1932

Abstract

Mesoporous silica nanoparticles (MSNs) are promising functional nanomaterials for a variety of biomedical applications, such as bioimaging, drug/gene delivery, and cancer therapy. This is due to their low density, low toxicity, high biocompatibility, large specific surface areas, and excellent thermal and mechanical stability. The past decade has seen rapid advances in the development of MSNs with multiple compartments. These include hierarchical porous structures and core-shell, yolk-shell, and Janus structured particles for efficient diagnosis and therapeutic applications. We review advances in this area, covering the categories of multicompartment MSNs and their synthesis methods, with an emphasis on hierarchical structures and the incorporation of multiple functions. We classify multicompartment mesoporous silica micro/nanostructures, ranging from core-shell and yolk-shell structures to Janus and raspberry-like nanoparticles, and discuss their synthesis methods. We review applications of these multicompartment MSNs, including bioimaging, targeted drug/gene delivery, chemotherapy, phototherapy, and in vitro diagnostics. We also highlight the latest trends and new opportunities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-084225
2018-06-07
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/9/1/annurev-chembioeng-060817-084225.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-084225&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddartt JF 2011. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc. Chem. Res. 44:903–13
    [Google Scholar]
  2. 2.  Chen Y, Chen H-R, Shi J-L 2014. Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications. Acc. Chem. Res 47:125–37
    [Google Scholar]
  3. 3.  Lee JE, Lee N, Kim T, Kim J, Hyeon T 2011. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 44:893–902
    [Google Scholar]
  4. 4.  De Koker S, De Cock LJ, Rivera-Gil P, Parak WJ, Velty RA et al. 2011. Polymeric multilayer capsules delivering biotherapeutics. Adv. Drug Deliv. Rev. 63:748–61
    [Google Scholar]
  5. 5.  Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY 2008. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60:1278–88
    [Google Scholar]
  6. 6.  Xie J, Lee S, Chen XY 2010. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62:1064–79
    [Google Scholar]
  7. 7.  De M, Ghosh PS, Rotello VM 2008. Applications of nanoparticles in biology. Adv. Mater. 20:4225–41
    [Google Scholar]
  8. 8.  Cheng L, Wang C, Feng LZ, Yang K, Liu Z 2014. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114:10869–939
    [Google Scholar]
  9. 9.  Horcajada P, Gref R, Baati T, Allan PK, Maurin G et al. 2012. Metal-organic frameworks in biomedicine. Chem. Rev. 112:1232–68
    [Google Scholar]
  10. 10.  Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K 2015. Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev. 115:327–94
    [Google Scholar]
  11. 11.  Doane TL, Burda C 2012. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41:2885–911
    [Google Scholar]
  12. 12.  Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT et al. 1992. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J. Am. Chem. Soc. 114:10834–43
    [Google Scholar]
  13. 13.  Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS 1992. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–12
    [Google Scholar]
  14. 14.  Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ 2013. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc. Chem. Res. 46:792–801
    [Google Scholar]
  15. 15.  Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y 2008. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev 60:1278–88
    [Google Scholar]
  16. 16.  Chen Y, Chen H, Shi J 2013. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 25:3144–76
    [Google Scholar]
  17. 17.  Tang FQ, Li LL, Chen D 2012. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24:1504–34
    [Google Scholar]
  18. 18.  Wang Y, Gu HC 2015. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv. Mater. 27:576–85
    [Google Scholar]
  19. 19.  Vallet-Regi M, Balas F, Arcos D 2007. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 46:7548–58
    [Google Scholar]
  20. 20.  Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ 2016. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91:90–127
    [Google Scholar]
  21. 21.  Hao N, Li L, Tang F 2016. Shape matters when engineering mesoporous silica-based nanomedicines. Biomater. Sci. 4:575–91
    [Google Scholar]
  22. 22.  Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink JI 2012. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41:2590–605
    [Google Scholar]
  23. 23.  Yang PP, Gai SL, Lin J 2012. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 41:3679–98
    [Google Scholar]
  24. 24.  Zhang Y, Hsu BYW, Ren CL, Li X, Wang J 2015. Silica-based nanocapsules: synthesis, structure control and biomedical applications. Chem. Soc. Rev. 44:315–35
    [Google Scholar]
  25. 25.  Du X, He JH 2011. Spherical silica micro/nanomaterials with hierarchical structures: synthesis and applications. Nanoscale 3:3984–4002
    [Google Scholar]
  26. 26.  Rosenholm JM, Sahlgren C, Linden M 2010. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles—opportunities & challenges. Nanoscale 2:1870–83
    [Google Scholar]
  27. 27.  Du X, Qiao SZ 2015. Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications. Small 11:392–413
    [Google Scholar]
  28. 28.  Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY 2010. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6:1952–67
    [Google Scholar]
  29. 29.  Popat A, Hartono SB, Stahr F, Liu J, Qiao SZ, Lu GQ 2011. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3:2801–18
    [Google Scholar]
  30. 30.  Yu CZ, Fan J, Tian BZ, Zhao DY, Stucky GD 2002. High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv. Mater. 14:1742–45
    [Google Scholar]
  31. 31.  Sayari A, Han BH, Yang Y 2004. Simple synthesis route to monodispersed SBA-15 silica rods. J. Am. Chem. Soc. 126:14348–49
    [Google Scholar]
  32. 32.  Meijer JM, Hagemans F, Rossi L, Byelov DV, Castillo SIR et al. 2012. Self-assembly of colloidal cubes via vertical deposition. Langmuir 28:7631–38
    [Google Scholar]
  33. 33.  Castillo SIR, Pompe CE, van Mourik J, Verbart DMA, Thies-Weesie DME et al. 2014. Colloidal cubes for the enhanced degradation of organic dyes. J. Mater. Chem. A 2:10193–201
    [Google Scholar]
  34. 34.  Castillo SIR, Ouhajji S, Fokker S, Erne B, Schneijdenberg C et al. 2014. Silica cubes with tunable coating thickness and porosity: from hematite filled silica boxes to hollow silica bubbles. Microporous Mesoporous Mater 195:75–86
    [Google Scholar]
  35. 35.  Rivera-Virtudazo RV, Fuji M, Takai C, Shirai T 2012. Fabrication of unique hollow silicate nanoparticles with hierarchically micro/mesoporous shell structure by a simple double template approach. Nanotechnology 23:485608
    [Google Scholar]
  36. 36.  Yan N, Wang F, Zhong H, Li Y, Wang Y et al. 2013. Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci. Rep. 3:1568
    [Google Scholar]
  37. 37.  Li F, Wang ZY, Stein A 2007. Shaping mesoporous silica nanoparticles by disassembly of hierarchically porous structures. Angew. Chem. Int. Ed. 46:1885–88
    [Google Scholar]
  38. 38.  Shen SD, Gu T, Mao DS, Xiao XZ, Yuan P et al. 2012. Synthesis of nonspherical mesoporous silica ellipsoids with tunable aspect ratios for magnetic assisted assembly and gene delivery. Chem. Mater. 24:230–35
    [Google Scholar]
  39. 39.  Hao NJ, Li LF, Tang FQ 2014. Facile preparation of ellipsoid-like MCM-41 with parallel channels along the short axis for drug delivery and assembly of Ag nanoparticles for catalysis. J. Mater. Chem. A 2:11565–68
    [Google Scholar]
  40. 40.  Hao NJ, Chen X, Jeon S, Yan MD 2015. Carbohydrate-conjugated hollow oblate mesoporous silica nanoparticles as nanoantibiotics to target mycobacteria. Adv. Healthc. Mater. 4:2797–801
    [Google Scholar]
  41. 41.  Sadasivan S, Fowler CE, Khushalani D, Mann S 2002. Nucleation of MCM-41 nanoparticles by internal reorganization of disordered and nematic-like silica surfactant clusters. Angew. Chem. Int. Ed. 41:2151–53
    [Google Scholar]
  42. 42.  Moller K, Kobler J, Bein T 2007. Colloidal suspensions of nanometer-sized mesoporous silica. Adv. Funct. Mater. 17:605–12
    [Google Scholar]
  43. 43.  Grun M, Lauer I, Unger KK 1997. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 9:254–57
    [Google Scholar]
  44. 44.  Yano K, Fukushima Y 2005. One-pot synthesis of bimodal dispersed mesoporous silica spheres. Chem. Lett. 34:780–81
    [Google Scholar]
  45. 45.  Yano K, Fukushima Y 2004. Synthesis of mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant. J. Mater. Chem. 14:1579–84
    [Google Scholar]
  46. 46.  Cai Q, Luo ZS, Pang WQ, Fan YW, Chen XH, Cui FZ 2001. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem. Mater. 13:258–63
    [Google Scholar]
  47. 47.  Nooney RI, Thirunavukkarasu D, Chen YM, Josephs R, Ostafin AE 2002. Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem. Mater. 14:4721–28
    [Google Scholar]
  48. 48.  Meng H, Yang S, Li ZX, Xia T, Chen J et al. 2011. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 5:4434–47
    [Google Scholar]
  49. 49.  Qiao SZ, Yu CZ, Xing W, Hu QH, Djojoputro H, Lu GQ 2005. Synthesis and bio-adsorptive properties of large-pore periodic mesoporous organosilica rods. Chem. Mater. 17:6172–76
    [Google Scholar]
  50. 50.  Hao N, Yang H, Li L, Li L, Tang F 2014. The shape effect of mesoporous silica nanoparticles on intracellular reactive oxygen species in A375 cells. New J. Chem. 38:4258–66
    [Google Scholar]
  51. 51.  Yoon CM, Lee K, Noh J, Lee S, Jang J 2016. Electrorheological performance of multigram-scale mesoporous silica particles with different aspect ratios. J. Mater. Chem. C 4:1713–19
    [Google Scholar]
  52. 52.  Huh S, Wiench JW, Yoo JC, Pruski M, Lin VSY 2003. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem. Mater. 15:4247–56
    [Google Scholar]
  53. 53.  Suteewong T, Sai H, Hovden R, Muller D, Bradbury MS et al. 2013. Multicompartment mesoporous silica nanoparticles with branched shapes: an epitaxial growth mechanism. Science 340:337–41
    [Google Scholar]
  54. 54.  Yang S, Zhao LZ, Yu CZ, Zhou XF, Tang JW et al. 2006. On the origin of helical mesostructures. J. Am. Chem. Soc. 128:10460–66
    [Google Scholar]
  55. 55.  Trewyn BG, Whitman CM, Lin VSY 2004. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett 4:2139–43
    [Google Scholar]
  56. 56.  Li F, Delo SA, Stein A 2007. Disassembly and self-reassembly in periodic nanostructures: a face-centered-to-simple-cubic transformation. Angew. Chem. Int. Ed. 46:6666–69
    [Google Scholar]
  57. 57.  Nakamura T, Yamada H, Yamada Y, Gurtanyel A, Hartmann S et al. 2010. New strategy using glycol-modified silane to synthesize monodispersed mesoporous silica spheres applicable to colloidal photonic crystals. Langmuir 26:2002–7
    [Google Scholar]
  58. 58.  Mizutani M, Yamada Y, Yano K 2007. Pore-expansion of monodisperse mesoporous silica spheres by a novel surfactant exchange method. Chem. Commun. 2007:1172–74
    [Google Scholar]
  59. 59.  Mizutani M, Yamada Y, Nakamura T, Yano K 2008. Anomalous pore expansion of highly monodispersed mesoporous silica spheres and its application to the synthesis of porous ferromagnetic composite. Chem. Mater. 20:4777–82
    [Google Scholar]
  60. 60.  Yano K, Fukushima Y 2003. Particle size control of mono-dispersed super-microporous silica spheres. J. Mater. Chem. 13:2577–81
    [Google Scholar]
  61. 61.  Nakamura T, Mizutani M, Nozaki H, Suzuki N, Yano K 2007. Formation mechanism for monodispersed mesoporous silica spheres and its application to the synthesis of core/shell particles. J. Phys. Chem. C 111:1093–100
    [Google Scholar]
  62. 62.  Niu DC, Liu ZJ, Li YS, Luo XF, Zhang JY et al. 2014. Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery. Adv. Mater. 26:4947–53
    [Google Scholar]
  63. 63.  Hartono SB, Gu WY, Kleitz F, Liu J, He LZ et al. 2012. Poly-l-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano 6:2104–17
    [Google Scholar]
  64. 64.  Gao F, Botella P, Corma A, Blesa J, Dong L 2009. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J. Phys. Chem. B 113:1796–804
    [Google Scholar]
  65. 65.  Han Y, Ying JY 2005. Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures. Angew. Chem. Int. Ed. 44:288–92
    [Google Scholar]
  66. 66.  Qiao Z-A, Zhang L, Guo M, Liu Y, Huo Q 2009. Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem. Mater. 21:3823–29
    [Google Scholar]
  67. 67.  Polshettiwar V, Cha D, Zhang XX, Basset JM 2010. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angew. Chem. Int. Ed. 49:9652–56
    [Google Scholar]
  68. 68.  Lu F, Wu SH, Hung Y, Mou CY 2009. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–13
    [Google Scholar]
  69. 69.  Suteewong T, Sai H, Cohen R, Wang ST, Bradbury M et al. 2011. Highly aminated mesoporous silica nanoparticles with cubic pore structure. J. Am. Chem. Soc. 133:172–75
    [Google Scholar]
  70. 70.  Yamamoto E, Kitahara M, Tsumura T, Kuroda K 2014. Preparation of size-controlled monodisperse colloidal mesoporous silica nanoparticles and fabrication of colloidal crystals. Chem. Mater. 26:2927–33
    [Google Scholar]
  71. 71.  Yamada H, Urata C, Higashitamori S, Aoyama Y, Yamauchi Y, Kuroda K 2014. Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion. ACS Appl. Mater. Interfaces 6:3491–500
    [Google Scholar]
  72. 72.  Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda K 2012. Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem. Mater. 24:1462–71
    [Google Scholar]
  73. 73.  Urata C, Yamada H, Wakabayashi R, Aoyama Y, Hirosawa S et al. 2011. Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks. J. Am. Chem. Soc. 133:8102–5
    [Google Scholar]
  74. 74.  Urata C, Aoyama Y, Tonegawa A, Yamauchi Y, Kuroda K 2009. Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles. Chem. Commun. 2009:5094–96
    [Google Scholar]
  75. 75.  Na HK, Kim MH, Park K, Ryoo SR, Lee KE et al. 2012. Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small 8:1752–61
    [Google Scholar]
  76. 76.  Kim MH, Na HK, Kim YK, Ryoo SR, Cho HS et al. 2011. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5:3568–76
    [Google Scholar]
  77. 77.  Yoon SB, Kim JY, Kim JH, Park YJ, Yoon KR et al. 2007. Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. J. Mater. Chem. 17:1758–61
    [Google Scholar]
  78. 78.  Ruiz-Hernández E, López-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regi M 2007. Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chem. Mater. 19:3455–63
    [Google Scholar]
  79. 79.  Rao GVR, López GP, Bravo J, Pham H, Datye AK et al. 2002. Monodisperse mesoporous silica microspheres formed by evaporation-induced self assembly of surfactant templates in aerosols. Adv. Mater. 14:1301–4
    [Google Scholar]
  80. 80.  Lu YF, Fan HY, Stump A, Ward TL, Rieker T, Brinker CJ 1999. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398:223–26
    [Google Scholar]
  81. 81.  Baccile N, Grosso D, Sanchez C 2003. Aerosol generated mesoporous silica particles. J. Mater. Chem. 13:3011–16
    [Google Scholar]
  82. 82.  Zhang F, Kang CM, Wei YY, Li HX 2011. Aerosol-spraying synthesis of periodic mesoporous organometalsilica spheres with chamber cavities as active and reusable catalysts in aqueous organic reactions. Adv. Funct. Mater. 21:3189–97
    [Google Scholar]
  83. 83.  Alonso B, Clinard C, Durand D, Véron E, Massiot D 2005. New routes to mesoporous silica-based spheres with functionalised surfaces. Chem. Commun. 2005:1746–48
    [Google Scholar]
  84. 84.  Min K, Choi CH, Kim MY, Choi M 2015. Aerosol-assisted controlled packing of silica nanocolloids: templateless synthesis of mesoporous silicates with structural tunability and complexity. Langmuir 31:542–50
    [Google Scholar]
  85. 85.  Vivero-Escoto JL, Slowing II, Wu C-W, Lin VS-Y 2009. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc 131:3462–63
    [Google Scholar]
  86. 86.  Lin YS, Haynes CL 2010. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J. Am. Chem. Soc. 132:4834–42
    [Google Scholar]
  87. 87.  Shen DK, Yang JP, Li XM, Zhou L, Zhang RY et al. 2014. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett 14:923–32
    [Google Scholar]
  88. 88.  Zhang K, Xu LL, Jiang JG, Calin N, Lam KF et al. 2013. Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J. Am. Chem. Soc. 135:2427–30
    [Google Scholar]
  89. 89.  Luo GF, Chen WH, Lei Q, Qiu WX, Liu YX et al. 2016. A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater. 26:4339–50
    [Google Scholar]
  90. 90.  Zhang ZJ, Wang LM, Wang J, Jiang XM, Li XH et al. 2012. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 24:1418–23
    [Google Scholar]
  91. 91.  Li H, Tan LL, Jia P, Li QL, Sun YL et al. 2014. Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods. Chem. Sci. 5:2804–8
    [Google Scholar]
  92. 92.  Nallathamby PD, Hopf J, Irimata LE, McGinnity TL, Roeder RK 2016. Preparation of fluorescent Au-SiO2 core-shell nanoparticles and nanorods with tunable silica shell thickness and surface modification for immunotargeting. J. Mater. Chem. B 4:5418–28
    [Google Scholar]
  93. 93.  Wang DW, Zhu XM, Lee SF, Chan HM, Li HW et al. 2013. Folate-conjugated Fe3O4@SiO2@gold nanorods@mesoporous SiO2 hybrid nanomaterial: a theranostic agent for magnetic resonance imaging and photothermal therapy. J. Mater. Chem. B 1:2934–42
    [Google Scholar]
  94. 94.  Choi E, Kwak M, Jang B, Piao Y 2013. Highly monodisperse rattle-structured nanomaterials with gold nanorod core-mesoporous silica shell as drug delivery vehicles and nanoreactors. Nanoscale 5:151–54
    [Google Scholar]
  95. 95.  Liu J, Detrembleur C, De Pauw-Gillet MC, Mornet S, Jerome C, Duguet E 2015. Gold nanorods coated with mesoporous silica shell as drug delivery system for remote near infrared light-activated release and potential phototherapy. Small 11:2323–32
    [Google Scholar]
  96. 96.  Sanz-Ortiz MN, Sentosun K, Bals S, Liz-Marzán LM 2015. Templated growth of surface enhanced Raman scattering-active branched gold nanoparticles within radial mesoporous silica shells. ACS Nano 9:10489–97
    [Google Scholar]
  97. 97.  Wang YS, Shao D, Zhang L, Zhang XL, Li J et al. 2015. Gold nanorods-silica Janus nanoparticles for theranostics. Appl. Phys. Lett. 106:173705
    [Google Scholar]
  98. 98.  Seo SH, Kim BM, Joe A, Han HW, Chen XY et al. 2014. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials 35:3309–18
    [Google Scholar]
  99. 99.  Yang JP, Shen DK, Zhou L, Li W, Li XM et al. 2013. Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater. 25:3030–37
    [Google Scholar]
  100. 100.  Zhang T, Ding ZY, Lin HM, Cui LR, Yang CY et al. 2015. pH-sensitive gold nanorods with a mesoporous silica shell for drug release and photothermal therapy. Eur. J. Inorg. Chem. 2015:132277–84
    [Google Scholar]
  101. 101.  Wu XT, Li L, Zhang LY, Wang TT, Wang CG, Su ZM 2015. Multifunctional spherical gold nanocluster aggregate@polyacrylic acid@mesoporous silica nanoparticles for combined cancer dual-modal imaging and chemo-therapy. J. Mater. Chem. B 3:2421–25
    [Google Scholar]
  102. 102.  Lai JP, Shah BR, Zhang YX, Yang LT, Lee KB 2015. Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles. ACS Nano 9:5234–45
    [Google Scholar]
  103. 103.  Fan WP, Shen B, Bu WB, Chen F, He QJ et al. 2014. A smart upconversion-based mesoporous silica nanotheranostic system for synergetic chemo-/radio-/photodynamic therapy and simultaneous MR/UCL imaging. Biomaterials 35:8992–9002
    [Google Scholar]
  104. 104.  Li CX, Hou ZY, Dai YL, Yang DM, Cheng ZY et al. 2013. A facile fabrication of upconversion luminescent and mesoporous core-shell structured β-NaYF4:Yb3+, Er3+@mSiO2 nanocomposite spheres for anti-cancer drug delivery and cell imaging. Biomater. Sci. 1:213–23
    [Google Scholar]
  105. 105.  Liu JA, Bu WB, Zhang SJ, Chen F, Xing HY et al. 2012. Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. Chemistry 18:2335–41
    [Google Scholar]
  106. 106.  Qiao XF, Zhou JC, Xiao JW, Wang YF, Sun LD, Yan CH 2012. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro. Nanoscale 4:4611–23
    [Google Scholar]
  107. 107.  Zhang SJ, Jiang ZX, Liu XH, Zhou LP, Peng WJ 2013. Possible gadolinium ions leaching and MR sensitivity over-estimation in mesoporous silica-coated upconversion nanocrystals. Nanoscale 5:8146–55
    [Google Scholar]
  108. 108.  Li CX, Yang DM, Ma PA, Chen YY, Wu Y et al. 2013. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small 9:4150–59
    [Google Scholar]
  109. 109.  Niu DC, Luo XF, Li YS, Liu XH, Wang X, Shi JL 2013. Manganese-loaded dual-mesoporous silica spheres for efficient T1- and T2-weighted dual mode magnetic resonance imaging. ACS Appl. Mater. Interfaces 5:9942–48
    [Google Scholar]
  110. 110.  Wang Y, He J, Chen JW, Ren LB, Jiang BW, Zhao J 2012. Synthesis of monodisperse, hierarchically mesoporous, silica microspheres embedded with magnetic nanoparticles. ACS Appl. Mater. Interfaces 4:2735–42
    [Google Scholar]
  111. 111.  Wang YY, Li B, Zhang LM, Song H, Zhang LG 2013. Targeted delivery system based on magnetic mesoporous silica nanocomposites with light-controlled release character. ACS Appl. Mater. Interfaces 5:11–15
    [Google Scholar]
  112. 112.  Qiu XL, Li QL, Zhou Y, Jin XY, Qi AD, Yang YW 2015. Sugar and pH dual-responsive snap-top nanocarriers based on mesoporous silica-coated Fe3O4 magnetic nanoparticles for cargo delivery. Chem. Commun. 51:4237–40
    [Google Scholar]
  113. 113.  Lee KR, Kim S, Kang DH, Lee JI, Lee YJ et al. 2008. Highly uniform superparamagnetic mesoporous spheres with submicrometer scale and their uptake into cells. Chem. Mater. 20:6738–42
    [Google Scholar]
  114. 114.  Teng ZG, Sun CH, Su XD, Liu Y, Tang YX et al. 2013. Superparamagnetic high-magnetization composite spheres with highly aminated ordered mesoporous silica shell for biomedical applications. J. Mater. Chem. B 1:4684–91
    [Google Scholar]
  115. 115.  Knezevic NZ 2016. Magnetic field-induced accentuation of drug release from core/shell magnetic mesoporous silica nanoparticles for anticancer treatment. J. Nanosci. Nanotechnol. 16:4195–99
    [Google Scholar]
  116. 116.  Deng Y, Qi D, Deng C, Zhang X, Zhao D 2008. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 130:28–29
    [Google Scholar]
  117. 117.  Yue Q, Li JL, Luo W, Zhang Y, Elzatahry AA et al. 2015. An interface coassembly in biliquid phase: toward core-shell magnetic mesoporous silica microspheres with tunable pore size. J. Am. Chem. Soc. 137:13282–89
    [Google Scholar]
  118. 118.  Zhao WR, Gu JL, Zhang LX, Chen HR, Shi JL 2005. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 127:8916–17
    [Google Scholar]
  119. 119.  Zhang JX, Sun W, Bergman L, Rosenholm JM, Linden M et al. 2012. Magnetic mesoporous silica nanospheres as DNA/drug carrier. Mater. Lett. 67:379–82
    [Google Scholar]
  120. 120.  Zhu XY, Gu JL, Li YS, Zhao WR, Shi JL 2014. Magnetic core-mesoporous shell nanocarriers with drug anchorages suspended in mesopore interior for cisplatin delivery. Microporous Mesoporous Mater 196:115–21
    [Google Scholar]
  121. 121.  Zhang L, Qiao SZ, Cheng LN, Yan ZF, Lu GQ 2008. Fabrication of a magnetic helical mesostructured silica rod. Nanotechnology 19:435608
    [Google Scholar]
  122. 122.  Kneževic , Ruiz-Hernández E, Hennink WE, Vallet-Regí M 2013. Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Adv 3:9584–93
    [Google Scholar]
  123. 123.  Liu J, Qiao SZ, Hu QH, Lu GQ 2011. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–43
    [Google Scholar]
  124. 124.  Xiong L, Bi JX, Tang YH, Qiao SZ 2016. Magnetic core-shell silica nanoparticles with large radial mesopores for siRNA delivery. Small 12:4735–42
    [Google Scholar]
  125. 125.  Chen Y, Chen H, Zhang S, Chen F, Zhang L et al. 2011. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Adv. Funct. Mater. 21:270–78
    [Google Scholar]
  126. 126.  Gai SL, Yang PP, Li CX, Wang WX, Dai YL et al. 2010. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 20:1166–72
    [Google Scholar]
  127. 127.  Chen WH, Luo GF, Lei Q, Cao FY, Fan JX et al. 2016. Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy. Biomaterials 76:87–101
    [Google Scholar]
  128. 128.  Ma M, Chen H, Chen Y, Wang X, Chen F et al. 2012. Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33:989–98
    [Google Scholar]
  129. 129.  Liu Z, Sun LN, Li FY, Liu Q, Shi LY et al. 2011. One-pot self-assembly of multifunctional mesoporous nanoprobes with magnetic nanoparticles and hydrophobic upconversion nanocrystals. J. Mater. Chem. 21:17615–18
    [Google Scholar]
  130. 130.  Wang F, Chen XL, Zhao ZX, Tang SH, Huang XQ et al. 2011. Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy. J. Mater. Chem. 21:11244–52
    [Google Scholar]
  131. 131.  Li L, Liu C, Zhang LY, Wang TT, Yu H et al. 2013. Multifunctional magnetic-fluorescent eccentric-(concentric-Fe3O4@SiO2)@polyacrylic acid core-shell nanocomposites for cell imaging and pH-responsive drug delivery. Nanoscale 5:2249–53
    [Google Scholar]
  132. 132.  Wu M, Meng Q, Chen Y, Xu P, Zhang S et al. 2014. Ultrasmall confined iron oxide nanoparticle MSNs as a pH-responsive theranostic platform. Adv. Funct. Mater. 24:4273–83
    [Google Scholar]
  133. 133.  Ge JP, Zhang Q, Zhang TR, Yin YD 2008. Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed. 47:8924–28
    [Google Scholar]
  134. 134.  Chen YY, Ma PA, Yang DM, Wu Y, Dai YL et al. 2014. Multifunctional core-shell structured nanocarriers for synchronous tumor diagnosis and treatment in vivo. Chem. Asian J. 9:506–13
    [Google Scholar]
  135. 135.  Li JG, Jiang H, Yu ZQ, Xia HY, Zou G et al. 2013. Multifunctional uniform core-shell Fe3O4@mSiO2 mesoporous nanoparticles for bimodal imaging and photothermal therapy. Chem. Asian J. 8:385–91
    [Google Scholar]
  136. 136.  Rosenholm JM, Sahlgren C, Linden M 2011. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr. Drug Targets 12:1166–86
    [Google Scholar]
  137. 137.  Sun LN, Ge XQ, Liu JL, Qiu YN, Wei ZW et al. 2014. Multifunctional nanomesoporous materials with upconversion (in vivo) and downconversion (in vitro) luminescence imaging based on mesoporous capping UCNPs and linking lanthanide complexes. Nanoscale 6:13242–52
    [Google Scholar]
  138. 138.  Joo SH, Park JY, Tsung CK, Yamada Y, Yang PD, Somorjai GA 2009. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 8:126–31
    [Google Scholar]
  139. 139.  Yang JP, Shen DK, Zhou L, Li W, Fan JW et al. 2014. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Adv. Healthc. Mater. 3:1620–28
    [Google Scholar]
  140. 140.  Kim J, Kim HS, Lee N, Kim T, Kim H et al. 2008. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 47:8438–41
    [Google Scholar]
  141. 141.  Peng YK, Lai CW, Liu CL, Chen HC, Hsiao YH et al. 2011. A new and facile method to prepare uniform hollow MnO/functionalized mSiO2 core/shell nanocomposites. ACS Nano 5:4177–87
    [Google Scholar]
  142. 142.  Xu ZH, Li CX, Ma PA, Hou ZY, Yang DM et al. 2011. Facile synthesis of an up-conversion luminescent and mesoporous Gd2O3:Er3+@nSiO2@mSiO2 nanocomposite as a drug carrier. Nanoscale 3:661–67
    [Google Scholar]
  143. 143.  Han L, Lv YY, Asiri AM, Al-Youbi AO, Tu B, Zhao DY 2012. Novel preparation and near-infrared photoluminescence of uniform core-shell silver sulfide nanoparticle@mesoporous silica nanospheres. J. Mater. Chem. 22:7274–79
    [Google Scholar]
  144. 144.  Song GS, Wang QA, Wang Y, Lv G, Li C et al. 2013. A low-toxic multifunctional nanoplatform based on Cu9S5@mSiO2 core-shell nanocomposites: combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment. Adv. Funct. Mater. 23:4281–92
    [Google Scholar]
  145. 145.  Lu S, Tu DT, Li XJ, Li RF, Chen XY 2016. A facile “ship-in-a-bottle” approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Res 9:187–97
    [Google Scholar]
  146. 146.  Wu XJ, Xu DS 2010. Soft template synthesis of yolk/silica shell particles. Adv. Mater. 22:1516–20
    [Google Scholar]
  147. 147.  Liu J, Qiao SZ, Hartono SB, Lu GQ 2010. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed. 49:4981–85
    [Google Scholar]
  148. 148.  Liu J, Yang HQ, Kleitz F, Chen ZG, Yang TY et al. 2012. Yolk-shell hybrid materials with a periodic mesoporous organosilica shell: ideal nanoreactors for selective alcohol oxidation. Adv. Funct. Mater. 22:591–99
    [Google Scholar]
  149. 149.  Wu XJ, Xu DS 2009. Formation of yolk/SiO2 shell structures using surfactant mixtures as template. J. Am. Chem. Soc. 131:2774–75
    [Google Scholar]
  150. 150.  Yang Y, Liu J, Li XB, Liu X, Yang QH 2011. Organosilane-assisted transformation from core-shell to yolk-shell nanocomposites. Chem. Mater. 23:3676–84
    [Google Scholar]
  151. 151.  Yang Y, Liu X, Li XB, Zhao J, Bai SY et al. 2012. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem. Int. Ed. 51:9164–68
    [Google Scholar]
  152. 152.  Wang X, He YP, Liu C, Liu YL, Qiao ZA, Huo QS 2016. A controllable asymmetrical/symmetrical coating strategy for architectural mesoporous organosilica nanostructures. Nanoscale 8:13581–88
    [Google Scholar]
  153. 153.  Zhao LZ, Peng JJ, Huang Q, Li CY, Chen M et al. 2014. Near-infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv. Funct. Mater. 24:363–71
    [Google Scholar]
  154. 154.  Teng ZG, Su XD, Zheng YY, Sun J, Chen GT et al. 2013. Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach. Chem. Mater. 25:98–105
    [Google Scholar]
  155. 155.  Zhang LY, Wang TT, Yang L, Liu C, Wang CG et al. 2012. General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chem Eur. J. 18:12512–21
    [Google Scholar]
  156. 156.  Yang TY, Liu J, Zheng Y, Monteiro MJ, Qiao SZ 2013. Facile fabrication of coreshell-structured Ag@carbon and mesoporous yolkshell-structured Ag@carbon@silica by an extended Stöber method. Chem Eur. J. 19:6942–45
    [Google Scholar]
  157. 157.  Nagao D, van Kats CM, Hayasaka K, Sugimoto M, Konno M et al. 2010. Synthesis of hollow asymmetrical silica dumbbells with a movable inner core. Langmuir 26:5208–12
    [Google Scholar]
  158. 158.  Croissant J, Cattoen X, Man MWC, Dieudonne P, Charnay C et al. 2015. One-pot construction of multipodal hybrid periodic mesoporous organosilica nanoparticles with crystal-like architectures. Adv. Mater. 27:145–49
    [Google Scholar]
  159. 159.  Croissant JG, Fatieiev Y, Omar H, Anjum DH, Gurinov A et al. 2016. Periodic mesoporous organosilica nanoparticles with controlled morphologies and high drug/dye loadings for multicargo delivery in cancer cells. Chem Eur. J. 22:9607–15
    [Google Scholar]
  160. 160.  Wang X, Guan BY, He YP, Zhang Y, Cao Y et al. 2015. Synthesis of Janus mesoporous silica nanostructures with organic-inorganic hybrid components through a sprout-like growth method. ChemNanoMat 1:562–66
    [Google Scholar]
  161. 161.  Ujiie H, Shimojima A, Kuroda K 2015. Synthesis of colloidal Janus nanoparticles by asymmetric capping of mesoporous silica with phenylsilsesquioxane. Chem. Commun. 51:3211–14
    [Google Scholar]
  162. 162.  Mura S, Nicolas J, Couvreur P 2013. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12:991–1003
    [Google Scholar]
  163. 163.  Chen Y, Chen H, Zeng D, Tian Y, Chen F et al. 2010. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4:6001–13
    [Google Scholar]
  164. 164.  Li L, Tang F, Liu H, Liu T, Hao N et al. 2010. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 4:6874–82
    [Google Scholar]
  165. 165.  Yang D, Yang GX, Gai SL, He F, Lv RC et al. 2016. Imaging-guided and light-triggered chemo-/photodynamic/photothermal therapy based on Gd (III) chelated mesoporous silica hybrid spheres. ACS Biomater. Sci. Eng. 2:2058–71
    [Google Scholar]
  166. 166.  Zhang X, Yang PP, Dai YL, Ma PA, Li XJ et al. 2013. Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater. 23:4067–78
    [Google Scholar]
  167. 167.  Huang CC, Huang W, Yeh CS 2011. Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials 32:556–64
    [Google Scholar]
  168. 168.  Cauda V, Schlossbauer A, Kecht J, Zurner A, Bein T 2009. Multiple core-shell functionalized colloidal mesoporous silica nanoparticles. J. Am. Chem. Soc. 131:11361–70
    [Google Scholar]
  169. 169.  Zhang SH, Wen L, Yang JP, Zeng JF, Sun Q et al. 2016. Facile fabrication of dendritic mesoporous SiO2@CdTe@SiO2 fluorescent nanoparticles for bioimaging. Part. Part. Syst. Charact. 33:261–70
    [Google Scholar]
  170. 170.  Xu ZH, Gao Y, Huang SS, Ma PA, Lin J, Fang JY 2011. A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier. Dalton Trans 40:4846–54
    [Google Scholar]
  171. 171.  Dai WB, Lei YF, Ye S, Song EH, Chen Z, Zhang QY 2016. Mesoporous nanoparticles Gd2O3@mSiO2/ZnGa2O4:Cr3+,Bi3+ as multifunctional probes for bioimaging. J. Mater. Chem. B 4:1842–52
    [Google Scholar]
  172. 172.  Chen Y, Chen H, Sun Y, Zheng Y, Zeng D et al. 2011. Multifunctional mesoporous composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew. Chem. Int. Ed. 50:12505–9
    [Google Scholar]
  173. 173.  Chen Y, Chen H, Zhang S, Chen F, Sun S et al. 2012. Structure-property relationships in manganese oxide–mesoporous silica nanoparticles used for T-1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials 33:2388–98
    [Google Scholar]
  174. 174.  Kim T, Momin E, Choi J, Yuan K, Zaidi H et al. 2011. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T-1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc. 133:2955–61
    [Google Scholar]
  175. 175.  Liong M, Lu J, Kovochich M, Xia T, Ruehm SG et al. 2008. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–96
    [Google Scholar]
  176. 176.  Wu HX, Zhang SJ, Zhang JM, Liu G, Shi JL et al. 2011. A hollow-core, magnetic, and mesoporous double-shell nanostructure: in situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Adv. Funct. Mater. 21:1850–62
    [Google Scholar]
  177. 177.  Liu HM, Wu SH, Lu CW, Yao M, Hsiao JK et al. 2008. Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small 4:619–26
    [Google Scholar]
  178. 178.  Lee JE, Lee N, Kim H, Kim J, Choi SH et al. 2010. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J. Am. Chem. Soc. 132:552–57
    [Google Scholar]
  179. 179.  Jiao YF, Sun YF, Tang XL, Ren QG, Yang WL 2015. Tumor-targeting multifunctional rattle-type theranostic nanoparticles for MRI/NIRF bimodal imaging and delivery of hydrophobic drugs. Small 11:1962–74
    [Google Scholar]
  180. 180.  Qiang L, Meng X, Li L, Chen D, Ren X et al. 2013. Preparation of magnetic rattle-type silica through a general and facile pre-shell-post-core process for simultaneous cancer imaging and therapy. Chem. Commun. 49:7902–4
    [Google Scholar]
  181. 181.  Huang CC, Tsai CY, Sheu HS, Chuang KY, Su CH et al. 2011. Enhancing transversal relaxation for magnetite nanoparticles in MR imaging using Gd3+-chelated mesoporous silica shells. ACS Nano 5:3905–16
    [Google Scholar]
  182. 182.  Chen HY, Qi B, Moore T, Wang FL, Colvin DC et al. 2014. Multifunctional yolk-in-shell nanoparticles for pH-triggered drug release and imaging. Small 10:3364–70
    [Google Scholar]
  183. 183.  Lv RC, Yang PP, He F, Gai SL, Li CX et al. 2015. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano 9:1630–47
    [Google Scholar]
  184. 184.  Pan YW, Zhang L, Zeng LY, Ren WZ, Xiao XS et al. 2016. Gd-based upconversion nanocarriers with yolk-shell structure for dual-modal imaging and enhanced chemotherapy to overcome multidrug resistance in breast cancer. Nanoscale 8:878–88
    [Google Scholar]
  185. 185.  Croissant J, Maynadier M, Gallud A, N'Dongo HP, Nyalosaso JL et al. 2013. Two-photon-triggered drug delivery in cancer cells using nanoimpellers. Angew. Chem. Int. Ed. 52:13813–17
    [Google Scholar]
  186. 186.  Liu HY, Chen D, Li LL, Liu TL, Tan LF et al. 2011. Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. 50:891–95
    [Google Scholar]
  187. 187.  He CB, Lu JQ, Lin WB 2015. Hybrid nanoparticles for combination therapy of cancer. J. Control. Release 219:224–36
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-084225
Loading
/content/journals/10.1146/annurev-chembioeng-060817-084225
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error