1932

Abstract

Recent advances in adsorptive gas separations have focused on the development of porous materials with high operating capacity and selectivity, useful parameters that provide early guidance during the development of new materials. Although this material-focused work is necessary to advance the state of the art in adsorption science and engineering, a substantial problem remains: how to integrate these materials into a fixed bed to efficiently utilize the separation. Structured sorbent contactors can help manage kinetic and engineering factors associated with the separation, including pressure drop, sorption enthalpy effects, and external heat integration (for temperature swing adsorption, or TSA). In this review, we discuss monoliths and fiber sorbents as the two main classes of structured sorbent contactors; recent developments in their manufacture; advantages and disadvantages of each structure relative to each other and to pellet packed beds; recent developments in system modeling; and finally, critical needs in this area of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-084120
2018-06-07
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/9/1/annurev-chembioeng-060817-084120.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-084120&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Sholl DS, Lively RP 2016. Seven chemical separations to change the world. Nature 532:435–37
    [Google Scholar]
  2. 2.  Wilcox J, Haghpanah R, Rupp EC, He JJ, Lee K 2014. Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge. Annu. Rev. Chem. Biomol. Eng. 5:479–505
    [Google Scholar]
  3. 3.  Eldridge RB, Seibert AF, Robinson S, Rogers J 2005. Hybrid Separations/Distillation Technology: Research Opportunities for Energy and Emissions Reduction Golden, CO: US Dep. Energy Off. Energy Effic. Renew. Energy
    [Google Scholar]
  4. 4.  Robinson S, Jubin R, Choate B 2005. Materials for Separation Technologies: Energy and Emission Reduction Opportunities Oak Ridge, TN: Oak Ridge Natl. Lab.
    [Google Scholar]
  5. 5.  Jones CW 2011. CO2 capture from dilute gases as a component of modern global carbon management. Annu. Rev. Chem. Biomol. Eng. 2:31–52
    [Google Scholar]
  6. 6.  Burtch NC, Jasuja H, Walton KS 2014. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 114:10575–612
    [Google Scholar]
  7. 7.  Choi S, Drese JH, Jones CW 2009. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854
    [Google Scholar]
  8. 8.  Ilic B, Wettstein SG 2017. A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous Mesoporous Mater 239:221–34
    [Google Scholar]
  9. 9.  Li H, Eddaoudi M, O'Keeffe M, Yaghi OM 1999. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–79
    [Google Scholar]
  10. 10.  McDonald TM, Mason JA, Kong XQ, Bloch ED, Gygi D et al. 2015. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519:303–8
    [Google Scholar]
  11. 11.  Ruthven DM 1984. Principles of Adsorption and Adsorption Processes New York: Wiley
    [Google Scholar]
  12. 12.  Lively RP, Chance RR, Koros WJ, Deckman HW, Kelley BT 2012. Sorbent fiber compositions and methods of temperature swing adsorption US Patent No. 8409332 B2
    [Google Scholar]
  13. 13.  Koros WJ, Bhandari DA 2013. Fiber sorbents US Patent No. 8377172 B2
    [Google Scholar]
  14. 14.  Koros WJ 2014. Sorbent fiber compositions and methods of using the same US Patent No. 8658041
    [Google Scholar]
  15. 15.  Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH et al. 2009. Hollow fiber adsorbents for CO2 removal from flue gas. Ind. Eng. Chem. Res. 48:7314–24
    [Google Scholar]
  16. 16.  Gulati ST 1998. Ceramic catalyst supports for gasoline fuel. Structured Catalysts and Reactors A Cybulski, JA Moulijn, pp. 15–58. New York: Marcel Dekker
    [Google Scholar]
  17. 17.  Mallik R, Hage DS 2006. Affinity monolith chromatography. J. Sep. Sci. 29:1686–704
    [Google Scholar]
  18. 18.  Corella J, Toledo JM, Padilla R 2004. Catalytic hot gas cleaning with monoliths in biomass gasification in fluidized beds. 2. Modeling of the monolithic reactor. Ind. Eng. Chem. Res. 43:8207–16
    [Google Scholar]
  19. 19.  Jungbauer A, Hahn R 2004. Monoliths for fast bioseparation and bioconversion and their applications in biotechnology. J. Sep. Sci. 27:767–78
    [Google Scholar]
  20. 20.  Rezaei F, Webley P 2010. Structured adsorbents in gas separation processes. Sep. Purif. Technol. 70:243–56
    [Google Scholar]
  21. 21.  Ribeiro R, Sauer TP, Lopes FV, Moreira RF, Grande CA, Rodrigues AE 2008. Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith. J. Chem. Eng. Data 53:2311–17
    [Google Scholar]
  22. 22.  Sinha A, Darunte LA, Jones CW, Realff MJ, Kawajiri Y 2017. Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents. Ind. Eng. Chem. Res. 56:750–64
    [Google Scholar]
  23. 23.  Kreutzer MT, Kapteijn F, Moulijn JA, Heiszwolf JJ 2005. Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels. Chem. Eng. Sci. 60:5895–916
    [Google Scholar]
  24. 24.  Kopaygorodsky EM, Guliants VV, Krantz WB 2004. Predictive dynamic model of single-stage ultra-rapid pressure swing adsorption. AIChE J 50:953–62
    [Google Scholar]
  25. 25.  Akhtar F, Andersson L, Ogunwumi S, Hedin N, Bergstrom L 2014. Structuring adsorbents and catalysts by processing of porous powders. J. Eur. Ceram. Soc. 34:1643–66
    [Google Scholar]
  26. 26.  Rezaei F, Webley P 2009. Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64:5182–91
    [Google Scholar]
  27. 27.  Li SG, Koops GH, Mulder MHV, Vandenboomgaard T, Smolders CA 1994. Wet spinning of integrally skinned hollow-fiber membranes by a modified dual-bath coaggulation method using a triple orifice spinneret. J. Membr. Sci. 94:329–40
    [Google Scholar]
  28. 28.  Lively RP, Chance RR, Mysona JA, Babu VP, Deckman HW et al. 2012. CO2 sorption and desorption performance of thermally cycled hollow fiber sorbents. Int. J. Greenh. Gas Control 10:285–94
    [Google Scholar]
  29. 29.  Lively RP, Leta DP, DeRites BA, Chance RR, Koros WJ 2011. Hollow fiber adsorbents for CO2 capture: kinetic sorption performance. Chem. Eng. J. 171:801–10
    [Google Scholar]
  30. 30.  Bhandari DA, Bessho N, Koros WJ 2010. Hollow fiber sorbents for desulfurization of natural gas. Ind. Eng. Chem. Res. 49:12038–50
    [Google Scholar]
  31. 31.  Chen G, Koros WJ, Jones CW 2016. Hybrid polymer/UiO-66(Zr) and polymer/NaY fiber sorbents for mercaptan removal from natural gas. ACS Appl. Mater. Interfaces 8:9700–9
    [Google Scholar]
  32. 32.  Labreche Y, Lively RP, Rezaei F, Chen G, Jones CW, Koros WJ 2013. Post-spinning infusion of poly(ethyleneimine) into polymer/silica hollow fiber sorbents for carbon dioxide capture. Chem. Eng. J. 221:166–75
    [Google Scholar]
  33. 33.  Labreche Y, Fan YF, Rezaei F, Lively RP, Jones CW, Koros WJ 2014. Poly(amide-imide)/silica supported PEI hollow fiber sorbents for postcombustion CO2 capture by RTSA. ACS Appl. Mater. Interfaces 6:19336–46
    [Google Scholar]
  34. 34.  Rownaghi AA, Kant A, Li X, Thakkar H, Hajari A et al. 2016. Aminosilane-grafted zirconia-titiania-silica nanoparticles/Torlon hollow fiber composites for CO2 capture. ChemSusChem 9:1166–77
    [Google Scholar]
  35. 35.  Rownaghi AA, Rezaei F, Labreche Y, Brennan PJ, Johnson JR et al. 2015. In situ formation of a monodispersed spherical mesoporous nanosilica-Torlon hollow-fiber composite for carbon dioxide capture. ChemSusChem 8:3439–50
    [Google Scholar]
  36. 36.  Fan YF, Rezaei F, Labreche Y, Lively RP, Koros WJ, Jones CW 2015. Stability of amine-based hollow fiber CO2 adsorbents in the presence of NO and SO2. Fuel 160:153–64
    [Google Scholar]
  37. 37.  Li FS, Qiu WL, Lively RP, Lee JS, Rownaghi AA, Koros WJ 2013. Polyethyleneimine-functionalized polyamide imide (Torlon) hollow-fiber sorbents for post-combustion CO2 capture. ChemSusChem 6:1216–23
    [Google Scholar]
  38. 38.  Pang SH, Jue ML, Leisen J, Jones CW, Lively RP 2015. PIM-1 as a solution-processable “molecular basket” for CO2 capture from dilute sources. ACS Macro Lett 4:1415–19
    [Google Scholar]
  39. 39.  Zhao JJ, Nunn WT, Lemaire PC, Lin YL, Dickey MD et al. 2015. Facile conversion of hydroxy double salts to metal-organic frameworks using metal oxide particles and atomic layer deposition thin-film templates. J. Am. Chem. Soc. 137:13756–59
    [Google Scholar]
  40. 40.  Pimentel BR, Fultz AW, Presnell KV, Lively RP 2017. Synthesis of water-sensitive metal-organic frameworks within fiber sorbent modules. Ind. Eng. Chem. Res. 56:5070–77
    [Google Scholar]
  41. 41.  Bhandari D, Olanrewaju KO, Bessho N, Breedveld V, Koros WJ 2013. Dual layer hollow fiber sorbents: concept, fabrication and characterization. Sep. Purif. Technol. 104:68–80
    [Google Scholar]
  42. 42.  Labreche Y, Fan YF, Lively RP, Jones CW, Koros WJ 2015. Direct dual layer spinning of aminosilica/Torlon® hollow fiber sorbents with a lumen layer for CO2 separation by rapid temperature swing adsorption. J. Appl. Polym. Sci. 132:17
    [Google Scholar]
  43. 43.  Lively RP, Mysona JA, Chance RR, Koros WJ 2011. Formation of defect-free latex films on porous fiber supports. ACS Appl. Mater. Interfaces 3:3568–82
    [Google Scholar]
  44. 44.  Thiruvenkatachari R, Su S, An H, Yu XX 2009. Post combustion CO2 capture by carbon fibre monolithic adsorbents. Prog. Energy Combust. Sci. 35:438–55
    [Google Scholar]
  45. 45.  Lv YQ, Tan XY, Svec F 2017. Preparation and applications of monolithic structures containing metal-organic frameworks. J. Sep. Sci. 40:272–87
    [Google Scholar]
  46. 46.  Avila P, Montes M, Miro EE 2005. Monolithic reactors for environmental applications—a review on preparation technologies. Chem. Eng. J. 109:11–36
    [Google Scholar]
  47. 47.  Li YY, Perera SP, Crittenden BD, Bridgwater J 2001. The effect of the binder on the manufacture of a 5A zeolite monolith. Powder Technol 116:85–96
    [Google Scholar]
  48. 48.  Hong WY, Perera SP, Burrows AD 2015. Manufacturing of metal-organic framework monoliths and their application in CO2 adsorption. Microporous Mesoporous Mater 214:149–55
    [Google Scholar]
  49. 49.  Kusgens P, Zgaverdea A, Fritz HG, Siegle S, Kaskel S 2010. Metal-organic frameworks in monolithic structures. J. Am. Ceram. Soc. 93:2476–79
    [Google Scholar]
  50. 50.  Chen ZH, Deng SB, Wei HR, Wang B, Huang J, Yu G 2013. Activated carbons and amine-modified materials for carbon dioxide capture—a review. Front. Environ. Sci. Eng. 7:326–40
    [Google Scholar]
  51. 51.  Hao GP, Li WC, Qian D, Wang GH, Zhang WP et al. 2011. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J. Am. Chem. Soc. 133:11378–88
    [Google Scholar]
  52. 52.  Jordan T, Yu Z-L, Yu S-H, Antonietti M, Fechler N 2018. Porous nitrogen-doped carbon monoliths derived from biopolymer-structured liquid precursors. Microporous Mesoporous Mater 255:53–60
    [Google Scholar]
  53. 53.  Liu L, Liu Z, Yang J, Huang Z, Liu Z 2007. Effect of preparation conditions on the properties of a coal-derived activated carbon honeycomb monolith. Carbon 45:2836–42
    [Google Scholar]
  54. 54.  Alcañiz-Monge J, Marco-Lozar JP, Lillo-Ródenas 2011. CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch. Fuel Process. Technol. 92:915–19
    [Google Scholar]
  55. 55.  Lozano-Castelló D, Cazorla-Amorós D, Linares-Solana A, Quinn DF 2002. Activated carbon monoliths for methane storage: influence of binder. Carbon 40:2817–25
    [Google Scholar]
  56. 56.  Janchen J, Herzog TH, Gleichmann K, Unger B, Brandt A et al. 2015. Performance of an open thermal adsorption storage system with Linde type A zeolites: beads versus honeycombs. Microporous Mesoporous Mater 207:179–84
    [Google Scholar]
  57. 57.  Schumann K, Unger B, Brandt A, Fischer G, Richter H, Janchen J 2014. Preparation and characterization of compact binderless zeolite shapes with Faujasit and Linde Type A structure. Chem. Ing. Tech. 86:106–11
    [Google Scholar]
  58. 58.  Ulla MA, Mallada R, Coronas J, Gutierrez L, Miró E, Santamaría J 2003. Synthesis and characterization of ZSM-5 coatings onto cordierite honeycomb supports. Appl. Catal. A Gen. 253:257–69
    [Google Scholar]
  59. 59.  Thakkar H, Eastman S, Al-Mamoori A, Hajari A, Rownaghi AA, Rezaei F 2017. Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance. ACS Appl. Mater. Interfaces 9:7489–98
    [Google Scholar]
  60. 60.  Thakkar H, Eastman S, Hajari A, Rownaghi AA, Knox JC, Rezaei F 2016. 3D-printed zeolite monoliths for CO2 removal from enclosed environments. ACS Appl. Mater. Interfaces 8:27753–61
    [Google Scholar]
  61. 61.  Couck S, Cousin-Saint-Remi J, Van der Perre S, Baron GV, Minas C et al. 2018. 3D-printed SAPO-34 monoliths for gas separation. Microporous Mesoporous Mater 255:185–91
    [Google Scholar]
  62. 62.  Couck S, Lefevere J, Mullens S, Protasova L, Meynen V et al. 2017. CO2, CH4 and N-2 separation with a 3DFD-printed ZSM-5 monolith. Chem. Eng. J. 308:719–26
    [Google Scholar]
  63. 63.  Fee C, Nawada S, Dimartino S 2014. 3D printed porous media columns with fine control of column packing morphology. J. Chromatogr. A 1333:18–24
    [Google Scholar]
  64. 64.  Saini VK, Pinto ML, Pires J 2011. Characterization of hierarchical porosity in novel composite monoliths with adsorption studies. Colloids Surf. A Physicochem. Eng. Aspects 373:158–66
    [Google Scholar]
  65. 65.  Silva ER, Silva JM, Vaz MF, Oliveira FAC, Ribeiro F 2009. Cationic polymer surface treatment for zeolite washcoating deposited over cordierite foam. Mater. Lett. 63:572–74
    [Google Scholar]
  66. 66.  Zamaro JM, Ulla MA, Miro EE 2005. Zeolite washcoating onto cordierite honeycomb reactors for environmental applications. Chem. Eng. J. 106:25–33
    [Google Scholar]
  67. 67.  Hosseini S, Marahel E, Bayesti I, Abbasi A, Abdullah LC, Choong TSY 2015. CO2 adsorption on modified carbon coated monolith: effect of surface modification by using alkaline solutions. Appl. Surface Sci. 324:569–75
    [Google Scholar]
  68. 68.  Colombo P, Vakifahmetoglu C, Costacurta S 2010. Fabrication of ceramic components with hierarchical porosity. J. Mater. Sci. 45:5425–55
    [Google Scholar]
  69. 69.  Nijhuis TA, Beers AEW, Vergunst T, Hoek I, Kapteijn F, Moulijn JA 2001. Preparation of monolithic catalysts. Catal. Rev. Sci. Eng. 43:345–80
    [Google Scholar]
  70. 70.  Chen C, Yang ST, Ahn WS, Ryoo R 2009. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chem. Commun. 24:3627–29
    [Google Scholar]
  71. 71.  Sakwa-Novak MA, Yoo CJ, Tan S, Rashidi F, Jones CW 2016. Poly(ethylenimine)-functionalized monolithic alumina honeycomb adsorbents for CO2 capture from air. ChemSusChem 9:1859–68
    [Google Scholar]
  72. 72.  Witoon T, Chareonpanich M 2012. Synthesis of hierarchical meso-macroporous silica monolith using chitosan as biotemplate and its application as polyethyleneimine support for CO2 capture. Mater. Lett. 81:181–84
    [Google Scholar]
  73. 73.  Wen JJ, Gu FN, Wei F, Zhou Y, Lin WG et al. 2010. One-pot synthesis of the amine-modified meso-structured monolith CO2 adsorbent. J. Mater. Chem. 20:2840–46
    [Google Scholar]
  74. 74.  Ramos-Fernandez EV, Garcia-Domingos M, Juan-Alcañiz J, Gascon J, Kapteijn F 2011. MOFs meet monoliths: hierarchical structuring metal organic framework catalysts. Appl. Catal. A Gen. 391:261–67
    [Google Scholar]
  75. 75.  Wang NY, Mundstock A, Liu Y, Huang AS, Caro J 2015. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chem. Eng. Sci. 124:27–36
    [Google Scholar]
  76. 76.  Darunte LA, Terada Y, Murdock CR, Walton KS, Sholl DS, Jones CW 2017. Monolith-supported amine-functionalized Mg2(dobpdc) adsorbents for CO2 capture. ACS Appl. Mater. Interfaces 9:17043–51
    [Google Scholar]
  77. 77.  Deleted in proof
  78. 78.  Öhrman O, Hedlund J, Sterte J 2004. Synthesis and evaluation of ZSM-5 films on cordierite monoliths. Appl. Catal. A Gen. 270:193–99
    [Google Scholar]
  79. 79.  Sachse A, Ameloot R, Coq B, Fajula F, Coasne B et al. 2012. In situ synthesis of Cu-BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis. Chem. Commun. 48:4749–51
    [Google Scholar]
  80. 80.  Mosca A, Hedlund J, Webley PA, Grahn M, Rezaei F 2010. Structured zeolite NaX coatings on ceramic cordierite monolith supports for PSA applications. Microporous Mesoporous Mater 130:38–48
    [Google Scholar]
  81. 81.  Rezaei F, Lawson S, Hosseini H, Thakkar H, Hajari A et al. 2017. MOF-74 and UTSA-16 film growth on monolithic structures and their CO2 adsorption performance. Chem. Eng. J. 313:1346–53
    [Google Scholar]
  82. 82.  Lee D-J, Li Q, Kim H, Lee K 2012. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous Mesoporous Mater 163:169–77
    [Google Scholar]
  83. 83.  Wen L, Gao A, Cao Y, Svec F, Tan T, Lv Y 2016. Layer-by-layer assembly of metal–organic frameworks in macroporous polymer monolith and their use for enzyme immobilization. Macromol. Rapid Commun. 37:551–57
    [Google Scholar]
  84. 84.  Ackley MW, Barrett PA, Stephenson NA, Kikkinides ES 2013. High rate compositions US Patent No. 20130340612
    [Google Scholar]
  85. 85.  Kalyanaraman J, Fan Y, Lively RP, Koros WJ, Jones CW et al. 2015. Modeling and experimental validation of carbon dioxide sorption on hollow fibers loaded with silica-supported poly(ethylenimine). Chem. Eng. J. 259:737–51
    [Google Scholar]
  86. 86.  Ruthven DM, Farooq S, Knaebel KS 1994. Pressure Swing Adsorption New York: Wiley-VCH
    [Google Scholar]
  87. 87.  Lively RP, Chance RR, Koros WJ 2010. Enabling low-cost CO2 capture via heat integration. Ind. Eng. Chem. Res. 49:7550–62
    [Google Scholar]
  88. 88.  Rezaei F, Grahn M 2012. Thermal management of structured adsorbents in CO2 capture processes. Ind. Eng. Chem. Res. 51:4025–34
    [Google Scholar]
  89. 89.  Meljac L, Goetz V, Py X 2007. Isothermal composite adsorbent. Part I: thermal characterisation. Appl. Thermal Eng. 27:1009–16
    [Google Scholar]
  90. 90.  Zimmerman W, Keller JU 2006. Enhancements of adsorption capacity by use of phase change material as additive in an activated carbon (AC) fixed bed adsorber. Combined and Hybrid Adsorbents: Fundamentals and Applications JM Loureiro, MT Kartel 219–24 Dordrecht, Neth.: Springer
    [Google Scholar]
  91. 91.  Lively RP, Bessho N, Bhandari DA, Kawajiri Y, Koros WJ 2012. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification. Int. J. Hydrogen Energy 37:15227–40
    [Google Scholar]
  92. 92.  Pirngruber GD, Guillou F, Gomez A, Clausse M 2013. A theoretical analysis of the energy consumption of post-combustion CO2 capture processes by temperature swing adsorption using solid sorbents. Int. J. Greenh. Gas Control 14:74–83
    [Google Scholar]
  93. 93.  Fan YF, Lively RP, Labreche Y, Rezaei F, Koros WJ, Jones CW 2014. Evaluation of CO2 adsorption dynamics of polymer/silica supported poly(ethylenimine) hollow fiber sorbents in rapid temperature swing adsorption. Int. J. Greenh. Gas Control 21:61–71
    [Google Scholar]
  94. 94.  Eisenberger P 2016. Carbon dioxide capture/regeneration method using monolith US Patent No. 9227153B2
    [Google Scholar]
  95. 95.  Eisenberger P, Chichilnisky G 2014. System and method for removing carbon dioxide from an atmosphere and global thermostat using the same US Patent No. 20140130670 A1
    [Google Scholar]
  96. 96.  Gilleskie GL, Parker JL, Cussler EL 1995. Gas separations in hollow-fiber adsorbers. AIChE J 41:1413–25
    [Google Scholar]
  97. 97.  van Zee G, de Graauw J 1997. Efficient sorption processes by fibrous sorbents. Ind. Eng. Chem. Res. 36:2346–52
    [Google Scholar]
  98. 98.  Bessho N 2010. Advanced Pressure Swing Adsorption System with Fiber Sorbents for Hydrogen Recovery Atlanta: Ga. Inst. Technol.
    [Google Scholar]
  99. 99.  Feng X, Pan CY, McMinis CW, Ivory J, Ghosh D 1998. Hollow-fiber-based adsorbers for gas separation by pressure-swing adsorption. AIChE J 44:1555–62
    [Google Scholar]
  100. 100.  Determan MD, Hoysall DC, Garimella S 2012. Heat- and mass-transfer kinetics of carbon dioxide capture using sorbent-loaded hollow fibers. Ind. Eng. Chem. Res. 51:495–502
    [Google Scholar]
  101. 101.  Rezaei F, Subramanian S, Kalyanaraman J, Lively RP, Kawajiri Y, Realff MJ 2014. Modeling of rapid temperature swing adsorption using hollow fiber sorbents. Chem. Eng. Sci. 113:62–76
    [Google Scholar]
  102. 102.  Fan Y, Kalyanaraman J, Labreche Y, Rezaei F, Lively RP et al. 2015. CO2 sorption performance of composite polymer/aminosilica hollow fiber sorbents: an experimental and modeling study. Ind. Eng. Chem. Res. 54:1783–95
    [Google Scholar]
  103. 103.  Grande CA, Ribeiro RPL, Oliveira ELG, Rodrigues AE 2009. Electric swing adsorption as emerging CO2 capture technique. Energy Procedia 1:1219–25
    [Google Scholar]
  104. 104.  Reynolds SP, Ebner AD, Ritter JA 2006. Carbon dioxide capture from flue gas by pressure swing adsorption at high temperature using a K-promoted HTlc: effects of mass transfer on the process performance. Environ. Prog. 25:334–42
    [Google Scholar]
  105. 105.  Reynolds SP, Ebner AD, Ritter JA 2005. New pressure swing adsorption cycles for carbon dioxide sequestration. Adsorption 11:531–36
    [Google Scholar]
  106. 106.  Pahinkar DG, Garimella S, Robbins TR 2017. Feasibility of temperature swing adsorption in adsorbent-coated microchannels for natural gas purification. Ind. Eng. Chem. Res. 56:5403–16
    [Google Scholar]
  107. 107.  Patton A, Crittenden BD, Perera SP 2004. Use of the linear driving force approximation to guide the design of monolithic adsorbents. Chem. Eng. Res. Des. 82:999–1009
    [Google Scholar]
  108. 108.  Siderius DW, Shen VK, Johnson RD III, van Zee RD 2017. NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials—SRD 205 Gaithersburg, MD: Natl. Inst. Stand. Technol.
    [Google Scholar]
  109. 109.  Rosen R, von Wichert G, Lo G, Bettenhausen KD 2015. About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 48:567–72
    [Google Scholar]
  110. 110.  Ríos J, Hernández JC, Oliva M, Mas F 2015. Product avatar as digital counterpart of a physical individual product: literature review and implications in an aircraft. Transdisciplinary Lifecycle Analysis of Systems R Curran, N Wognum, M Borsato, J Stjepandic, WJC Verhagen 657–66 Amsterdam: IOS Press
    [Google Scholar]
  111. 111.  DebRoy T, Zhang W, Turner J, Babu SS 2017. Building digital twins of 3D printing machines. Scr. Mater. 135:119–24
    [Google Scholar]
  112. 112.  Kalyanaraman J, Fan Y, Labreche Y, Lively RP, Kawajiri Y, Realff MJ 2015. Bayesian estimation of parametric uncertainties, quantification and reduction using optimal design of experiments for CO2 adsorption on amine sorbents. Comput. Chem. Eng. 81:376–88
    [Google Scholar]
  113. 113.  Li CZ, Mahadevan S, Ling Y, Choze S, Wang LP 2017. Dynamic Bayesian network for aircraft wing health monitoring digital twin. AIAA J 55:930–41
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-084120
Loading
/content/journals/10.1146/annurev-chembioeng-060817-084120
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error