Bacterial infections remain a major public health concern. However, broad-spectrum antibiotics largely target redundant mechanisms of bacterial survival and lead to gained resistance owing to microbial evolution. New methods are needed to attack bacterial infections, and we have only begun to seek out nature's vast arsenal of antimicrobial weapons. Enzymes offer one such weapon, and their diversity has been exploited to kill bacteria selectively through unique targets, particularly in bacterial cell walls, as well as nonselectively through generation of bactericidal molecules. In both approaches, microbial resistance has largely been absent, which bodes well for its potential use in human therapeutics. Furthermore, enzyme stabilization through conjugation to nanoscale materials and incorporation into polymeric composites enable their use on surfaces to endow them with antimicrobial properties. Here, we highlight the use of enzymes as antimicrobial agents, including applications that may prove effective in new therapeutics and through control of key societal infrastructures.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ventola CL. 1.  2015. The antibiotic resistance crisis. Part 1: causes and threats. Pharm. Ther. 40:277–83 [Google Scholar]
  2. 2. CDC (Cent. Dis. Control Prev.). 2013. Antibiotic resistance threats in the United States, 2013 Atlanta, GA: US Dep. Health Hum. Serv http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed September 7, 2016 [Google Scholar]
  3. Ogle M. 3.  2013. Riots, rage, and resistance: a brief history of how antibiotics arrived on the farm. Scientific American Guest Blog Sept. 3. http://blogs.scientificamerican.com/guest-blog/riots-rage-and-resistance-a-brief-history-of-how-antibiotics-arrived-on-the-farm/ [Google Scholar]
  4. 4. ConsumersUnion 2017. The overuse of antibiotics in food animals threatens public health. Consumers Union http://consumersunion.org/news/the-overuse-of-antibiotics-in-food-animals-threatens-public-health-2/ [Google Scholar]
  5. Tresse O, Lorrain MJ, Rho D. 5.  2002. Population dynamics of free-floating and attached bacteria in a styrene-degrading biotrickling filter analyzed by denaturing gradient gel electrophoresis. Appl. Microbiol. Biotechnol. 59:585–90 [Google Scholar]
  6. Bell CR, Albright LJ. 6.  1982. Attached and free-floating bacteria in a diverse selection of water bodies. Appl. Environ. Microbiol. 43:1227–37 [Google Scholar]
  7. Donlan RM, Costerton JW. 7.  2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167–93 [Google Scholar]
  8. Jefferson KK. 8.  2004. What drives bacteria to produce a biofilm?. FEMS Microbiol. Lett. 236:163–73 [Google Scholar]
  9. Johnson DL, Mead KR, Lynch RA, Hirst DV. 9.  2013. Lifting the lid on toilet plume aerosol: a literature review with suggestions for future research. Am. J. Infect. Control 41:254–58 [Google Scholar]
  10. Beloin C, Renard S, Ghigo JM, Lebeaux D. 10.  2014. Novel approaches to combat bacterial biofilms. Curr. Opin. Pharmacol. 18:61–68 [Google Scholar]
  11. Van Houdt R, Michiels CW. 11.  2010. Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109:1117–31 [Google Scholar]
  12. Flemming HC, Wingender J. 12.  2010. The biofilm matrix. Nat. Rev. Microbiol. 8:623–33 [Google Scholar]
  13. Chen M, Yu Q, Sun H. 13.  2013. Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci. 14:18488–501 [Google Scholar]
  14. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. 14.  2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35:322–32 [Google Scholar]
  15. Maisonneuve E, Gerdes K. 15.  2014. Molecular mechanisms underlying bacterial persisters. Cell 157:539–48 [Google Scholar]
  16. Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT. 16.  2012. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. PNAS 109:12147–52 [Google Scholar]
  17. Finnegan M, Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. 17.  2010. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J. Antimicrob. Chemother. 65:2108–15 [Google Scholar]
  18. Tiina M, Sandholm M. 18.  1989. Antibacterial effect of the glucose oxidase-glucose system on food-poisoning organisms. Int. J. Food Microbiol. 8:165–74 [Google Scholar]
  19. Zubko EI, Zubko MK. 19.  2013. Co-operative inhibitory effects of hydrogen peroxide and iodine against bacterial and yeast species. BMC Res. Notes 6:272 [Google Scholar]
  20. Mazzola PG, Jozala AF, Novaes LCD, Moriel P, Penna TCV. 20.  2009. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Braz. J. Pharm. Sci. 45:241–48 [Google Scholar]
  21. Grover N, Borkar IV, Dinu CZ, Kane RS, Dordick JS. 21.  2012. Laccase-and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity. Enzyme Microb. Technol. 50:271–79 [Google Scholar]
  22. Winter JM, Moore BS. 22.  2009. Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J. Biol. Chem. 284:18577–81 [Google Scholar]
  23. Huang L, Ortiz de Montellano PR. 23.  2006. Heme-protein covalent bonds in peroxidases and resistance to heme modification during halide oxidation. Arch. Biochem. Biophys. 446:77–83 [Google Scholar]
  24. Yi X, Mroczko M, Manoj KM, Wang X, Hager LP. 24.  1999. Replacement of the proximal heme thiolate ligand in chloroperoxidase with a histidine residue. PNAS 96:12412–17 [Google Scholar]
  25. Grover N, Dinu CZ, Kane RS, Dordick JS. 25.  2013. Enzyme-based formulations for decontamination: current state and perspectives. Appl. Microbiol. Biotechnol. 97:3293–300 [Google Scholar]
  26. Seifu E, Buys EM, Donkin EF. 26.  2005. Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trends Food Sci. Technol. 16:137–54 [Google Scholar]
  27. Bernhardt P, Hult K, Kazlauskas RJ. 27.  2005. Molecular basis of perhydrolase activity in serine hydrolases. Angew. Chem. Int. Ed. 44:2742–46 [Google Scholar]
  28. Dinu CZ, Zhu G, Bale SS, Anand G, Reeder PJ. 28.  et al. 2010. Enzyme-based nanoscale composites for use as active decontamination surfaces. Adv. Funct. Mater. 20:392–98 [Google Scholar]
  29. Grover N, Douaisi MP, Borkar IV, Lee L, Dinu CZ. 29.  et al. 2013. Perhydrolase-nanotube paint composites with sporicidal and antiviral activity. Appl. Microbiol. Biotechnol. 97:8813–21 [Google Scholar]
  30. Santhanam N, Vivanco JM, Decker SR, Reardon KF. 30.  2011. Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol 29:480–89 [Google Scholar]
  31. Gray MJ, Wholey WY, Jakob U. 31.  2013. Bacterial responses to reactive chlorine species. Annu. Rev. Microbiol. 67:141–60 [Google Scholar]
  32. Nash JA, Ballard TN, Weaver TE, Akinbi HT. 32.  2006. The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo. J. Immunol. 177:519–26 [Google Scholar]
  33. Ibrahim HR, Higashiguchi S, Juneja LR, Kim M, Yamamoto T. 33.  1996. A structural phase of heat-denatured lysozyme with novel antimicrobial action. J. Agric. Food Chem. 44:1416–23 [Google Scholar]
  34. Masschalck B, Michiels CW. 34.  2003. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol. 29:191–214 [Google Scholar]
  35. Briers Y, Lavigne R. 35.  2015. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol 10:377–90 [Google Scholar]
  36. Banerjee I, Pangule RC, Kane RS. 36.  2011. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23:690–718 [Google Scholar]
  37. Donlan RM. 37.  2001. Biofilm formation: a clinically relevant microbiological process. Clin. Infect. Dis. 33:1387–92 [Google Scholar]
  38. Lequette Y, Boels G, Clarisse M, Faille C. 38.  2010. Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling 26:421–31 [Google Scholar]
  39. Mukherji R, Patil A, Prabhune A. 39.  2015. Role of extracellular proteases in biofilm disruption of Gram positive bacteria with special emphasis on Staphylococcus aureus biofilms. Enzyme Eng 4:126 [Google Scholar]
  40. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH. 40.  2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–17 [Google Scholar]
  41. Fetzner S. 41.  2015. Quorum quenching enzymes. J. Biotechnol. 201:2–14 [Google Scholar]
  42. Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM. 42.  2013. Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol. J. 8:97–109 [Google Scholar]
  43. Ramasubbu N, Thomas LM, Ragunath C, Kaplan JB. 43.  2005. Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. . J. Mol. Biol. 349:475–86 [Google Scholar]
  44. Kaplan JB. 44.  2010. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 89:205–18 [Google Scholar]
  45. Asai K, Yamada K, Yagi T, Baba H, Kawamura I, Ohta M. 45.  2015. Effect of incubation atmosphere on the production and composition of staphylococcal biofilms. J. Infect. Chemother. 21:55–61 [Google Scholar]
  46. Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S. 46.  2007. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl. Microbiol. Biotechnol. 75:125–32 [Google Scholar]
  47. Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S. 47.  2009. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J. Antimicrob. Chemother. 64:88–93 [Google Scholar]
  48. Izano EA, Amarante MA, Kher WB, Kaplan JB. 48.  2008. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl. Environ. Microbiol. 74:470–76 [Google Scholar]
  49. Alkawash MA, Soothill JS, Schiller NL. 49.  2006. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114:131–38 [Google Scholar]
  50. Keren I, Kaldalu N, Spoering A, Wang YP, Lewis K. 50.  2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230:13–18 [Google Scholar]
  51. Trudil D. 51.  2015. Phage lytic enzymes: a history. Virol. Sin. 30:26–32 [Google Scholar]
  52. Fischetti VA. 52.  2010. Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int. J. Med. Microbiol 300357–62 [Google Scholar]
  53. Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A. 53.  et al. 2016. Efficacy of artilysin Art-175 against resistant and persistent Acinetobacter baumannii. . Antimicrob. Agents Chemother. 60:3480–88 [Google Scholar]
  54. Clokie MRJ, Millard AD, Letarov AV, Heaphy S. 54.  2011. Phages in nature. Bacteriophage 1:31–45 [Google Scholar]
  55. Proença D, Leandro C, Garcia M, Pimentel M, São-José C. 55.  2015. EC300: a phage-based, bacteriolysin-like protein with enhanced antibacterial activity against Enterococcus faecalis. . Appl. Microbiol. Biotechnol. 99:5137–49 [Google Scholar]
  56. Moak M, Molineux IJ. 56.  2004. Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol. Microbiol. 51:1169–83 [Google Scholar]
  57. Kenny JG, McGrath S, Fitzgerald GF, van Sinderen D. 57.  2004. Bacteriophage Tuc2009 encodes a tail-associated cell wall-degrading activity. J. Bacteriol. 186:3480–91 [Google Scholar]
  58. Diaz E, Lopez R, Garcia JL. 58.  1990. Chimeric phage-bacterial enzymes: a clue to the modular evolution of genes. PNAS 87:8125–29 [Google Scholar]
  59. Schmelcher M, Donovan DM, Loessner MJ. 59.  2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–71 [Google Scholar]
  60. Fischetti VA. 60.  2008. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 11:393–400 [Google Scholar]
  61. Pritchard DG, Dong S, Kirk MC, Cartee RT, Baker JR. 61.  2007. LambdaSal and LambdaSa2 prophage lysins of Streptococcus agalactiae. Appl. Environ. Microbiol. 73:7150–54 [Google Scholar]
  62. Rodríguez-Rubio L, Martínez B, Donovan DM, Rodríguez A, García P. 62.  2013. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit. Rev. Microbiol. 39:427–34 [Google Scholar]
  63. Fraser JS, Maxwell KL, Davidson AR. 63.  2007. Immunoglobulin-like domains on bacteriophage: Weapons of modest damage?. Curr. Opin. Microbiol. 10:382–87 [Google Scholar]
  64. Rodríguez-Rubio L, Martínez B, Rodríguez A, Donovan DM, García P. 64.  2012. Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion-associated peptidoglycan hydrolase: fusions, deletions, and synergy with LysH5. Appl. Environ. Microbiol. 78:2241–48 [Google Scholar]
  65. Lavigne R, Briers Y, Hertveldt K, Robben J, Volckaert G. 65.  2004. Identification and characterization of a highly thermostable bacteriophage lysozyme. Cell. Mol. Life Sci. 61:2753–59 [Google Scholar]
  66. van Heijenoort J. 66.  2011. Peptidoglycan hydrolases of Escherichia coli. Microbiol. . Mol. Biol. Rev. 75:636–63 [Google Scholar]
  67. Vollmer W, Joris B, Charlier P, Foster S. 67.  2008. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32:259–86 [Google Scholar]
  68. Smith TJ, Blackman SA, Foster SJ. 68.  2000. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146:249–62 [Google Scholar]
  69. Mehta KK, Paskaleva EE, Wu X, Grover N, Mundra RV. 69.  et al. 2016. Newly identified bacteriolytic enzymes that target a wide range of clinical isolates of Clostridium difficile. . Biotechnol. Bioeng. 113:2568–76 [Google Scholar]
  70. Osipovitch DC, Therrien S, Griswold KE. 70.  2015. Discovery of novel S. aureus autolysins and molecular engineering to enhance bacteriolytic activity. Appl. Microbiol. Biotechnol. 99:6315–26 [Google Scholar]
  71. Mehta KK, Paskaleva EE, Azizi-Ghannad S, Ley DJ, Page MA. 71.  et al. 2013. Characterization of AmiBA2446, a novel bacteriolytic enzyme active against Bacillus species. Appl. Environ. Microbiol. 79:5899–906 [Google Scholar]
  72. Frankel MB, Schneewind O. 72.  2012. Determinants of murein hydrolase targeting to cross-wall of Staphylococcus aureus peptidoglycan. J. Biol. Chem. 287:10460–71 [Google Scholar]
  73. Osipovitch DC, Griswold KE. 73.  2015. Fusion with a cell wall binding domain renders autolysin LytM a potent anti-Staphylococcus aureus agent. FEMS Microbiol. Lett. 362:1–7 [Google Scholar]
  74. Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR. 74.  2007. The diversity of bacteriocins in Gram-positive bacteria. Bacteriocins: Ecology and Evolution MA Riley, MA Chavan 45–92 Berlin, Heidelberg: Springer Berlin Heidelberg [Google Scholar]
  75. Riley MA, Wertz JE. 75.  2002. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56:117–37 [Google Scholar]
  76. DeHart HP, Heath HE, Heath LS, LeBlanc PA, Sloan GL. 76.  1995. The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus. . Appl. Environ. Microbiol. 61:1475–79 [Google Scholar]
  77. Sabala I, Jagielska E, Bardelang PT, Czapinska H, Dahms SO. 77.  et al. 2014. Crystal structure of the antimicrobial peptidase lysostaphin from Staphylococcus simulans. . FEBS J. 281:4112–22 [Google Scholar]
  78. Becker SC, Foster-Frey J, Stodola AJ, Anacker D, Donovan DM. 78.  2009. Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Gene 443:32–41 [Google Scholar]
  79. Eugster MR, Loessner MJ. 79.  2012. Wall teichoic acids restrict access of bacteriophage endolysin Ply118, Ply511, and PlyP40 cell wall binding domains to the Listeria monocytogenes peptidoglycan. J. Bacteriol. 194:6498–506 [Google Scholar]
  80. Schlag M, Biswas R, Krismer B, Kohler T, Zoll S. 80.  et al. 2010. Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol. Microbiol. 75:864–73 [Google Scholar]
  81. Fedtke I, Mader D, Kohler T, Moll H, Nicholson G. 81.  et al. 2007. A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol. Microbiol. 65:1078–91 [Google Scholar]
  82. Wu X, Paskaleva EE, Mehta KK, Dordick JS, Kane RS. 82.  2016. Wall teichoic acids are involved in the medium-induced loss of function of the autolysin CD11 against Clostridium difficile. . Sci. Rep. 6:35616 [Google Scholar]
  83. Hu S, Kong J, Kong W, Guo T, Ji M. 83.  2010. Characterization of a novel LysM domain from Lactobacillus fermentum bacteriophage endolysin and its use as an anchor to display heterologous proteins on the surfaces of lactic acid cacteria. Appl. Environ. Microbiol. 76:2410–18 [Google Scholar]
  84. Moir A. 84.  2006. How do spores germinate?. J. Appl. Microbiol. 101:526–30 [Google Scholar]
  85. Heffron JD, Lambert EA, Sherry N, Popham DL. 85.  2010. Contributions of four cortex lytic enzymes to germination of Bacillus anthracis spores. J. Bacteriol. 192:763–70 [Google Scholar]
  86. Heffron JD, Sherry N, Popham DL. 86.  2011. In vitro studies of peptidoglycan binding and hydrolysis by the Bacillus anthracis germination-specific lytic enzyme SleB. J. Bacteriol. 193:125–31 [Google Scholar]
  87. Wu X, Grover N, Paskaleva EE, Mundra RV, Page MA. 87.  et al. 2015. Characterization of the activity of the spore cortex lytic enzyme CwlJ1. Biotechnol. Bioeng. 112:1365–75 [Google Scholar]
  88. Mundra RV, Mehta KK, Wu X, Paskaleva EE, Kane RS, Dordick JS. 88.  2014. Enzyme-driven Bacillus spore coat degradation leading to spore killing. Biotechnol. Bioeng. 111:654–63 [Google Scholar]
  89. Nikaido H, Vaara M. 89.  1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49:1–32 [Google Scholar]
  90. Ellison RT 3rd, Giehl TJ. 90.  1991. Killing of Gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Investig. 88:1080–91 [Google Scholar]
  91. Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N. 91.  et al. 2012. Structural engineering of a phage lysin that targets Gram-negative pathogens. PNAS 109:9857–62 [Google Scholar]
  92. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ. 92.  et al. 2013. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 113:1904–2074 [Google Scholar]
  93. Torres-Salas P, del Monte-Martinez A, Cutiño-Avila B, Rodriguez-Colinas B, Alcalde M. 93.  et al. 2011. Immobilized biocatalysts: novel approaches and tools for binding enzymes to supports. Adv. Mater. 23:5275–82 [Google Scholar]
  94. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. 94.  2010. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–58 [Google Scholar]
  95. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y. 95.  2006. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128:11635–42 [Google Scholar]
  96. Mu QX, Liu W, Xing YH, Zhou HY, Li ZW. 96.  et al. 2008. Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter. J. Phys. Chem. C 112:3300–7 [Google Scholar]
  97. Nepal D, Geckeler KE. 97.  2006. pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small 2:406–12 [Google Scholar]
  98. Ge C, Du J, Zhao L, Wang L, Liu Y. 98.  et al. 2011. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. PNAS 108:16968–73 [Google Scholar]
  99. Nuzzo RG, Allara DL. 99.  1983. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105:4481–83 [Google Scholar]
  100. Brancolini G, Kokh DB, Calzolai L, Wade RC, Corni S. 100.  2012. Docking of ubiquitin to gold nanoparticles. ACS Nano 6:9863–78 [Google Scholar]
  101. Liu F, Wang L, Wang H, Yuan L, Li J. 101.  et al. 2015. Modulating the activity of protein conjugated to gold nanoparticles by site-directed orientation and surface density of bound protein. ACS Appl. Mater. Interfaces 7:3717–24 [Google Scholar]
  102. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S. 102.  2005. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–7 [Google Scholar]
  103. Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y. 103.  2008. Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim. Biophys. Acta 1784:1020–27 [Google Scholar]
  104. Puddu V, Perry CC. 104.  2012. Peptide adsorption on silica nanoparticles: evidence of hydrophobic interactions. ACS Nano 6:6356–63 [Google Scholar]
  105. Karlsson M, Carlsson U. 105.  2005. Protein adsorption orientation in the light of fluorescent probes: mapping of the interaction between site-directly labeled human carbonic anhydrase II and silica nanoparticles. Biophys. J. 88:3536–44 [Google Scholar]
  106. Shen XC, Liou XY, Ye LP, Liang H, Wang ZY. 106.  2007. Spectroscopic studies on the interaction between human hemoglobin and CdS quantum dots. J. Colloid Interface Sci. 311:400–6 [Google Scholar]
  107. Lacerda SH, Park JJ, Meuse C, Pristinski D, Becker ML. 107.  et al. 2010. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4:365–79 [Google Scholar]
  108. Shang W, Nuffer JH, Dordick JS, Siegel RW. 108.  2007. Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett 7:1991–95 [Google Scholar]
  109. Vertegel AA, Siegel RW, Dordick JS. 109.  2004. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–7 [Google Scholar]
  110. Shrivastava S, Nuffer JH, Siegel RW, Dordick JS. 110.  2012. Position-specific chemical modification and quantitative proteomics disclose protein orientation adsorbed on silica nanoparticles. Nano Lett 12:1583–87 [Google Scholar]
  111. Asuri P, Karajanagi SS, Yang H, Yim TJ, Kane RS, Dordick JS. 111.  2006. Increasing protein stability through control of the nanoscale environment. Langmuir 22:5833–36 [Google Scholar]
  112. Nygren P, Lundqvist M, Broo K, Jonsson BH. 112.  2008. Fundamental design principles that guide induction of helix upon formation of stable peptide-nanoparticle complexes. Nano Lett 8:1844–52 [Google Scholar]
  113. Asuri P, Karajanagi SS, Kane RS, Dordick JS. 113.  2007. Polymer-nanotube-enzyme composites as active antifouling films. Small 3:50–53 [Google Scholar]
  114. Asuri P, Karajanagi SS, Vertegel AA, Dordick JS, Kane RS. 114.  2007. Enhanced stability of enzymes adsorbed onto nanoparticles. J. Nanosci. Nanotechnol. 7:1675–78 [Google Scholar]
  115. Jun SH, Lee J, Kim BC, Lee JE, Joo J. 115.  et al. 2012. Highly efficient enzyme immobilization and stabilization within meso-structured onion-like silica for biodiesel production. Chem. Mater. 24:924–29 [Google Scholar]
  116. Bailes J, Gazi S, Ivanova R, Soloviev M. 116.  2012. Effect of gold nanoparticle conjugation on the activity and stability of functional proteins. Methods Mol. Biol. 906:89–99 [Google Scholar]
  117. Qian X, Rameshbabu U, Dordick JS, Siegel RW. 117.  2016. Selective characterization of proteins on nanoscale concave surfaces. Biomaterials 75:305–12 [Google Scholar]
  118. Satzer P, Svec F, Sekot G, Jungbauer A. 118.  2016. Protein adsorption onto nanoparticles induces conformational changes: particle size dependency, kinetics, and mechanisms. Eng. Life Sci. 16:238–46 [Google Scholar]
  119. Lundqvist M, Sethson I, Jonsson BH. 119.  2004. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. Langmuir 20:10639–47 [Google Scholar]
  120. Teichroeb JH, Forrest JA, Jones LW. 120.  2008. Size-dependent denaturing kinetics of bovine serum albumin adsorbed onto gold nanospheres. Eur. Phys. J. E 26:411–15 [Google Scholar]
  121. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 121.  2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS 105:14265–70 [Google Scholar]
  122. Gagner JE, Qian X, Lopez MM, Dordick JS, Siegel RW. 122.  2012. Effect of gold nanoparticle structure on the conformation and function of adsorbed proteins. Biomaterials 33:8503–16 [Google Scholar]
  123. Gagner JE, Lopez MD, Dordick JS, Siegel RW. 123.  2011. Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 32:7241–52 [Google Scholar]
  124. Sau TK, Rogach AL. 124.  2010. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater. 22:1781–804 [Google Scholar]
  125. Hong SG, Kim HS, Kim J. 125.  2014. Highly stabilized lipase in polyaniline nanofibers for surfactant-mediated esterification of ibuprofen. Langmuir 30:911–15 [Google Scholar]
  126. Kim J, Grate JW. 126.  2003. Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett 3:1219–22 [Google Scholar]
  127. Kwon KY, Youn J, Kim JH, Park Y, Jeon C. 127.  et al. 2010. Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells. Biosens. Bioelectron. 26:655–60 [Google Scholar]
  128. Kim BC, Lopez-Ferrer D, Lee SM, Ahn HK, Nair S. 128.  et al. 2009. Highly stable trypsin-aggregate coatings on polymer nanofibers for repeated protein digestion. Proteomics 9:1893–900 [Google Scholar]
  129. Eby DM, Luckarift HR, Johnson GR. 129.  2009. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl. Mater. Interfaces 1:1553–60 [Google Scholar]
  130. Shah A, Mond J, Walsh S. 130.  2004. Lysostaphin-coated catheters eradicate Staphylococccus aureus challenge and block surface colonization. Antimicrob. Agents Chemother. 48:2704–7 [Google Scholar]
  131. Satishkumar R, Sankar S, Yurko Y, Lincourt A, Shipp J. 131.  et al. 2011. Evaluation of the antimicrobial activity of lysostaphin-coated hernia repair meshes. Antimicrob. Agents Chemother. 55:4379–85 [Google Scholar]
  132. Amitai G, Andersen J, Wargo S, Asche G, Chir J. 132.  et al. 2009. Polyurethane-based leukocyte-inspired biocidal materials. Biomaterials 30:6522–29 [Google Scholar]
  133. Lipovsky A, Thallinger B, Perelshtein I, Ludwig R, Sygmund C. 133.  et al. 2015. Ultrasound coating of polydimethylsiloxanes with antimicrobial enzymes. J. Mater. Chem. B 3:7014–19 [Google Scholar]
  134. Pangule RC, Brooks SJ, Dinu CZ, Bale SS, Salmon SL. 134.  et al. 2010. Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates. ACS Nano 4:3993–4000 [Google Scholar]
  135. Grover N, Paskaleva EE, Mehta KK, Dordick JS, Kane RS. 135.  2014. Growth inhibition of Mycobacterium smegmatis by mycobacteriophage-derived enzymes. Enzyme Microb. Technol. 63:1–6 [Google Scholar]
  136. Borkar IV, Dinu CZ, Zhu G, Kane RS, Dordick JS. 136.  2010. Bionanoconjugate-based composites for decontamination of nerve agents. Biotechnol. Prog. 26:1622–28 [Google Scholar]
  137. Messersmith PB, Textor M. 137.  2007. Nanomaterials: Enzymes on nanotubes thwart fouling. Nat. Nanotechnol. 2:138–39 [Google Scholar]
  138. Solanki K, Grover N, Downs P, Paskaleva EE, Mehta KK. 138.  et al. 2013. Enzyme-based listericidal nanocomposites. Sci. Rep. 3:1584 [Google Scholar]
  139. Edwards JV, Prevost NT, Condon B, French A, Wu Q. 139.  2012. Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose I and II cotton nanocrystalline preparations. Cellulose 19:495–506 [Google Scholar]
  140. Kim W, Tengra FK, Young Z, Shong J, Marchand N. 140.  et al. 2013. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. . PLOS ONE 8:e62437 [Google Scholar]
  141. Kikkawa HS, Ueda T, Suzuki S-I, Yasuda J. 141.  2008. Characterization of the catalytic activity of the γ-phage lysin, PlyG, specific for Bacillus anthracis. FEMS Microbiol. Lett. 286:236–40 [Google Scholar]
  142. Schuch R, Nelson D, Fischetti VA. 142.  2002. A bacteriolytic agent that detects and kills Bacillus anthracis. . Nature 418:884–89 [Google Scholar]
  143. McGowan S, Buckle AM, Mitchell MS, Hoopes JT, Gallagher DT. 143.  et al. 2012. X-ray crystal structure of the streptococcal specific phage lysin PlyC. PNAS 109:12752–57 [Google Scholar]
  144. Korndörfer IP, Kanitz A, Danzer J, Zimmer M, Loessner MJ, Skerra A. 144.  2008. Structural analysis of the l-alanoyl-d-glutamate endopeptidase domain of Listeria bacteriophage endolysin Ply500 reveals a new member of the LAS peptidase family. Acta Crystallogr. D Biol. Crystallogr. 64:644–50 [Google Scholar]
  145. Mayer MJ, Garefalaki V, Spoerl R, Narbad A, Meijers R. 145.  2011. Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range. J. Bacteriol. 193:5477–86 [Google Scholar]
  146. Mayer MJ, Narbad A, Gasson MJ. 146.  2008. Molecular characterisation of a Clostridium difficile bacteriophage and its cloned biologically active endolysin. J. Bacteriol. 190:6734–40 [Google Scholar]
  147. Mahapatra S, Piechota C, Gil F, Ma Y, Huang H. 147.  et al. 2013. Mycobacteriophage Ms6 LysA: a peptidoglycan amidase and a useful analytical tool. Appl. Environ. Microbiol. 79:768–73 [Google Scholar]
  148. Turner MS, Hafner LM, Walsh T, Giffard PM. 148.  2004. Identification, characterisation and specificity of a cell wall lytic enzyme from Lactobacillus fermentum BR11. FEMS Microbiol. Lett. 238:9–15 [Google Scholar]
  149. Fukushima T, Kitajima T, Yamaguchi H, Ouyang Q, Furuhata K. 149.  et al. 2008. Identification and characterization of novel cell wall hydrolase CwlT: a two-domain autolysin exhibiting N-acetylmuramidase and dl-endopeptidase activities. J. Biol. Chem. 283:11117–25 [Google Scholar]
  150. Bourgeois I, Camiade E, Biswas R, Courtin P, Gibert L. 150.  et al. 2009. Characterization of AtlL, a bifunctional autolysin of Staphylococcus lugdunensis with N-acetylglucosaminidase and N-acetylmuramoyl-l-alanine amidase activities. FEMS Microbiol. Lett. 290:105–13 [Google Scholar]
  151. Nigutova K, Morovsky M, Pristas P, Teather RM, Holo H, Javorsky P. 151.  2007. Production of enterolysin A by rumen Enterococcus faecalis strain and occurrence of enlA homologues among ruminal Gram-positive cocci. J. Appl. Microbiol. 102:563–69 [Google Scholar]
  152. Joerger MC, Klaenhammer TR. 152.  1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 167:439–46 [Google Scholar]
  153. Beukes M, Bierbaum G, Sahl H-G, Hastings JW. 153.  2000. Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Appl. Environ. Microbiol. 66:23–28 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error