1932

Abstract

Two-dimensional, graphene-based materials have attracted great attention as a new membrane building block, primarily owing to their potential to make the thinnest possible membranes and thus provide the highest permeance for effective sieving, assuming comparable porosity to conventional membranes and uniform molecular-sized pores. However, a great challenge exists to fabricate large-area, single-layered graphene or graphene oxide (GO) membranes that have negligible undesired transport pathways, such as grain boundaries, tears, and cracks. Therefore, model systems, such as a single flake or nanochannels between graphene or GO flakes, have been studied via both simulations and experiments to explore the transport mechanisms and separation potential of graphene-based membranes. This article critically reviews literature related to single- to few-layered graphene and GO membranes, from material synthesis and characteristics, fundamental membrane structures, and transport mechanisms to potential separation applications. Knowledge gaps between science and engineering in this new field and future opportunities for practical separation applications are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-084046
2018-06-07
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/9/1/annurev-chembioeng-060817-084046.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-084046&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Lonsdale H 1982. The growth of membrane technology. J. Membr. Sci. 10:81–181
    [Google Scholar]
  2. 2.  Koros WJ, Zhang C 2017. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16:289–97
    [Google Scholar]
  3. 3.  Werber JR, Osuji CO, Elimelech M 2016. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1:16018
    [Google Scholar]
  4. 4.  Jeon MY, Kim D, Kumar P, Lee PS, Rangnekar N et al. 2017. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543:690–94
    [Google Scholar]
  5. 5.  Varoon K, Zhang X, Elyassi B, Brewer DD, Gettel M et al. 2011. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334:72–75
    [Google Scholar]
  6. 6.  Peng Y, Li Y, Ban Y, Yang W 2017. Two-dimensional metal–organic framework nanosheets for membrane-based gas separation. Angew. Chem. 56:9757–61
    [Google Scholar]
  7. 7.  Wang Y, Li L, Wei Y, Xue J, Chen H et al. 2017. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew. Chem. 56:8974–80
    [Google Scholar]
  8. 8.  Sun L, Huang H, Peng X 2013. Laminar MoS2 membranes for molecule separation. Chem. Commun. 49:10718–20
    [Google Scholar]
  9. 9.  Koenig SP, Wang L, Pellegrino J, Bunch JS 2012. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7:728–32
    [Google Scholar]
  10. 10.  O'Hern SC, Stewart CA, Boutilier MSH, Idrobo J-C, Bhaviripudi S et al. 2012. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6:10130–38
    [Google Scholar]
  11. 11.  Kim HW, Yoon HW, Yoon S-M, Yoo BM, Ahn BK et al. 2013. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342:91–95
    [Google Scholar]
  12. 12.  Li H, Song Z, Zhang X, Huang Y, Li S et al. 2013. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342:95–98
    [Google Scholar]
  13. 13.  Qin Y, Hu Y, Koehler S, Cai L, Wen J et al. 2017. Ultrafast nanofiltration through large-area single-layered graphene membranes. ACS Appl. Mater. Inter. 9:9239–44
    [Google Scholar]
  14. 14.  Surwade SP, Smirnov SN, Vlassiouk IV, Unocic RR, Veith GM et al. 2015. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10:459–64
    [Google Scholar]
  15. 15.  Fathizadeh M, Xu WL, Zhou F, Yoon Y, Yu M 2017. Graphene oxide: a novel 2-dimensional material in membrane separation for water purification. Adv. Mater. Interfaces 4:1600918
    [Google Scholar]
  16. 16.  Jiang D-e, Cooper VR, Dai S 2009. Porous graphene as the ultimate membrane for gas separation. Nano Lett 9:4019–24
    [Google Scholar]
  17. 17.  Cohen-Tanugi D, Grossman JC 2012. Water desalination across nanoporous graphene. Nano Lett 12:3602–8
    [Google Scholar]
  18. 18.  Schrier J 2010. Helium separation using porous graphene membranes. J. Phys. Chem. Lett. 1:2284–87
    [Google Scholar]
  19. 19.  Drahushuk LW, Strano MS 2012. Mechanisms of gas permeation through single layer graphene membranes. Langmuir 28:16671–78
    [Google Scholar]
  20. 20.  Sint K, Wang B, Král P 2008. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130:16448–49
    [Google Scholar]
  21. 21.  Tian Z, Mahurin SM, Dai S, Jiang D-e 2017. Ion-gated gas separation through porous graphene. Nano Lett 17:1802–7
    [Google Scholar]
  22. 22.  Tao Y, Xue Q, Liu Z, Shan M, Ling C et al. 2014. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. ACS Appl. Mater. Inter. 6:8048–58
    [Google Scholar]
  23. 23.  Wang Y, Yang Q, Zhong C, Li J 2017. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes. Appl. Surf. Sci. 407:532–39
    [Google Scholar]
  24. 24.  Raghavan B, Gupta T 2017. H2/CH4 gas separation by variation in pore geometry of nanoporous graphene. J. Phys. Chem. C 121:1904–9
    [Google Scholar]
  25. 25.  Yuan Z, Govind Rajan A, Misra RP, Drahushuk LW, Agrawal KV et al. 2017. Mechanism and prediction of gas permeation through sub-nanometer graphene pores: comparison of theory and simulation. ACS Nano 11:7974–87
    [Google Scholar]
  26. 26.  Zhao K, Wu H 2012. Size effects of pore density and solute size on water osmosis through nanoporous membrane. J. Phys. Chem. B 116:13459–66
    [Google Scholar]
  27. 27.  Konatham D, Yu J, Ho TA, Striolo A 2013. Simulation insights for graphene-based water desalination membranes. Langmuir 29:11884–97
    [Google Scholar]
  28. 28.  Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW et al. 2010. DNA translocation through graphene nanopores. Nano Lett 10:3163–67
    [Google Scholar]
  29. 29.  Nair R, Wu H, Jayaram P, Grigorieva I, Geim A 2012. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335:442–44
    [Google Scholar]
  30. 30.  Celebi K, Buchheim J, Wyss RM, Droudian A, Gasser P et al. 2014. Ultimate permeation across atomically thin porous graphene. Science 344:289–92
    [Google Scholar]
  31. 31.  Hu M, Mi B 2013. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47:3715–23
    [Google Scholar]
  32. 32.  Huang L, Zhang M, Li C, Shi G 2015. Graphene-based membranes for molecular separation. J. Phys. Chem. Lett. 6:2806–15
    [Google Scholar]
  33. 33.  Liu G, Jin W, Xu N 2015. Graphene-based membranes. Chem. Soc. Rev. 44:5016–30
    [Google Scholar]
  34. 34.  Sun P, Wang K, Zhu H 2016. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28:2287–310
    [Google Scholar]
  35. 35.  Chae SJ, Güneş F, Kim KK, Kim ES, Han GH et al. 2009. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv. Mater. 21:2328–33
    [Google Scholar]
  36. 36.  Li X, Cai W, An J, Kim S, Nah J et al. 2009. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–14
    [Google Scholar]
  37. 37.  Shen X, Lin X, Yousefi N, Jia J, Kim J-K 2014. Wrinkling in graphene sheets and graphene oxide papers. Carbon 66:84–92
    [Google Scholar]
  38. 38.  Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666–69
    [Google Scholar]
  39. 39.  Geim AK 2009. Graphene: status and prospects. Science 324:1530–34
    [Google Scholar]
  40. 40.  Gass MH, Bangert U, Bleloch AL, Wang P, Nair RR, Geim A 2008. Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3:676–81
    [Google Scholar]
  41. 41.  Geim AK, Novoselov KS 2007. The rise of graphene. Nat. Mater. 6:183–91
    [Google Scholar]
  42. 42.  Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S 2007. The structure of suspended graphene sheets. Nature 446:60–63
    [Google Scholar]
  43. 43.  Perreault F, Fonseca de Faria A, Elimelech M 2015. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44:5861–96
    [Google Scholar]
  44. 44.  Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM et al. 2008. Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–62
    [Google Scholar]
  45. 45.  Berry V 2013. Impermeability of graphene and its applications. Carbon 62:1–10
    [Google Scholar]
  46. 46.  Hu S, Lozada-Hidalgo M, Wang FC, Mishchenko A, Schedin F et al. 2014. Proton transport through one-atom-thick crystals. Nature 516:227–30
    [Google Scholar]
  47. 47.  Compton OC, Nguyen ST 2010. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–23
    [Google Scholar]
  48. 48.  Zhu Y, Murali S, Cai W, Li X, Suk JW et al. 2010. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22:3906–24
    [Google Scholar]
  49. 49.  Lu X, Yu M, Huang H, Ruoff RS 1999. Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10:269
    [Google Scholar]
  50. 50.  Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z et al. 2008. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3:563–68
    [Google Scholar]
  51. 51.  Berger C, Song Z, Li X, Wu X, Brown N et al. 2006. Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–96
    [Google Scholar]
  52. 52.  Zhou SY, Gweon GH, Fedorov AV, First PN, de Heer WA et al. 2007. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6:770–75
    [Google Scholar]
  53. 53.  Berger C, Song Z, Li T, Li X, Ogbazghi AY et al. 2004. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108:19912–16
    [Google Scholar]
  54. 54.  Gao L, Guest JR, Guisinger NP 2010. Epitaxial graphene on Cu (111). Nano Lett 10:3512–16
    [Google Scholar]
  55. 55.  Huang H, Chen W, Chen S, Wee ATS 2008. Bottom-up growth of epitaxial graphene on 6H-SiC (0001). ACS Nano 2:2513–18
    [Google Scholar]
  56. 56.  Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL et al. 2009. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8:203–7
    [Google Scholar]
  57. 57.  Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA et al. 2009. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19:2577–83
    [Google Scholar]
  58. 58.  Li X, Cai W, Colombo L, Ruoff RS 2009. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–72
    [Google Scholar]
  59. 59.  Dedkov YS, Fonin M, Rüdiger U, Laubschat C 2008. Rashba effect in the graphene/Ni (111) system. Phys. Rev. Lett. 100:107602
    [Google Scholar]
  60. 60.  Coraux J, N'Diaye AT, Busse C, Michely T 2008. Structural coherency of graphene on Ir (111). Nano Lett 8:565–70
    [Google Scholar]
  61. 61.  Bleikamp S, Feibelman PJ, Michely T 2006. Two-dimensional Ir cluster lattice on a graphene moiré on Ir (111). Phys. Rev. Lett. 97:215501
    [Google Scholar]
  62. 62.  Sutter PW, Flege J-I, Sutter EA 2008. Epitaxial graphene on ruthenium. Nat. Mater. 7:406–11
    [Google Scholar]
  63. 63.  Marchini S, Günther S, Wintterlin J 2007. Scanning tunneling microscopy of graphene on Ru (0001). Phys. Rev. B 76:075429
    [Google Scholar]
  64. 64.  Li D, Kaner RB 2008. Graphene-based materials. Nat. Nanotechnol. 3:101
    [Google Scholar]
  65. 65.  Garaj S, Hubbard W, Golovchenko JA 2010. Graphene synthesis by ion implantation. Appl. Phys. Lett. 97:183103
    [Google Scholar]
  66. 66.  Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M 2008. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8:2012–16
    [Google Scholar]
  67. 67.  Choucair M, Thordarson P, Stride JA 2009. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4:30–33
    [Google Scholar]
  68. 68.  Chakrabarti A, Lu J, Skrabutenas JC, Xu T, Xiao Z et al. 2011. Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21:9491–93
    [Google Scholar]
  69. 69.  Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S 2010. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48:255–59
    [Google Scholar]
  70. 70.  Agrawal KV, Benck JD, Yuan Z, Misra RP, Govind Rajan A et al. 2017. Fabrication, pressure testing and nanopore formation of single layer graphene membranes. J. Phys. Chem. C 121:14312–21
    [Google Scholar]
  71. 71.  Merchant CA, Healy K, Wanunu M, Ray V, Peterman N et al. 2010. DNA translocation through graphene nanopores. Nano Lett 10:2915–21
    [Google Scholar]
  72. 72.  Boutilier MSH, Sun C, O'Hern SC, Au H, Hadjiconstantinou NG, Karnik R 2014. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 8:841–49
    [Google Scholar]
  73. 73.  Fischbein MD, Drndić M 2008. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93:113107
    [Google Scholar]
  74. 74.  Yuan W, Chen J, Shi G 2014. Nanoporous graphene materials. Mater. Today 17:77–85
    [Google Scholar]
  75. 75.  Liu L, Ryu S, Tomasik MR, Stolyarova E, Jung N et al. 2008. Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett 8:1965–70
    [Google Scholar]
  76. 76.  Cheng Y, Kaloni TP, Zhu Z, Schwingenschlögl U 2012. Oxidation of graphene in ozone under ultraviolet light. Appl. Phys. Lett. 101:073110
    [Google Scholar]
  77. 77.  O'Hern SC, Boutilier MSH, Idrobo J-C, Song Y, Kong J et al. 2014. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett 14:1234–41
    [Google Scholar]
  78. 78.  Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A et al. 2009. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–76
    [Google Scholar]
  79. 79.  Fox D, O'Neill A, Zhou D, Boese M, Coleman JN, Zhang HZ 2011. Nitrogen assisted etching of graphene layers in a scanning electron microscope. Appl. Phys. Lett. 98:243117
    [Google Scholar]
  80. 80.  Fan Z, Zhao Q, Li T, Yan J, Ren Y et al. 2012. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50:1699–703
    [Google Scholar]
  81. 81.  Cao H, Zhou X, Zheng C, Liu Z 2015. Metal etching method for preparing porous graphene as high performance anode material for lithium-ion batteries. Carbon 89:41–46
    [Google Scholar]
  82. 82.  Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010. Graphene nanomesh. Nat. Nanotechnol. 5:190–94
    [Google Scholar]
  83. 83.  Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P et al. 2009. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 45:6919–21
    [Google Scholar]
  84. 84.  Dreyer DR, Park S, Bielawski CW, Ruoff RS 2010. The chemistry of graphene oxide. Chem. Soc. Rev. 39:228–40
    [Google Scholar]
  85. 85.  Loh KP, Bao Q, Eda G, Chhowalla M 2010. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2:1015–24
    [Google Scholar]
  86. 86.  Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A 2010. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22:4467–72
    [Google Scholar]
  87. 87.  He H, Klinowski J, Forster M, Lerf A 1998. A new structural model for graphite oxide. Chem. Phys. Lett. 287:53–56
    [Google Scholar]
  88. 88.  Park S, Ruoff RS 2009. Chemical methods for the production of graphenes. Nat. Nanotechnol. 4:217–24
    [Google Scholar]
  89. 89.  Brodie B 1860. Sur le poids atomique du graphite. Ann. Chim. Phys. 59:e472
    [Google Scholar]
  90. 90.  Staudenmaier L 1898. Verfahren zur darstellung der graphitsäure. Eur. J. Inorg. Chem. 31:1481–87
    [Google Scholar]
  91. 91.  Hofmann U, König E 1937. Untersuchungen über graphitoxyd. Z. Anorg. Allg. Chem. 234:311–36
    [Google Scholar]
  92. 92.  Hummers WS Jr, Offeman RE 1958. Preparation of graphitic oxide. J. Am. Chem. Soc. 80:1339
    [Google Scholar]
  93. 93.  Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z et al. 2010. Improved synthesis of graphene oxide. ACS Nano 4:4806–14
    [Google Scholar]
  94. 94.  Chua CK, Sofer Z, Pumera M 2012. Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition. Chem. Eur. J. 18:13453–59
    [Google Scholar]
  95. 95.  Eigler S, Enzelberger-Heim M, Grimm S, Hofmann P, Kroener W et al. 2013. Wet chemical synthesis of graphene. Adv. Mater. 25:3583–87
    [Google Scholar]
  96. 96.  Chen J, Zhang Y, Zhang M, Yao B, Li Y et al. 2016. Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chem. Sci. 7:1874–81
    [Google Scholar]
  97. 97.  Pacilé D, Meyer J, Rodríguez AF, Papagno M, Gómez-Navarro C et al. 2011. Electronic properties and atomic structure of graphene oxide membranes. Carbon 49:966–72
    [Google Scholar]
  98. 98.  Smith ZP, Freeman BD 2014. Graphene oxide: a new platform for high-performance gas- and liquid-separation membranes. Angew. Chem. 53:10286–88
    [Google Scholar]
  99. 99.  Mi B 2014. Graphene oxide membranes for ionic and molecular sieving. Science 343:740–42
    [Google Scholar]
  100. 100.  Joshi R, Carbone P, Wang F-C, Kravets VG, Su Y et al. 2014. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343:752–54
    [Google Scholar]
  101. 101.  Hung W-S, Tsou C-H, De Guzman M, An Q-F, Liu Y-L et al. 2014. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 26:2983–90
    [Google Scholar]
  102. 102.  Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A et al. 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–65
    [Google Scholar]
  103. 103.  Pei S, Cheng H-M 2012. The reduction of graphene oxide. Carbon 50:3210–28
    [Google Scholar]
  104. 104.  Chua CK, Pumera M 2014. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43:291–312
    [Google Scholar]
  105. 105.  Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y et al. 2017. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12:546–50
    [Google Scholar]
  106. 106.  Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC 2006. Solution properties of graphite and graphene. J. Am. Chem. Soc. 128:7720–21
    [Google Scholar]
  107. 107.  Xu Y, Liu Z, Zhang X, Wang Y, Tian J et al. 2009. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21:1275–79
    [Google Scholar]
  108. 108.  Liu Z, Robinson JT, Sun X, Dai H 2008. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130:10876–77
    [Google Scholar]
  109. 109.  Veca LM, Lu F, Meziani MJ, Cao L, Zhang P et al. 2009. Polymer functionalization and solubilization of carbon nanosheets. Chem. Commun. 18:2565–67
    [Google Scholar]
  110. 110.  Mohanty N, Berry V 2008. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–76
    [Google Scholar]
  111. 111.  Wang S, Wu Y, Zhang N, He G, Xin Q et al. 2016. A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture. Energy Environ. Sci. 9:3107–12
    [Google Scholar]
  112. 112.  Li X, Cheng Y, Zhang H, Wang S, Jiang Z et al. 2015. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Appl. Mater. Inter. 7:5528–37
    [Google Scholar]
  113. 113.  Wijmans J, Baker R 1995. The solution-diffusion model: a review. J. Membr. Sci. 107:1–21
    [Google Scholar]
  114. 114.  Lei G, Liu C, Xie H, Song F 2014. Separation of the hydrogen sulfide and methane mixture by the porous graphene membrane: effect of the charges. Chem. Phys. Lett. 599:127–32
    [Google Scholar]
  115. 115.  Hauser AW, Schwerdtfeger P 2012. Methane-selective nanoporous graphene membranes for gas purification. PCCP 14:13292–98
    [Google Scholar]
  116. 116.  Shan M, Xue Q, Jing N, Ling C, Zhang T et al. 2012. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4:5477–82
    [Google Scholar]
  117. 117.  Zhang L, Wu C, Fang Y, Ding X, Sun J 2017. Computational design of porous graphenes for alkane isomer separation. J. Phys. Chem. C 121:10063–70
    [Google Scholar]
  118. 118.  Robeson LM 2008. The upper bound revisited. J. Membr. Sci. 320:390–400
    [Google Scholar]
  119. 119.  Cohen-Tanugi D, Grossman JC 2014. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J. Chem. Phys. 141:074704
    [Google Scholar]
  120. 120.  Cohen-Tanugi D, Grossman JC 2014. Is nanoporous graphene strong enough for water desalination by reverse osmosis? Insights from molecular dynamics. Abstr. Pap. Am. Chem. Soc.247
    [Google Scholar]
  121. 121.  Chen Q, Yang X 2015. Pyridinic nitrogen doped nanoporous graphene as desalination membrane: molecular simulation study. J. Membr. Sci. 496:108–17
    [Google Scholar]
  122. 122.  Chen X, Cao G, Han A, Punyamurtula VK, Liu L et al. 2008. Nanoscale fluid transport: size and rate effects. Nano Lett 8:2988–92
    [Google Scholar]
  123. 123.  Lin L-C, Grossman JC 2015. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nat. Commun. 6:8335
    [Google Scholar]
  124. 124.  Wei N, Peng X, Xu Z 2014. Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Inter. 6:5877–83
    [Google Scholar]
  125. 125.  Wei N, Peng X, Xu Z 2014. Breakdown of fast water transport in graphene oxides. Phys. Rev. E 89:012113
    [Google Scholar]
  126. 126.  Xu WL, Fang C, Zhou F, Song Z, Liu Q et al. 2017. Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Lett 17:2928–33
    [Google Scholar]
  127. 127.  Boukhvalov DW, Katsnelson MI, Son Y-W 2013. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett 13:3930–35
    [Google Scholar]
  128. 128.  Algara-Siller G, Lehtinen O, Wang FC, Nair RR, Kaiser U et al. 2015. Square ice in graphene nanocapillaries. Nature 519:443–45
    [Google Scholar]
  129. 129.  Talyzin AV, Solozhenko VL, Kurakevych OO, Szabó T, Dékány I et al. 2008. Colossal pressure-induced lattice expansion of graphite oxide in the presence of water. Angew. Chem. 47:8268–71
    [Google Scholar]
  130. 130.  Poynor A, Hong L, Robinson IK, Granick S, Zhang Z, Fenter PA 2006. How water meets a hydrophobic surface. Phys. Rev. Lett. 97:266101
    [Google Scholar]
  131. 131.  Neek-Amal M, Peeters FM, Grigorieva IV, Geim AK 2016. Commensurability effects in viscosity of nanoconfined water. ACS Nano 10:3685–92
    [Google Scholar]
  132. 132.  Nicolaï A, Sumpter BG, Meunier V 2014. Tunable water desalination across graphene oxide framework membranes. PCCP 16:8646–54
    [Google Scholar]
  133. 133.  O'Hern SC, Jang D, Bose S, Idrobo J-C, Song Y et al. 2015. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett 15:3254–60
    [Google Scholar]
  134. 134.  Zhou F, Tien HN, Xu WL, Chen JT, Liu Q et al. 2017. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nat. Commun. 8:2107
    [Google Scholar]
  135. 135.  Chen C, Yang QH, Yang Y, Lv W, Wen Y et al. 2009. Self-assembled free-standing graphite oxide membrane. Adv. Mater. 21:3007–11
    [Google Scholar]
  136. 136.  Han Y, Xu Z, Gao C 2013. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23:3693–700
    [Google Scholar]
  137. 137.  Suk M, Aluru N 2013. Molecular and continuum hydrodynamics in graphene nanopores. RSC Adv 3:9365–72
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-084046
Loading
/content/journals/10.1146/annurev-chembioeng-060817-084046
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error