 26.  et al. 2015. Novel non-cytotoxic alginate-lignin hybrid aerogels as scaffolds for tissue engineering. J. Supercrit. Fluids 105:1–8 [Google Scholar]
  27. Barros AA, Rita A, Duarte C, Pires RA, Sampaio-Marques B. 27.  et al. 2015. Bioresorbable ureteral stents from natural origin polymers. J. Biomed. Mater. Res. B Appl. Biomater 1033608–17 [Google Scholar]
  28. Sabri F, Cole JA, Scarbrough MC, Leventis N. 28.  2012. Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study. PLOS ONE 7:3e33242 [Google Scholar]
  29. Sabri F, Gerth D, Tamula G-RM, Phung T-CN, Lynch KJ, Boughter JD Jr. 29.  2014. Novel technique for repair of severed peripheral nerves in rats using polyurea crosslinked silica aerogel scaffold. J. Investig. Surg. 27:294–303 [Google Scholar]
  30. Lorant R. 30.  2014. Cosmetic composition comprising silica aerogel particles, a gemini surfactant and a solid fatty substance. US Patent No. 20140302105 A1
  31. Quignard F, Valentin R, Di Renzo F. 31.  2008. Aerogel materials from marine polysaccharides. N. J. Chem. 32:81300 [Google Scholar]
  32. Smith LC, Anderson AM, Carroll MK. 32.  2015. Preparation of vanadia-containing aerogels by rapid supercritical extraction for applications in catalysis. J. Sol-Gel Sci. Technol. 77:1160–71 [Google Scholar]
  33. Bruno BA, Anderson AM, Carroll M, Swanton T, Brockmann P. 33.  et al. 2016. Benchtop scale testing of aerogel catalysts: preliminary results Tech. Pap. No. 2016–01–0920 SAE Int Warrendale, PA: [Google Scholar]
  34. Liu W, Herrmann A-K, Bigall NC, Rodriguez P, Wen D. 34.  et al. 2015. Noble metal aerogels—synthesis, characterization, and application as electrocatalysts. Acc. Chem. Res. 48:2154–62 [Google Scholar]
  35. Zuo L, Zhang Y, Zhang L, Miao Y-E, Fan W, Liu T. 35.  2015. Polymer/carbon-based hybrid aerogels: preparation, properties and applications. Materials 8:106806–48 [Google Scholar]
  36. Wen D, Liu W, Herrmann A-K, Eychmüller A. 36.  2014. A membraneless glucose/O2 biofuel cell based on Pd aerogels. Chemistry 20:154380–85 [Google Scholar]
  37. de Freitas JN, Alves JPC, Korala L, Brock SL, Nogueira AF. 37.  2012. Hybrid photovoltaic devices based on chalcogenide nanostructures. SPIE Proc8477 [Google Scholar]
  38. Rolison DR, Nazar LF. 38.  2011. Electrochemical energy storage to power the 21st century. MRS Bull 36:7486–93 [Google Scholar]
  39. D'Elia D, Beauger C, Hochepied J-F, Rigacci A, Berger M-H. 39.  et al. 2011. Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: nanoparticles, nanotubes and aerogels. Int. J. Hydrog. Energy 36:2214360–73 [Google Scholar]
  40. Barão CE, de Paris LD, Dantas JH, Pereira MM, Filho LC. 40.  et al. 2013. Characterization of biocatalysts prepared with Thermomyces lanuginosus lipase and different silica precursors, dried using aerogel and xerogel techniques. Appl. Biochem. Biotechnol. 172:1263–74 [Google Scholar]
  41. Karout A, Buisson P, Perrard A, Pierre AC. 41.  2005. Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts. J. Sol-Gel Sci. Technol. 36:2163–71 [Google Scholar]
  42. Buisson P, Hernandez C, Pierre M, Pierre AC. 42.  2001. Encapsulation of lipases in aerogels. J. Non-Cryst. Solids. 285:1295–302 [Google Scholar]
  43. Hu P, Tan B, Long M. 43.  2016. Advanced nanoarchitectures of carbon aerogels for multifunctional environmental applications. Nanotechnol. Rev. 5:123–39 [Google Scholar]
  44. Wang B, Yan S, Lin Z, Shi Y, Xu X. 44.  et al. 2016. Fabrication of graphene aerogel/platinum nanoparticle hybrids for the direct electrochemical analysis of glucose. J. Nanosci. Nanotechnol. 16:76895–902 [Google Scholar]
  45. Yu Z, Kou Y, Dai Y, Wang X, Wei H, Xia D. 45.  2015. Direct electrochemistry of glucose oxidase on a three-dimensional porous zirconium phosphate-carbon aerogel composite. Electrocatalysis 6:4341–47 [Google Scholar]
  46. Harley-Trochimczyk A, Pham T, Chang J, Chen E, Worsley MA. 46.  et al. 2016. Platinum nanoparticle loading of boron nitride aerogel and its use as a novel material for low-power catalytic gas sensing. Adv. Funct. Mater. 26:3433–39 [Google Scholar]
  47. Long H, Harley-Trochimczyk A, Pham T, Tang Z, Shi T. 47.  et al. 2016. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26:285158–65 [Google Scholar]
  48. Wörmeyer K, Smirnova I. 48.  2014. Breakthrough measurements of CO2 through aminofunctionalised aerogel adsorbent at low partial pressure: experiment and modeling. Microporous Mesoporous Mater 184:61–69 [Google Scholar]
  49. Chaudhary JP, Vadodariya N, Nataraj SK, Meena R. 49.  2015. Chitosan-based aerogel membrane for robust oil-in-water emulsion separation. ACS Appl. Mater. Interfaces 7:4424957–62 [Google Scholar]
  50. Li GR, Wang QQ, Liu BH, Li ZP. 50.  2015. Porous carbon as anode catalyst support to improve borohydride utilization in a direct borohydride fuel cell. Fuel Cells 15:2270–77 [Google Scholar]
  51. Zhao S, Jiang B, Maeder T, Muralt P, Kim N. 51.  et al. 2015. Dimensional and structural control of silica aerogel membranes for miniaturized motionless gas pumps. ACS Appl. Mater. Interfaces 7:3318803–14 [Google Scholar]
  52. Fickler S, Milow B, Ratke L, Schnellenbach-Held M, Welsch T. 52.  2015. Development of high performance aerogel concrete. Energy Procedia 78:406–11 [Google Scholar]
  53. Feinle A, Elsaesser MS, Hüsing N. 53.  2016. Sol-gel synthesis of monolithic materials with hierarchical porosity. Chem. Soc. Rev. 45:123377–99 [Google Scholar]
  54. Feinle A, Hüsing N. 54.  2015. Mixed metal oxide aerogels from tailor-made precursors. J. Supercrit. Fluids 106:2–8 [Google Scholar]
  55. Kanamori K, Nakanishi K. 55.  2011. Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem. Soc. Rev. 40:2754–70 [Google Scholar]
  56. Huesing N, Raab C, Torma V, Roig A, Peterlik H. 56.  2003. Periodically mesostructured silica monoliths from diol-modified silanes. Chem. Mater. 15:142690–92 [Google Scholar]
  57. Biswas M, Dinda E, Paira TK, Roy M, Mandal TK. 57.  2013. Gelation of amino acid-based amphiphiles in water-based mixed solvent systems: reusable catalytic templates for nanostructured silica and silica-zirconia photocatalyst. Soft Matter 9:215293–304 [Google Scholar]
  58. Liu G, Zhou B, Du A, Shen J, Wu G. 58.  2013. Greatly strengthened silica aerogels via co-gelation of binary sols with different concentrations: a method to control the microstructure of the colloids. Colloids Surf. A Physicochem. Eng. Asp. 436:763–74 [Google Scholar]
  59. García-González CA, Uy JJ, Alnaief M, Smirnova I. 59.  2012. Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr. Polym. 88:41378–86 [Google Scholar]
  60. Raman SP, Gurikov P, Smirnova I. 60.  2015. Hybrid alginate based aerogels by carbon dioxide induced gelation: novel technique for multiple applications. J. Supercrit. Fluids 106:23–33 [Google Scholar]
  61. Gurikov P, Raman S, Weinrich D, Fricke M, Smirnova I. 61.  2015. A novel approach to alginate aerogels: carbon dioxide induced gelation. RSC Adv 5:7812–18 [Google Scholar]
  62. Subrahmanyam R, Gurikov P, Dieringer P, Sun M, Smirnova I. 62.  2015. On the road to biopolymer aerogels—dealing with the solvent. Gels 1:2291–313 [Google Scholar]
  63. Borisova A, De Bruyn M, Budarin VL, Shuttleworth PS, Dodson JR. 63.  et al. 2015. A sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity. Macromol. Rapid Commun. 36:774–79 [Google Scholar]
  64. Pons A, Casas L, Estop E, Molins E, Harris KDM, Xu M. 64.  2012. A new route to aerogels: monolithic silica cryogels. J. Non-Cryst. Solids 358:3461–69 [Google Scholar]
  65. Buchtová N, Budtova T. 65.  2016. Cellulose aero-, cryo- and xerogels: towards understanding of morphology control. Cellulose 23:2585–95 [Google Scholar]
  66. Ganesan K, Dennstedt A, Barowski A, Ratke L. 66.  2016. Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater. Des. 92:345–55 [Google Scholar]
  67. Betz M, García-González CA, Subrahmanyam RP, Smirnova I, Kulozik U. 67.  2012. Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J. Supercrit. Fluids 72:111–19 [Google Scholar]
  68. Aravind PR, Ratke L, Kolbe M, Soraru GD. 68.  2013. Gels dried under supercritical and ambient conditions: a comparative study and their subsequent conversion to silica-carbon composite aerogels. J. Sol-Gel Sci. Technol. 67:3592–600 [Google Scholar]
  69. Koebel MM, Huber L, Zhao S, Malfait WJ. 69.  2016. Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale. J. Sol-Gel Sci. Technol. 79:2308–18 [Google Scholar]
  70. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ. 70.  2006. Processing routes to macroporous ceramics: a review. J. Am. Ceram. Soc. 89:61771–89 [Google Scholar]
  71. Kumar BVM, Kim Y-W. 71.  2010. Processing of polysiloxane-derived porous ceramics: a review. Sci. Technol. Adv. Mater. 11:444303 [Google Scholar]
  72. Casula MF, Loche D, Marras S, Paschina G, Corrias A. 72.  2007. Role of urea in the preparation of highly porous nanocomposite aerogels. Langmuir 23:73509–12 [Google Scholar]
  73. Sisk CN, Hope-Weeks LJ. 73.  2008. Copper(II) aerogels via 1, 2-epoxide gelation. J. Mater. Chem. 18:222607–10 [Google Scholar]
  74. Shobe AM, Gill SK, Hope-Weeks LJ. 74.  2010. Monolithic CuO-NiO aerogels via an epoxide addition route. J. Non-Cryst. Solids 356:25–271337–43 [Google Scholar]
  75. Agulhon P, Constant S, Chiche B, Lartigue L, Larionova J. 75.  et al. 2012. Controlled synthesis from alginate gels of cobalt-manganese mixed oxide nanocrystals with peculiar magnetic properties. Catal. Today 189:149–54 [Google Scholar]
  76. Horga R, Di Renzo F, Quignard F. 76.  2007. Ionotropic alginate aerogels as precursors of dispersed oxide phases. Appl. Catal. Gen. 325:2251–55 [Google Scholar]
  77. Visinescu D, Patrinoiu G, Tirsoaga A, Carp O. 77.  2012. Polysaccharides route: a new green strategy for metal oxides synthesis. Environmental Chemistry for a Sustainable World E Lichtfouse, J Schwarzbauer, D Robert 119–69 Dordrecht, Neth.: Springer [Google Scholar]
  78. Loy DA, Buss RJ, Assink RA, Shea KJ, Oviatt H. 78.  1994. Engineering of porosity in amorphous materials: plasma oxidation of hydrocarbon templates in polysilsesquioxanes. Proc. 1449 MRS Spring Meet., April 4–8, San Francisco825–29 Warrendale, PA: Mater. Res. Soc. [Google Scholar]
  79. Zhang J, Palaniappan A, Su X, Tay FEH. 79.  2005. Mesoporous silica thin films prepared by argon plasma treatment of sol-gel-derived precursor. Appl. Surf. Sci. 245:1–4304–9 [Google Scholar]
  80. Giray S, Bal T, Kartal AM, Kızılel S, Erkey C. 80.  2012. Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J. Biomed. Mater. Res 100A51307–15 [Google Scholar]
  81. Nakayama H, Yamada K, Sakai Y, Yamada M. 81.  2011. Method for producing silica aerogel coating. US Patent No. 8029871 B2
  82. Veronovski A, Knez Ž, Novak Z. 82.  2013. Preparation of multi-membrane alginate aerogels used for drug delivery. J. Supercrit. Fluids 79:209–15 [Google Scholar]
  83. Ulker Z, Erkey C. 83.  2014. A novel hybrid material: an inorganic silica aerogel core encapsulated with a tunable organic alginate aerogel layer. RSC Adv 4:62362–66 [Google Scholar]
  84. De Cicco F, Russo P, Reverchon E, García-González CA, Aquino RP, Del Gaudio P. 84.  2016. Prilling and supercritical drying: a successful duo to produce core-shell polysaccharide aerogel beads for wound healing. Carbohydr. Polym. 147:482–89 [Google Scholar]
  85. Schestakow M, Muench F, Reimuth C, Ratke L, Ensinger W. 85.  2016. Electroless synthesis of cellulose-metal aerogel composites. Appl. Phys. Lett. 108:21213108 [Google Scholar]
  86. Subra-Paternault P, Vrel D, Roy C. 86.  2012. Coprecipitation on slurry to prepare drug-silica-polymer formulations by compressed antisolvent. J. Supercrit. Fluids. 63:69–80 [Google Scholar]
  87. Murillo-Cremaes N, Subra-Paternault P, Saurina J, Roig A, Domingo C. 87.  2014. Compressed antisolvent process for polymer coating of drug-loaded aerogel nanoparticles and study of the release behavior. Colloid Polym. Sci. 292:102475–84 [Google Scholar]
  88. Pircher N, Fischhuber D, Carbajal L, Strauß C, Nedelec J-M. 88.  et al. 2015. Preparation and reinforcement of dual-porous biocompatible cellulose scaffolds for tissue engineering. Macromol. Mater. Eng. 300:911–24 [Google Scholar]
  89. Pircher N, Veigel S, Aigner N, Nedelec JM, Rosenau T, Liebner F. 89.  2014. Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydr. Polym. 111:505–13 [Google Scholar]
  90. Sanli D, Erkey C. 90.  2013. Monolithic composites of silica aerogels by reactive supercritical deposition of hydroxy-terminated poly(dimethylsiloxane). ACS Appl. Mater. Interfaces 5:2211708–17 [Google Scholar]
  91. Plawsky JL, Littman H, Paccione JD. 91.  2010. Design, simulation, and performance of a draft tube spout fluid bed coating system for aerogel particles. Powder Technol 199:2131–38 [Google Scholar]
  92. Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I. 92.  2012. A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–73 [Google Scholar]
  93. Antonyuk S, Heinrich S, Smirnova I. 93.  2012. Discrete element study of aerogel particle dynamics in a spouted bed apparatus. Chem. Eng. Technol. 35:81427–34 [Google Scholar]
  94. Antonyuk S, Heinrich S, Gurikov P, Raman S, Smirnova I. 94.  2015. Influence of coating and wetting on the mechanical behaviour of highly porous cylindrical aerogel particles. Powder Technol 285:34–43 [Google Scholar]
  95. Hamann TW, Martinson ABF, Elam JW, Pellin MJ, Hupp JT. 95.  2008. Atomic layer deposition of TiO2 on aerogel templates: new photoanodes for dye-sensitized solar cells. J. Phys. Chem. C 112:2710303–7 [Google Scholar]
  96. Franzel L, Wingfield C, Bertino MF, Mahadik-Khanolkar S, Leventis N. 96.  2013. Regioselective cross-linking of silica aerogels with magnesium silicate ceramics. J. Mater. Chem. A 1:6021–29 [Google Scholar]
  97. Wörmeyer K, Alnaief M, Smirnova I. 97.  2012. Amino functionalised silica-aerogels for CO2-adsorption at low partial pressure. Adsorption 18:163–71 [Google Scholar]
  98. Feinle A, Leichtfried F, Straßer S, Hüsing N. 98.  2016. Carboxylic acid-functionalized porous silica particles by a co-condensation approach. J. Sol-Gel Sci. Technol. 2016:1–9 [Google Scholar]
  99. Lin Y, Ehlert GJ, Bukowsky C, Sodano HA. 99.  2011. Superhydrophobic functionalized graphene aerogels. ACS Appl. Mater. Interfaces 3:72200–3 [Google Scholar]
  100. Nardecchia S, Carriazo D, Ferrer ML, Gutiérrez MC, del Monte F. 100.  2012. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42:2794–830 [Google Scholar]
  101. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM. 101.  2002. Nanoengineering strong silica aerogels. Nano Lett 2:9957–60 [Google Scholar]
  102. Kim KH, Oh Y, Islam MF. 102.  2012. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 7:9562–66 [Google Scholar]
  103. Dong Z, Zhang F, Wang D, Liu X, Jin J. 103.  2015. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J. Solid State Chem. 224:88–93 [Google Scholar]
  104. Subra-Paternault P, Domingo C. 104.  2015. ScCO2 techniques for surface modification of micro- and nanoparticles. Surface Modification of Nanoparticle and Natural Fiber Fillers V Mittal 109–50 Weinheim, Ger: Wiley [Google Scholar]
  105. Sanli D, Erkey C. 105.  2015. Silylation from supercritical carbon dioxide: a powerful technique for modification of surfaces. J. Mater. Sci. 50:227159–81 [Google Scholar]
  106. Murillo-Cremaes N, López-Periago AM, Saurina J, Roig A, Domingo C. 106.  2010. A clean and effective supercritical carbon dioxide method for the host-guest synthesis and encapsulation of photoactive molecules in nanoporous matrices. Green Chem 12:122196–204 [Google Scholar]
  107. Smirnova I, Suttiruengwong S, Arlt W. 107.  2004. Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J. Non-Cryst. Solids 350:54–60 [Google Scholar]
  108. Gorle BSK, Smirnova I, Arlt W. 108.  2010. Adsorptive crystallization of benzoic acid in aerogels from supercritical solutions. J. Supercrit. Fluids 52:3249–57 [Google Scholar]
  109. Lee K-H, Kim S-Y, Yoo K-P. 109.  1995. Low-density, hydrophobic aerogels. J. Non-Cryst. Solids 186:18–22 [Google Scholar]
  110. Ma Q, Liu Y, Dong Z, Wang J, Hou X. 110.  2015. Hydrophobic and nanoporous chitosan-silica composite aerogels for oil absorption. J. Appl. Polym. Sci. 132:15 [Google Scholar]
  111. Aulin C, Netrval J, Wågberg L, Lindström T. 111.  2010. Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:143298–305 [Google Scholar]
  112. Boday DJ, Stover RJ, Muriithi B, Keller MW, Wertz JT. 112.  et al. 2009. Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels. ACS Appl. Mater. Interfaces 1:71364–69 [Google Scholar]
  113. Obrey KAD, Wilson KV, Loy DA. 113.  2011. Enhancing mechanical properties of silica aerogels. J. Non-Cryst. Solids 357:19–203435–41 [Google Scholar]
  114. Baumann TF, Biener J, Wang YM, Kucheyev SO, Nelson EJ. 114.  et al. 2006. Atomic layer deposition of uniform metal coatings on highly porous aerogel substrates. Chem. Mater. 18:266106–8 [Google Scholar]
  115. Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RHA. 115.  2011. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano 5:31967–74 [Google Scholar]
  116. Cheng Y, Lu L, Zhang W, Shi J, Cao Y. 116.  2012. Reinforced low density alginate-based aerogels: Preparation, hydrophobic modification and characterization. Carbohydr. Polym. 88:31093–99 [Google Scholar]
  117. Shi J, Lu L, Guo W, Zhang J, Cao Y. 117.  2013. Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels. Carbohydr. Polym. 98:1282–89 [Google Scholar]
  118. Shi J, Lu L, Guo W, Sun Y, Cao Y. 118.  2013. An environment-friendly thermal insulation material from cellulose and plasma modification. J. Appl. Polym. Sci. 130:53652–58 [Google Scholar]
  119. Lin R, Li A, Zheng T, Lu L, Cao Y. 119.  2015. Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv 5:10082027–33 [Google Scholar]
  120. Ghosal S, Baumann TF, King JS, Kucheyev SO, Wang Y. 120.  et al. 2009. Controlling atomic layer deposition of TiO2 in aerogels through surface functionalization. Chem. Mater. 21:91989–92 [Google Scholar]
  121. Tao W-H, Chang K-S, Chung T-W, Chang Y-N. 121.  2004. Surface properties and adsorption breakthrough curves of plasma-treated silica gels. Chem. Eng. Commun. 191:5682–93 [Google Scholar]
  122. Tan X, Lv P, Yu K, Ni Y, Tao Y. 122.  et al. 2016. Improving the cyclability of lithium-sulfur batteries by coating PPy onto the graphene aerogel-supported sulfur. RSC Adv 6:5145562–68 [Google Scholar]
  123. El Kadib A, Bousmina M. 123.  2012. Chitosan bio-based organic-inorganic hybrid aerogel microspheres. Chem. Eur. J. 18:278264–77 [Google Scholar]
  124. Miller JB, Johnston ST, Ko EI. 124.  1994. Effect of prehydrolysis on the textural and catalytic properties of titania-silica aerogels. J. Catal. 150:2311–20 [Google Scholar]
  125. Brodzik K, Walendziewski J, Stolarski M, Ginneken LV, Elst K, Meynen V. 125.  2007. The influence of preparation method on the physicochemical properties of titania-silica aerogels: part two. J. Porous Mater. 15:5541–49 [Google Scholar]
  126. Flaig S, Akbarzadeh J, Dolcet P, Gross S, Peterlik H, Hüsing N. 126.  2014. Hierarchically organized silica-titania monoliths prepared under purely aqueous conditions. Chem. Eur. J. 20:5217409–19 [Google Scholar]
  127. Gonçalves VSS, Gurikov P, Poejo J, Matias AA, Heinrich S. 127.  et al. 2016. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur. J. Pharm. Biopharm. 107:160–70 [Google Scholar]
  128. Santos A, Toledo-Fernández JA, Mendoza-Serna R, Gago-Duport L, de la Rosa-Fox N. 128.  et al. 2007. Chemically active silica aerogel−wollastonite composites for CO2 fixation by carbonation reactions. Ind. Eng. Chem. Res. 46:1103–7 [Google Scholar]
  129. Djelad A, Morsli A, Robitzer M, Bengueddach di Renzo A F, Quignard F. 129.  2016. Sorption of CU(II) ions on chitosan-zeolite X composites: impact of gelling and drying conditions. Molecules 21:1109 [Google Scholar]
  130. Li X, Wang Q, Li H, Ji H, Sun X, He J. 130.  2013. Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite. J. Sol-Gel Sci. Technol. 67:3646–53 [Google Scholar]
  131. Ghafar A, Parikka K, Sontag-Strohm T, Österberg M, Tenkanen M, Mikkonen KS. 131.  2015. Strengthening effect of nanofibrillated cellulose is dependent on enzymatically oxidized polysaccharide gel matrices. Eur. Polym. J. 71:171–84 [Google Scholar]
  132. Schwan M, Rößler M, Milow B, Ratke L. 132.  2015. From fragile to resilient insulation: synthesis and characterization of aramid-honeycomb reinforced silica aerogel composite materials. Gels 2:11 [Google Scholar]
  133. Wang H, Shao Z, Bacher M, Liebner F, Rosenau T. 133.  2013. Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1−x/ZnS (core/shell) quantum dots. Cellulose 20:63007–24 [Google Scholar]
  134. Pircher N, Carbajal L, Schimper C, Bacher M, Rennhofer H. 134.  et al. 2016. Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23:31949–66 [Google Scholar]
  135. Jenkins BM, Baxter LL, Miles TR Jr., Miles TR. 135.  1998. Combustion properties of biomass. Fuel Process Technol 54:1–317–46 [Google Scholar]
  136. Li T, Wang T. 136.  2008. Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure. Mater. Chem. Phys. 112:2398–401 [Google Scholar]
  137. Tang Q, Wang T. 137.  2005. Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying. J. Supercrit. Fluids 35:191–94 [Google Scholar]
  138. Nazriati N, Setyawan H, Affandi S, Yuwana M, Winardi S. 138.  2014. Using bagasse ash as a silica source when preparing silica aerogels via ambient pressure drying. J. Non-Cryst. Solids 400:6–11 [Google Scholar]
  139. Gao G-M, Liu D-R, Zou H-F, Zou L-C, Gan S-C. 139.  2010. Preparation of silica aerogel from oil shale ash by fluidized bed drying. Powder Technol 197:3283–87 [Google Scholar]
  140. Shi F, Liu J-X, Song K, Wang Z-Y. 140.  2010. Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying. J. Non-Cryst. Solids 356:432241–46 [Google Scholar]
  141. Liu S-W, Wei Q, Cui S-P, Nie Z-R, Du M-H, Li Q-Y. 141.  2015. Hydrophobic silica aerogel derived from wheat husk ash by ambient pressure drying. J. Sol-Gel Sci. Technol. 78:160–67 [Google Scholar]
  142. Buerkle LE, Rowan SJ. 142.  2012. Supramolecular gels formed from multi-component low molecular weight species. Chem. Soc. Rev. 41:186089–102 [Google Scholar]
  143. Brosse N, Barth D, Jamart-Grégoire B. 143.  2004. A family of strong low-molecular-weight organogelators based on amino acid derivatives. Tetrahedron Lett 45:529521–24 [Google Scholar]
  144. Banerjee S, Das RK, Terech P, de Geyer A, Aymonier C. 144.  et al. 2013. Hybrid organogels and aerogels from co-assembly of structurally different low molecular weight gelators. J. Mater. Chem. C 1:203305–16 [Google Scholar]
  145. Lohe MR, Rose M, Kaskel S. 145.  2009. Metal-organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 2009:6056–58 [Google Scholar]
  146. Ulker Z, Erucar I, Keskin S, Erkey C. 146.  2013. Novel nanostructured composites of silica aerogels with a metal organic framework. Microporous Mesoporous Mater 170:352–58 [Google Scholar]
  147. Xiang Z, Cao D, Shao X, Wang W, Zhang J, Wu W. 147.  2010. Facile preparation of high-capacity hydrogen storage metal-organic frameworks: a combination of microwave-assisted solvothermal synthesis and supercritical activation. Chem. Eng. Sci. 65:103140–46 [Google Scholar]
  148. Gash AE, Tillotson TM, Satcher JH Jr., Hrubesh LW, Simpson RL. 148.  2001. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J. Non-Cryst. Solids 285:1–322–28 [Google Scholar]
  149. Du A, Zhou B, Zhong Y, Zhu X, Gao G. 149.  et al. 2010. Hierarchical microstructure and formative mechanism of low-density molybdena-based aerogel derived from MoCl5. J. Sol-Gel Sci. Technol. 58:1225–31 [Google Scholar]
  150. Alakalhunmaa S, Parikka K, Penttilä PA, Cuberes MT, Willför S. 150.  et al. 2016. Softwood-based sponge gels. Cellulose 23:3221 [Google Scholar]
  151. White RJ, Brun N, Budarin VL, Clark JH, Titirici M-M. 151.  2014. Always look on the “light” side of life: sustainable carbon aerogels. ChemSusChem 7:3670–89 [Google Scholar]
  152. White RJ, Yoshizawa N, Antonietti M, Titirici M-M. 152.  2011. A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chem 13:92428–34 [Google Scholar]
  153. Antonietti M, Fechler N, Fellinger T-P. 153.  2014. Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol-gel routes. Chem. Mater. 26:1196–210 [Google Scholar]
  154. Alatalo S-M, Qiu K, Preuss K, Marinovic A, Sevilla M. 154.  et al. 2016. Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction. Carbon 96:622–30 [Google Scholar]
  155. Wu X-L, Wen T, Guo H-L, Yang S, Wang X, Xu A-W. 155.  2013. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7:43589–97 [Google Scholar]
  156. Li Y-Q, Samad YA, Polychronopoulou K, Alhassan SM, Liao K. 156.  2014. Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustain. Chem. Eng. 2:61492–97 [Google Scholar]
  157. Li G, Wang X, Tao L, Li Y, Quan K. 157.  et al. 2015. Cross-linked graphene membrane for high-performance organics separation of emulsions. J. Membr. Sci. 495:439–44 [Google Scholar]
  158. Feng J, Nguyen ST, Fan Z, Duong HM. 158.  2015. Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem. Eng. J. 270:168–75 [Google Scholar]
  159. Jin C, Han S, Li J, Sun Q. 159.  2015. Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydr. Polym. 123:150–56 [Google Scholar]
  160. Han Y, Zhang X, Wu X, Lu C. 160.  2015. Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain. Chem. Eng. 3:81853–59 [Google Scholar]
  161. Gong J, Michalkiewicz B, Chen X, Mijowska E, Liu J. 161.  et al. 2014. Sustainable conversion of mixed plastics into porous carbon nanosheets with high performances in uptake of carbon dioxide and storage of hydrogen. ACS Sustain. Chem. Eng. 2:122837–44 [Google Scholar]
  162. Sui R, Rizkalla AS, Charpentier PA. 162.  2004. Synthesis and formation of silica aerogel particles by a novel sol−gel route in supercritical carbon dioxide. J. Phys. Chem. B 108:3211886–92 [Google Scholar]
  163. Smirnova I, Arlt W. 163.  2003. Synthesis of silica aerogels: influence of the supercritical CO2 on the sol-gel process. J. Sol-Gel Sci. Technol. 28:2175–84 [Google Scholar]
  164. Ibrahim A-R, Zhu L, Xu J, Hong Y, Su Y. 164.  et al. 2014. Synthesis of mesoporous alumina with CO2 expanded carbonation and its catalytic oxidation of cyclohexanone. J. Supercrit. Fluids 92:190–96 [Google Scholar]
  165. Zhu B, Wei W, Ma G, Zhuang Y, Liu J. 165.  et al. 2015. A pressurized carbonation sol-gel process for preparing large pore volume silica and its performance as a flatting agent and an adsorbent. J. Supercrit. Fluids 97:1–5 [Google Scholar]
  166. Subrahmanyam R, Gurikov P, Meissner I, Smirnova I. 166.  2016. Preparation of biopolymer aerogels using green solvents. J. Vis. Exp. 113:e54116 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error