Exciting new advances in genome engineering have unlocked the potential to radically alter the treatment of human disease. In this review, we discuss the application of single-molecule techniques to uncover the mechanisms behind two premier classes of genome editing proteins: transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas). These technologies have facilitated a striking number of gene editing applications in a variety of organisms; however, we are only beginning to understand the molecular mechanisms governing the DNA editing properties of these systems. Here, we discuss the DNA search and recognition process for TALEs and Cas9 that have been revealed by recent single-molecule experiments.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Gaj T, Gersbach CA, Barbas CF. 1.  2013. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:7397–405 [Google Scholar]
  2. Büning H. 2.  2013. Gene therapy enters the pharma market: the short story of a long journey. EMBO Mol. Med. 5:11–3 [Google Scholar]
  3. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F. 3.  et al. 2010. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol. Ther. 18:3643–50 [Google Scholar]
  4. Naldini L. 4.  2015. Gene therapy returns to centre stage. Nature 526:7573351–60 [Google Scholar]
  5. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 5.  2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11:9636–46 [Google Scholar]
  6. Holt N, Wang J, Kim K, Friedman G, Wang X. 6.  et al. 2010. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol. 28:8839–47 [Google Scholar]
  7. Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM. 7.  et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:7042646–51 [Google Scholar]
  8. Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L. 8.  et al. 2012. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119:245697–705 [Google Scholar]
  9. Ding Q, Lee Y-K, Schaefer EAK, Peters DT, Veres A. 9.  et al. 2013. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:2238–51 [Google Scholar]
  10. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y. 10.  et al. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:12e82 [Google Scholar]
  11. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG. 11.  et al. 2012. In vivo genome editing using a high-efficiency TALEN system. Nature 491:7422114–18 [Google Scholar]
  12. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 12.  2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:6096816–21 [Google Scholar]
  13. Jiang W, Marraffini LA. 13.  2015. CRISPR-Cas: new tools for genetic manipulations from bacterial immunity systems. Annu. Rev. Microbiol. 69:209–28 [Google Scholar]
  14. Heyer W-D, Ehmsen KT, Liu J. 14.  2010. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44:17113–39 [Google Scholar]
  15. Beerli RR, Barbas CF. 15.  2002. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20:2135–41 [Google Scholar]
  16. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM. 16.  et al. 2008. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31:2294–301 [Google Scholar]
  17. Mak AN-S, Bradley P, Bogdanove AJ, Stoddard BL. 17.  2013. TAL effectors: function, structure, engineering and applications. Curr. Opin. Struct. Biol. 23:193–99 [Google Scholar]
  18. Mussolino C, Cathomen T. 18.  2012. TALE nucleases: tailored genome engineering made easy. Curr. Opin. Biotechnol. 23:5644–50 [Google Scholar]
  19. Savić N, Schwank G. 19.  2016. Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res. 168:15–21 [Google Scholar]
  20. Wright AV, Nunez JK, Doudna JA. 20.  2016. Review biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164:1–229–44 [Google Scholar]
  21. Stella S, Montoya G. 21.  2015. The genome editing revolution: A CRISPR-Cas TALE off-target story. Inside Cell 1:7–15 [Google Scholar]
  22. Ledford H. 22.  2015. CRISPR, the disruptor. Nature 522:755420–24 [Google Scholar]
  23. Thompson RE, Larson DR, Webb WW. 23.  2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:52775–83 [Google Scholar]
  24. Yildiz A. 24.  2003. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:56282061–65 [Google Scholar]
  25. Yildiz A. 25.  2004. Kinesin walks hand-over-hand. Science 303:5658676–78 [Google Scholar]
  26. Elf J, Li G-W, Xie XS. 26.  2007. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:58281191–94 [Google Scholar]
  27. Roy R, Hohng S, Ha T. 27.  2008. A practical guide to single-molecule FRET. Nat. Methods 5:6507–16 [Google Scholar]
  28. Schuler B, Eaton WA. 28.  2008. Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol. 18:116–26 [Google Scholar]
  29. Myong S, Rasnik I, Joo C, Lohman TM, Ha T. 29.  2005. Repetitive shuttling of a motor protein on DNA. Nature 437:70631321–25 [Google Scholar]
  30. Neuman KC, Nagy A. 30.  2008. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5:6491–505 [Google Scholar]
  31. Moffitt JR, Chemla YR, Smith SB, Bustamante C. 31.  2008. Recent advances in optical tweezers. Annu. Rev. Biochem. 77:205–28 [Google Scholar]
  32. Mosconi F, Allemand JF, Bensimon D, Croquette V. 32.  2009. Measurement of the torque on a single stretched and twisted DNA using magnetic tweezers. Phys. Rev. Lett. 102:71–4 [Google Scholar]
  33. Wang MD, Yin H, Landick R, Gelles J, Block SM. 33.  1997. Stretching DNA with optical tweezers. Biophys. J. 72:31335–46 [Google Scholar]
  34. Tanyeri M, Johnson-Chavarria EM, Schroeder CM. 34.  2010. Hydrodynamic trap for single particles and cells. Appl. Phys. Lett. 96:2222–24 [Google Scholar]
  35. Cohen AE, Moemer WE. 35.  2005. Method for trapping and manipulating nanoscale objects in solution. Appl. Phys. Lett. 86:9093109 [Google Scholar]
  36. Engel A, Müller DJ. 36.  2000. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7:9715–18 [Google Scholar]
  37. Hansma HG, Pietrasanta LIAI, Auerbach ID. 37.  2000. Probing biopolymers with the atomic force microscope: a review. J. Biomater. Sci. Polym. Ed. 11:7675–83 [Google Scholar]
  38. Bonas U, Stall RE, Staskawicz B. 38.  1989. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol.. Gen. Genet. 218:1127–36 [Google Scholar]
  39. Gu K, Yang B, Tian D, Wu L, Wang D. 39.  et al. 2005. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:70451122–25 [Google Scholar]
  40. Hopkins CM, White FF, Choi S-H, Guo A, Leach JE. 40.  1993. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 5:6451–59 [Google Scholar]
  41. Ishihara H, Ponciano G, Leach JE, Tsuyumu S. 41.  2003. Functional analysis of the 3′ end of AvrBs3/PthA genes from two Xanthomonas species. Physiol. Mol. Plant Pathol. 63:6329–38 [Google Scholar]
  42. Ballvora A, Pierre M, van den Ackerveken G, Schornack S, Rossier O. 42.  et al. 2001. Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. Mol. Plant-Microbe Interact. 14:5629–38 [Google Scholar]
  43. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S. 43.  et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:59591509–12 [Google Scholar]
  44. Moscou MJ, Bogdanove AJ. 44.  2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:59591501 [Google Scholar]
  45. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F. 45.  et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:2757–61 [Google Scholar]
  46. Li T, Liu B, Spalding MH, Weeks DP, Yang B. 46.  2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30:5390–92 [Google Scholar]
  47. Sung YH, Baek I-J, Kim DH, Jeon J, Lee J. 47.  et al. 2013. Knockout mice created by TALEN-mediated gene targeting. Nat. Biotechnol. 31:123–24 [Google Scholar]
  48. Mak AN-S, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. 48.  2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:6069716–19 [Google Scholar]
  49. Deng D, Yan C, Pan X, Mahfouz M, Wang J. 49.  et al. 2012. Structural basis for sequence-specific recognition of TAL effectors. Science 335:6069720–23 [Google Scholar]
  50. Jiménez-Menéndez N, Fernández-Millán P, Rubio-Cosials A, Arnan C, Montoya J. 50.  et al. 2010. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat. Nat. Struct. Mol. Biol. 17:7891–93 [Google Scholar]
  51. Wan H, Hu J-p, Li K-s, Tian X-h, Chang S. 51.  2013. Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors. PLOS ONE 8:10e76045 [Google Scholar]
  52. Gao H, Wu X, Chai J, Han Z. 52.  2012. Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res 22:121716–20 [Google Scholar]
  53. Schreiber T, Bonas U. 53.  2014. Repeat 1 of TAL effectors affects target specificity for the base at position zero. Nucleic Acids Res 42:117160–69 [Google Scholar]
  54. Slutsky M, Mirny LA. 54.  2004. Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. Biophys. J. 87:64021–35 [Google Scholar]
  55. Wicky BIM, Stenta M, Dal Peraro M. 55.  2013. TAL effectors specificity stems from negative discrimination. PLOS ONE 8:11e80261 [Google Scholar]
  56. Cuculis L, Abil Z, Zhao H, Schroeder CM. 56.  2015. Direct observation of TALE protein dynamics reveals a two-state search mechanism. Nat. Commun. 6:7277 [Google Scholar]
  57. Lin J, Countryman P, Buncher N, Kaur P, E L. 57.  et al. 2014. TRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres. Nucleic Acids Res 42:42493–504 [Google Scholar]
  58. Tafvizi A, Huang F, Fersht AR, Mirny LA, van Oijen AM. 58.  2011. A single-molecule characterization of p53 search on DNA. PNAS 108:2563–68 [Google Scholar]
  59. Sun N, Liang J, Abil Z, Zhao H. 59.  2012. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol. Biosyst. 8:41255 [Google Scholar]
  60. Winter RB, Berg OG, von Hippel PH. 60.  1981. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor–operator interaction: Kinetic measurements and conclusions. Biochemistry 20:246961–77 [Google Scholar]
  61. Cuculis L, Abil Z, Zhao H, Schroeder CM. 61.  2016. TALE proteins search DNA using a rotationally decoupled mechanism. Nat. Chem. Biol. 12:10831–37 [Google Scholar]
  62. Marraffini LA, Sontheimer EJ. 62.  2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11:3181–90 [Google Scholar]
  63. Chylinski K, Le Rhun A, Charpentier E. 63.  2013. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10:5726–37 [Google Scholar]
  64. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D. 64.  et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:9822–26 [Google Scholar]
  65. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 65.  2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:749062–67 [Google Scholar]
  66. Singh D, Sternberg SH, Fei J, Doudna JA, Ha T. 66.  2016. Real time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 7:12778 [Google Scholar]
  67. Anders C, Niewoehner O, Duerst A, Jinek M. 67.  2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:7519569–73 [Google Scholar]
  68. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB. 68.  et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:6262823–26 [Google Scholar]
  69. Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z. 69.  et al. 2015. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12:3244–50 [Google Scholar]
  70. Singh D, Sternberg SH, Fei J, Doudna JA, Ha T. 70.  2016. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 7:12778 [Google Scholar]
  71. Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T. 71.  et al. 2014. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. PNAS 111:279798–803 [Google Scholar]
  72. Josephs EA, Kocak DD, Fitzgibbon CJ, McMenemy J, Gersbach CA, Marszalek PE. 72.  2015. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Res 43:188924–41 [Google Scholar]
  73. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E. 73.  et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:61761247997 [Google Scholar]
  74. Sternberg SH, LaFrance B, Kaplan M, Doudna JA. 74.  2015. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:75761–14 [Google Scholar]
  75. Gorman J, Plys AJ, Visnapuu M-L, Alani E, Greene EC. 75.  2010. Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat. Struct. Mol. Biol. 17:8932–38 [Google Scholar]
  76. Finkelstein IJ, Visnapuu M-L, Greene EC. 76.  2010. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 468:7326983–87 [Google Scholar]
  77. Lee J, Finkelstein IJ, Arciszewska LK, Sherratt DJ, Greene EC. 77.  2014. Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA. Mol. Cell 54:5832–43 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error