Although too small to be seen with the human eye, atmospheric particulate matter has major impacts on the world around us, from our health to global climate. Understanding the sources, properties, and transformations of these particles in the atmosphere is among the major challenges in air quality and climate research today. Significant progress has been made over the past two decades in understanding atmospheric aerosol chemistry and its connections to climate. Advances in technology for characterizing aerosol chemical composition and physical properties have enabled rapid discovery in this area. This article reviews fundamental concepts and recent developments surrounding ambient aerosols, their chemical composition and sources, light-absorbing aerosols, aerosols and cloud formation, and aerosol-based solar radiation management (also known as solar geoengineering).


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Leck C, Bigg EK. 1.  2005. Source and evolution of the marine aerosol—a new perspective. Geophys. Res. Lett. 32:1928–31 [Google Scholar]
  2. You Y, Renbaum-Wolff L, Carreras-Sospedra M, Hanna SJ, Hiranuma N. 2.  et al. 2012. Images reveal that atmospheric particles can undergo liquid-liquid phase separations. PNAS 109:3313188–93 [Google Scholar]
  3. Virtanen A, Joutsensaari J, Koop T, Kannosto J, Yli-Pirilä P. 3.  et al. 2010. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467:7317824–27 [Google Scholar]
  4. Wang X, Sultana CM, Trueblood J, Hill TCJ, Malfatti F. 4.  et al. 2015. Microbial control of sea spray aerosol composition: a tale of two blooms. ACS Cent. Sci. 1:3124–31 [Google Scholar]
  5. Ault AP, Moffet RC, Baltrusaitis J, Collins DB, Ruppel MJ. 5.  et al. 2013. Size-dependent changes in sea spray aerosol composition and properties with different seawater conditions. Environ. Sci. Technol. 47:115603–12 [Google Scholar]
  6. Hatch LE, Creamean JM, Ault AP, Surratt JD, Chan MN. 6.  et al. 2011. Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry—Part 1: Single particle atmospheric observations in Atlanta. Environ. Sci. Technol. 45:125105–11 [Google Scholar]
  7. Moffet RC, de Foy B, Molina LT, Molina MJ, Prather KA. 7.  2008. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry. Atmos. Chem. Phys. 8:164499–516 [Google Scholar]
  8. Nguyen TKV, Zhang Q, Jimenez JLL, Pike M, Carlton AMG. 8.  2016. Liquid water: ubiquitous contributor to aerosol mass. Environ. Sci. Technol. Lett. 3:7257–63 [Google Scholar]
  9. Pszenny AAP, Moldanová J, Keene WC, Sander R, Maben JR. 9.  et al. 2004. Halogen cycling and aerosol pH in the Hawaiian marine boundary layer. Atmos. Chem. Phys. 4:147–68 [Google Scholar]
  10. Keene WC, Pszenny AAP, Maben JR, Stevenson E, Wall A. 10.  2004. Closure evaluation of size-resolved aerosol pH in the New England coastal atmosphere during summer. J. Geophys. Res. 109:D23D23307 [Google Scholar]
  11. Weber RJ, Guo H, Russell AG, Nenes A. 11.  2016. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nat. Geosci. 9:4282–85 [Google Scholar]
  12. Tang IN. 12.  1997. Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance. J. Geophys. Res. 102:D21883–93 [Google Scholar]
  13. Nizkorodov SA, Laskin J, Laskin A. 13.  2011. Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Phys. Chem. Chem. Phys. 13:93612–29 [Google Scholar]
  14. Yatavelli RLN, Lopez-Hilfiker F, Wargo JD, Kimmel JR, Cubison MJ. 14.  et al. 2012. A chemical ionization high-resolution time-of-flight mass spectrometer coupled to a micro orifice volatilization impactor (MOVI-HRToF-CIMS) for analysis of gas and particle-phase organic species. Aerosol. Sci. Technol. 46:1313–27 [Google Scholar]
  15. Lee L, Wooldridge PJ, deGouw J, Brown SS, Bates TS. 15.  et al. 2015. Particulate organic nitrates observed in an oil and natural gas production region during wintertime. Atmos. Chem. Phys. 15:169313–25 [Google Scholar]
  16. DeCarlo PF, Kimmel JR, Trimborn A, Northway MJ, Jayne JT. 16.  et al. 2006. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78:248281–89 [Google Scholar]
  17. Canagaratna MR, Jimenez JL, Kroll JH, Chen Q, Kessler SH. 17.  et al. 2015. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmos. Chem. Phys. 15:1253–72 [Google Scholar]
  18. Silvern RF, Jacob DJ, Kim PS, Marais EA, Turner JR. 18.  2016. Incomplete sulfate aerosol neutralization despite excess ammonia in the eastern US: a possible role of organic aerosol. Atmos. Chem. Phys. Discuss. 16:1–21 [Google Scholar]
  19. Donahue NM, Epstein SA, Pandis SN, Robinson AL. 19.  2011. A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics. Atmos. Chem. Phys. 11:73303–18 [Google Scholar]
  20. McNeill VF. 20.  2015. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols. Environ. Sci. Technol. 49:31237–44 [Google Scholar]
  21. Monge ME, Rosenørn T, Favez O, Müller M, Adler G. 21.  et al. 2012. Alternative pathway for atmospheric particles growth. PNAS 109:186840–44 [Google Scholar]
  22. Aregahegn KZ, Nozière B, George C. 22.  2013. Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols. Faraday Discuss 165:123–34 [Google Scholar]
  23. Sumner A, Woo JL-M, McNeill VF. 23.  2014. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry. Environ. Sci. Technol. 48:2011919–25 [Google Scholar]
  24. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J. 24.  et al. 2013. Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, et al. 659–740 Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  25. Rubino M, D'Onofrio A, Seki O, Bendle JA. 25.  2016. Ice-core records of biomass burning. Anthr. Rev. 3:2140–62 [Google Scholar]
  26. Carslaw KS, Lee LA, Reddington CL, Pringle KJ, Rap A. 26.  et al. 2013. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503:67–71 [Google Scholar]
  27. Tröstl J, Chuang WK, Gordon H, Heinritzi M, Yan C. 27.  et al. 2016. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 533:527–31 [Google Scholar]
  28. Bianchi F, Tröstl J, Junninen H, Frege C, Henne S. 28.  et al. 2016. New particle formation in the free troposphere: a question of chemistry and timing. Science 352:1109–12 [Google Scholar]
  29. Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H. 29.  et al. 2016. Ion-induced nucleation of pure biogenic particles. Nature 533:521–26 [Google Scholar]
  30. Ball SM, Hanson DR, Eisele FL, McMurry PH. 30.  1999. Laboratory studies of particle nucleation: initial results for H2SO4, H2O, and NH3 vapors. J. Geophys. Res. Atmos. 104:D1923709–18 [Google Scholar]
  31. Almeida J, Schobesberger S, Kürten A, Ortega IK, Kupiainen-Määttä O. 31.  et al. 2013. Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature 502:359–63 [Google Scholar]
  32. Hansen J, Sato M, Ruedy R. 32.  1997. Radiative forcing and climate response. J. Geophys. Res. 102:D66831–64 [Google Scholar]
  33. 33. US EPA (Environ. Prot. Agency). 2015. The Benefits and Costs of the Clean Air Act, 1970 to 1990 Washington, DC: US EPA https://www.epa.gov/sites/production/files/2015-06/documents/contsetc.pdf [Google Scholar]
  34. Fiore AM, Naik V, Leibensperger EM. 34.  2015. Air quality and climate connections. J. Air Waste Manag. Assoc. 65:6645–85 [Google Scholar]
  35. Bahadur R, Praveen PS, Xu Y, Ramanathan V. 35.  2012. Solar absorption by elemental and brown carbon determined from spectral observations. PNAS 109:4317366–71 [Google Scholar]
  36. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T. 36.  et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118:115380–552 [Google Scholar]
  37. Ramanathan V, Carmichael G. 37.  2008. Global and regional climate changes due to black carbon. Nat. Geosci. 1:4221–27 [Google Scholar]
  38. Shindell D, Kuylenstierna JCI, Vignati E, van Dingenen R, Amann M. 38.  et al. 2012. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335:183–89 [Google Scholar]
  39. Andreae MO, Gelencser A. 39.  2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6:3131–48 [Google Scholar]
  40. Pósfai M. 40.  2004. Atmospheric tar balls: particles from biomass and biofuel burning. J. Geophys. Res. 109:D61–9 [Google Scholar]
  41. Chakrabarty RK, Moosmüller H, Chen L-WA, Lewis K, Arnott WP. 41.  et al. 2010. Brown carbon in tar balls from smoldering biomass combustion. Atmos. Chem. Phys. 10:136363–70 [Google Scholar]
  42. Alexander DTL, Crozier PA, Anderson JR. 42.  2008. Brown carbon spheres in East Asian outflow and their optical properties. Science 321:833–36 [Google Scholar]
  43. Meskhidze N, Petters MD, Tsigaridis K, Bates T, O'Dowd C. 43.  et al. 2013. Production mechanisms, number concentration, size distribution, chemical composition, and optical properties of sea spray aerosols. Atmos. Sci. Lett. 14:4207–13 [Google Scholar]
  44. Hoffer A, Gelencsér A, Guyon P, Kiss G, Schmid O. 44.  et al. 2006. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 6:3563–70 [Google Scholar]
  45. Graber ER, Rudich Y. 45.  2006. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 6:3729–53 [Google Scholar]
  46. Liu J, Scheuer E, Dibb J, Diskin GS, Ziemba LD. 46.  et al. 2015. Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing. Atmos. Chem. Phys. 15:147841–58 [Google Scholar]
  47. Laskin A, Laskin J, Nizkorodov SA. 47.  2015. Chemistry of atmospheric brown carbon. Chem. Rev. 115:104335–82 [Google Scholar]
  48. Hecobian A, Zhang X, Zheng M, Frank N, Edgerton ES, Weber RJ. 48.  2010. Water-Soluble Organic Aerosol Material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 10:135965–77 [Google Scholar]
  49. Shapiro EL, Szprengiel J, Sareen N, Jen CN, Giordano MR, McNeill VF. 49.  2009. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 9:2289–300 [Google Scholar]
  50. Sareen N, Schwier AN, Shapiro EL, Mitroo D, McNeill VF. 50.  2010. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 10:3997–1016 [Google Scholar]
  51. Schwier AN, Sareen N, Mitroo D, Shapiro EL, McNeill VF. 51.  2010. Glyoxal-methylglyoxal cross-reactions in secondary organic aerosol formation. Environ. Sci. Technol. 44:166174–82 [Google Scholar]
  52. Lin P, Liu J, Shilling JE, Kathmann SM, Laskin J, Laskin A. 52.  2015. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys. Chem. Chem. Phys. 17:3623312–25 [Google Scholar]
  53. De Haan DO, Corrigan AL, Smith KW, Stroik DR, Turley JJ. 53.  et al. 2009. Secondary organic aerosol-forming reactions of glyoxal with amino acids. Environ. Sci. Technol. 43:82818–24 [Google Scholar]
  54. Hawkins LN, Lemire AN, Galloway MM, Corrigan AL, Turley JJ. 54.  et al. 2016. Maillard chemistry in clouds and aqueous aerosol as a source of atmospheric humic-like substances. Environ. Sci. Technol. 50:147443–52 [Google Scholar]
  55. Pitts JN, Van Cauwenberghe KA, Grosjean D, Schmid JP, Fitz DR. 55.  et al. 1978. Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. Science 202:4367515–19 [Google Scholar]
  56. Bones DL, Henricksen DK, Mang SA, Gonsior M, Bateman AP. 56.  et al. 2010. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales. J. Geophys. Res. 115:D052031–14 [Google Scholar]
  57. Phillips SM, Smith GD. 57.  2014. Light absorption by charge transfer complexes in brown carbon aerosols. Environ. Sci. Technol. Lett. 1:10382–86 [Google Scholar]
  58. Phillips SM, Smith GD. 58.  2015. Further evidence for charge transfer complexes in brown carbon aerosols from excitation-emission matrix fluorescence spectroscopy. J. Phys. Chem. A 119:194545–51 [Google Scholar]
  59. Lyamani H, Olmo F, Aladosarboledas L. 59.  2008. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain. Atmos. Environ. 42:112630–42 [Google Scholar]
  60. Sareen N, Moussa SG, McNeill VF. 60.  2013. Photochemical aging of light-absorbing secondary organic aerosol material. J. Phys. Chem. A. 117:142987–96 [Google Scholar]
  61. Lee HJJ, Aiona P, Laskin A, Laskin J, Nizkorodov SA. 61.  2014. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. Environ. Sci. Technol. 48:1710217–26 [Google Scholar]
  62. Zhao R, Lee AKY, Huang L, Li X, Yang F, Abbatt JPD. 62.  2015. Photochemical processing of aqueous atmospheric brown carbon. Atmos. Chem. Phys. 15:116087–100 [Google Scholar]
  63. Woo JL, Kim DD, Schwier AN, Li R, McNeill VF. 63.  2013. Aqueous aerosol SOA formation: impact on aerosol physical properties. Faraday Discuss 165:357–67 [Google Scholar]
  64. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A. 64.  et al. 1998. AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66:1–16 [Google Scholar]
  65. Wang X, Heald CL, Sedlacek AJ, de Sá SS, Martin ST. 65.  et al. 2016. Deriving brown carbon from multi-wavelength absorption measurements: Method and application to AERONET and surface observations. Atmos. Chem. Phys. 16:12733–52 [Google Scholar]
  66. Chung CE, Ramanathan V, Decremer D. 66.  2012. Observationally constrained estimates of carbonaceous aerosol radiative forcing. PNAS 109:2911624–29 [Google Scholar]
  67. Twomey S. 67.  1977. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34:1149–52 [Google Scholar]
  68. Albrecht BA. 68.  1989. Aerosols, cloud microphysics, and fractional cloudiness. Science 245:49231227–30 [Google Scholar]
  69. Seinfeld JH, Bretherton C, Carslaw KS, Coe H, DeMott PJ. 69.  et al. 2016. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system. PNAS 113:215781–90 [Google Scholar]
  70. Karydis VA, Capps SL, Russell AG, Nenes A. 70.  2012. Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters. Atmos. Chem. Phys. 12:199041–55 [Google Scholar]
  71. Kohler H. 71.  1936. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 32:1152–61 [Google Scholar]
  72. Dusek U, Frank GP, Hildebrandt L, Curtius J, Schneider J. 72.  et al. 2006. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312:57781375–78 [Google Scholar]
  73. Petters MD, Kreidenweis SM. 73.  2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7:81961–71 [Google Scholar]
  74. Nenes A, Charlson RJ, Facchini MC, Kulmala M, Laaksonen A, Seinfeld JH. 74.  2002. Can chemical effects on cloud droplet number rival the first indirect effect?. Geophys. Res. Lett. 29:171848 [Google Scholar]
  75. Asa-Awuku A, Nenes A. 75.  2007. Effect of solute dissolution kinetics on cloud droplet formation: extended Köhler theory. J. Geophys. Res. 112:D221–10 [Google Scholar]
  76. McNeill VF, Sareen N, Schwier AN. 76.  2014. Surface-active organics in atmospheric aerosols. Top. Curr. Chem. 339:201–59 [Google Scholar]
  77. Gérard VMF, Nozière B, Baduel C, Fine L, Frossard AA, Cohen RC. 77.  2016. Anionic, cationic, and non-ionic surfactants in atmospheric aerosols from the Baltic coast at Askö, Sweden: implications for cloud droplet activation. Environ. Sci. Technol. 50:2974–82 [Google Scholar]
  78. Kulmala M, Laaksonen A, Korhonen P, Vesala T, Ahonen T, Barrett JC. 78.  1993. The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation. J. Geophys. Res. 98:D1222949 [Google Scholar]
  79. Topping D, Connolly P, McFiggans G. 79.  2013. Cloud droplet number enhanced by co-condensation of organic vapours. Nat. Geosci. 6:61–4 [Google Scholar]
  80. Sareen N, Schwier AN, Lathem TL, Nenes A, McNeill VF. 80.  2013. Surfactants from the gas phase may promote cloud droplet formation. PNAS 110:82723–28 [Google Scholar]
  81. Sorjamaa R, Svenningsson B, Raatikainen T, Henning S, Bilde M, Laaksonen A. 81.  2004. The role of surfactants in Köhler theory reconsidered. Atmos. Chem. Phys. 4:2107–17 [Google Scholar]
  82. Li Z, Williams AL, Rood MJ. 82.  1998. Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute. J. Atmos. Sci. 55:101859–66 [Google Scholar]
  83. Bzdek BR, Power RM, Simpson SH, Reid JP, Royall CP. 83.  2016. Precise, contactless measurements of the surface tension of picolitre aerosol droplets. Chem. Sci. 7:1274–85 [Google Scholar]
  84. Ruehl CR, Chuang PY, Nenes A. 84.  2010. Aerosol hygroscopicity at high (99 to 100%) relative humidities. Atmos. Chem. Phys. 10:31329–44 [Google Scholar]
  85. Ruehl CR, Chuang PY, Nenes A, Cappa CD, Kolesar KR, Goldstein AH. 85.  2012. Strong evidence of surface tension reduction in microscopic aqueous droplets. Geophys. Res. Lett. 39:23L23801 [Google Scholar]
  86. Ruehl CR, Davies JF, Wilson KR, Köhler H, Petters MD. 86.  et al. 2016. An interfacial mechanism for cloud droplet formation on organic aerosols. Science 351:62801447–50 [Google Scholar]
  87. Pruppacher HR, Klett JD. 87.  2010. Microphysics of Clouds and Precipitation Atmospheric and Oceanographic Sciences Library 18 Dordrecht, Neth.: Springer, 2nd ed..
  88. Cziczo DJ, Froyd KD, Hoose C, Jensen EJ, Diao M. 88.  et al. 2013. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 340:61381320–24 [Google Scholar]
  89. Johnson KS, Zuberi B, Molina LT, Molina MJ, Iedema MJ. 89.  et al. 2005. Processing of soot in an urban environment: case study from the Mexico City metropolitan area. Atmos. Chem. Phys. Discuss. 5:45585–614 [Google Scholar]
  90. Abbatt JPD, Benz S, Cziczo DJ, Kanji Z, Lohmann U, Möhler O. 90.  2006. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation. Science 313:57941770–73 [Google Scholar]
  91. Wang B, Lambe AT, Massoli P, Onasch TB, Davidovits P. 91.  et al. 2012. The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: pathways for ice and mixed-phase cloud formation. J. Geophys. Res. Atmos. 117:D16D16209 [Google Scholar]
  92. DeMott PJ. 92.  1990. An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteorol. 29:101072–79 [Google Scholar]
  93. Pratt KA, DeMott PJ, French JR, Wang Z, Westphal DL. 93.  et al. 2009. In situ detection of biological particles in cloud ice-crystals. Nat. Geosci. 2:6398–401 [Google Scholar]
  94. Wilson TW, Ladino LA, Alpert PA, Breckels MN, Brooks IM. 94.  et al. 2015. A marine biogenic source of atmospheric ice-nucleating particles. Nature 525:7568234–38 [Google Scholar]
  95. DeMott PJ, Hill TCJ, McCluskey CS, Prather KA, Collins DB. 95.  et al. 2015. Sea spray aerosol as a unique source of ice nucleating particles. PNAS 113:215797–803 [Google Scholar]
  96. Knopf DA, Alpert PA, Wang B, O'Brien RE, Kelly ST. 96.  et al. 2014. Microspectroscopic imaging and characterization of individually identified ice nucleating particles from a case field study. J. Geophys. Res. Atmos. 119:1710365–81 [Google Scholar]
  97. Caldeira K, Bala G, Cao L. 97.  2013. The science of geoengineering. Annu. Rev. Earth Planet. Sci. 41:231–56 [Google Scholar]
  98. Keith DW. 98.  2010. Photophoretic levitation of engineered aerosols for geoengineering. PNAS 107:3816428–31 [Google Scholar]
  99. Pope FD, Braesicke P, Grainger RG, Kalberer M, Watson IM. 99.  et al. 2012. Stratospheric aerosol particles and solar-radiation management. Nat. Clim. Chang. 2:10713–19 [Google Scholar]
  100. Robock A. 100.  2000. Volcanic eruptions and climate. Rev. Geophys. 38:2191–219 [Google Scholar]
  101. Parker D, Wilson H, Jones P, Christy J, Folland C. 101.  1996. The impact of Mount Pinatubo on worldwide temperatures. Int. J. Climatol. 16:May487–97 [Google Scholar]
  102. Hansen J, Sato M, Ruedy R, Lacis A, Asamoah K. 102.  et al. 1996. A Pinatubo climate modeling investigation. The Mount Pinatubo Eruption G Fiocco, D Fua, G Visconti 233–72 Berlin/Heidelberg: Springer [Google Scholar]
  103. Robock A, Marquardt A, Kravitz B, Stenchikov G. 103.  2009. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 36:19L19703 [Google Scholar]
  104. Crutzen PJ. 104.  2006. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?. Clim. Chang. 77:3–4211–19 [Google Scholar]
  105. 105. Natl. Acad. Sci., Eng. Med. 2015. Climate Intervention Washington, DC: Natl. Acad. Press
  106. Molina MJ, Tso TL, Molina LT, Wang FC. 106.  1987. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine. Science 238:48311253–57 [Google Scholar]
  107. Pitari G, Aquila V, Kravitz B, Robock A, Watanabe S. 107.  et al. 2014. Stratospheric ozone response to sulfate geoengineering: results from the geoengineering model intercomparison project (GEOMIP). J. Geophys. Res. Atmos. 119:52629–53 [Google Scholar]
  108. Pierce JR, Weisenstein DK, Heckendorn P, Peter T, Keith DW. 108.  2010. Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophys. Res. Lett. 37:18L18805 [Google Scholar]
  109. Jones AC, Haywood JM, Jones A. 109.  2016. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection. Atmos. Chem. Phys. 16:2843–62 [Google Scholar]
  110. Ferraro AJ, Charlton-Perez AJ, Highwood EJ. 110.  2015. Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols. J. Geophys. Res. Atmos. 120:2414–29 [Google Scholar]
  111. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P. 111.  et al. 2007. Coral reefs under rapid climate change and ocean acidification. Science 318:58571737–42 [Google Scholar]
  112. Albright R, Caldeira L, Hosfelt J, Kwiatkowski L, Maclaren JK. 112.  et al. 2016. Reversal of ocean acidification enhances net coral reef calcification. Nature 531:7594362–65 [Google Scholar]
  113. 113. UNEP. 2010. Decision adopted by the Conference of the Parties to the Convention on Biological Diversity at its tenth meeting Conf. Parties Conv. Biol. Divers., Oct. 18–29, Nagoya, Jpn., UNEP/CBD/COP/DEC/X/33. https://www.cbd.int/doc/decisions/cop-10/cop-10-dec-33-en.pdf
  114. Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q. 114.  et al. 2009. Evolution of organic aerosols in the atmosphere. Science 326:59591525–29 [Google Scholar]
  115. Häkkinen SAK, McNeill VF, Riipinen IA. 115.  2014. Effect of inorganic salts on the volatility of organic acids. Environ. Sci. Technol. 48:2313718–26 [Google Scholar]
  116. Drozd G, Woo J, Häkkinen SAK, Nenes A, McNeill VF. 116.  2014. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility. Atmos. Chem. Phys. 14:5205–15 [Google Scholar]
  117. Zhang R, Khalizov AF, Pagels J, Zhang D, Xue H, McMurry PH. 117.  2008. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. PNAS 105:3010291–96 [Google Scholar]
  118. Laskin A, Wietsma TW, Krueger BJ, Grassian VH. 118.  2005. Heterogeneous chemistry of individual mineral dust particles with nitric acid: a combined CCSEM/EDX, ESEM, and ICP-MS study. J. Geophys. Res. 110:D10D10208 [Google Scholar]
  119. Woo JL. 119.  2014. Gas-aerosol model for mechanism analysis: kinetic prediction of gas- and aqueous-phase chemistry of atmospheric aerosols PhD Thesis, Columbia Univ New York:
  120. Jayne JT, Leard DC, Zhang X, Davidovits P, Smith KA. 120.  et al. 2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 33:1–249–70 [Google Scholar]
  121. Lopez-Hilfiker FD, Mohr C, Ehn M, Rubach F, Kleist E. 121.  et al. 2014. A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmos. Meas. Tech. 7:983–1001 [Google Scholar]
  122. Williams BJ, Goldstein AH, Millet DB, Holzinger R, Kreisberg NM. 122.  et al. 2007. Chemical speciation of organic aerosol during the international consortium for atmospheric research on transport and transformation 2004: results from in situ measurements. J. Geophys. Res. 112:D101–14 [Google Scholar]
  123. Gard E, Mayer JE, Morrical BD, Dienes T, Fergenson DP, Prather KA. 123.  1997. Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS. Anal. Chem. 69:204083–91 [Google Scholar]
  124. Russell LM, Bahadur R, Ziemann PJ. 124.  2011. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles. PNAS 108:93516–21 [Google Scholar]
  125. Isaacman G, Kreisberg NM, Yee LD, Worton DR, Chan AWH. 125.  et al. 2014. Online derivatization for hourly measurements of gas- and particle-phase semi-volatile oxygenated organic compounds by thermal desorption aerosol gas chromatography (SV-TAG). Atmos. Meas. Tech. 7:124417–29 [Google Scholar]
  126. Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen HE. 126.  et al. 2013. Direct observations of atmospheric aerosol nucleation. Science 339:6122943–46 [Google Scholar]
  127. Roberts GC, Nenes A. 127.  2005. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol. 39:3206–21 [Google Scholar]
  128. Abo Riziq A, Erlick C, Dinar E, Rudich Y. 128.  2007. Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy. Atmos. Chem. Phys. 7:61523–36 [Google Scholar]
  129. Lee AKY, Willis MD, Healy RM, Onasch TB, Abbatt JPD. 129.  2015. Mixing state of carbonaceous aerosol in an urban environment: single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS). Atmos. Chem. Phys. 15:41823–41 [Google Scholar]
  130. Sharma N, Arnold IJ, Moosmüller H, Arnott WP, Mazzoleni C. 130.  2013. Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source. Atmos. Meas. Tech. 6:3501–13 [Google Scholar]
  131. Äijälä M, Heikkinen L, Fröhlich R, Canonaco F, Prévôt ASH. 131.  et al. 2017. Resolving anthropogenic aerosol pollution types—deconvolution and exploratory classification of pollution events. Atmos. Chem. Phys. 17:3165–97 [Google Scholar]
  132. Monteleoni C, Schmidt GA, McQuade S. 132.  2013. Climate informatics: accelerating discovering in climate science with machine learning. Comput. Sci. Eng. 15:532–40 [Google Scholar]
  133. Turányi T, Tomlin AS. 133.  2014. Analysis of Kinetic Reaction Mechanisms Berlin/Heidelberg: Springer-Verlag
  134. Karplus VJ, Xiliang Z, Chiao-Ting L, Mingwei L, Selin N. 134.  et al. 2015. Double Impact: Why China Needs Coordinated Air Quality and Climate Strategies Paulson Pap. Energy Environ Chicago: Paulson Inst http://www.paulsoninstitute.org/wp-content/uploads/2015/04/PPEE_Air-and-Climate_-Karplus_English.pdf
  135. Wang G, Zhang R, Gomez ME, Yang L, Zamora ML. 135.  et al. 2016. Persistent sulfate formation from London Fog to Chinese haze. PNAS 113:4813630–35 [Google Scholar]
  136. Cheng Y, Zheng G, Wei C, Mu Q, Zheng B. 136.  et al. 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2:12e1601530 [Google Scholar]
  137. 137. Natl. Acad. Sci., Eng. Med. 2016. The Future of Atmospheric Chemistry Research Washington, DC: Natl. Acad. Sci.
  138. Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV. 138.  et al. 2016. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 50:179–88 [Google Scholar]
  139. Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, Hubbell BJ. 139  2012. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal 32:181–95 [Google Scholar]
  140. Burnett RT, Arden Pope C, Ezzati M, Olives C, Lim SS. 140.  et al. 2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122:4397–403 [Google Scholar]
  141. Oudin A, Bråbäck L, Åström DO, Strömgren M, Forsberg B. 141.  2016. Association between neighbourhood air pollution concentrations and dispensed medication for psychiatric disorders in a large longitudinal cohort of Swedish children and adolescents. BMJ Open 6:6e010004 [Google Scholar]
  142. Drakaki E, Dessinioti C, Antoniou CV. 142.  2014. Air pollution and the skin. Front. Environ. Sci. 2:11 [Google Scholar]
  143. Srám R. 143.  1999. Impact of air pollution on reproductive health. Environ. Health Perspect. 107:11A542–43 [Google Scholar]
  144. Akhtar US, McWhinney RD, Rastogi N, Abbatt JPD, Evans GJ, Scott JA. 144.  2010. Cytotoxic and proinflammatory effects of ambient and source-related particulate matter (PM) in relation to the production of reactive oxygen species (ROS) and cytokine adsorption by particles. Inhal. Toxicol. 22:Suppl. 237–47 [Google Scholar]
  145. Lin Y-H, Arashiro M, Martin E, Chen Y, Zhang Z. 145.  et al. 2016. Isoprene-derived secondary organic aerosol induces the expression of oxidative stress response genes in human lung cells. Environ. Sci. Technol. Lett. 3:6250–54 [Google Scholar]
  146. McWhinney RD, Gao SS, Zhou S, Abbatt JPD. 146.  2011. Evaluation of the effects of ozone oxidation on redox cycling activity of two-stroke engine exhaust particles. Environ. Sci. Technol. 45:62131–36 [Google Scholar]
  147. Liao H, Seinfeld JH, Adams PJ, Mickley LJ. 147.  2004. Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model. J. Geophys. Res. 109:D16D16207 [Google Scholar]
  148. Liao H, Adams PJ, Chung SH, Seinfeld JH, Mickley LJ, Jacob DJ. 148.  2003. Interactions between tropospheric chemistry and aerosols in a unified general circulation model. J. Geophys. Res. 108:D14001 [Google Scholar]
  149. Huneeus N, Schulz M, Balkanski Y, Griesfeller J, Prospero J. 149.  et al. 2011. Global dust model intercomparison in AEROCOM phase I. Atmos. Chem. Phys. 11:157781–816 [Google Scholar]
  150. O'Dowd CD, de Leeuw G. 150.  2007. Marine aerosol production: a review of the current knowledge. Philos. Trans. A. Math. Phys. Eng. Sci. 365:18561753–74 [Google Scholar]
  151. Bond TC, Streets DG, Yarber KF, Nelson SM, Woo J, Klimont Z. 151.  2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 109:D14D14203 [Google Scholar]
  152. Spracklen DV, Jimenez JL, Carslaw KS, Worsnop DR, Evans MJ. 152.  et al. 2011. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos. Chem. Phys. 11:2312109–36 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error