1932

Abstract

This review covers three decades of research on mesoscale phenomena in chemical engineering, from the energy minimization multiscale (EMMS) model specific for gas–solid fluidization to a general principle of compromise in competition between dominant mechanisms, leading to the proposed concept of mesoscience. First, the concept of mesoscales is reviewed with respect to their commonality, diversity, and misunderstanding in different fields. Then, the evolution from the EMMS model to the EMMS principle common to all mesoscales is described to show the rationale of mesoscience referring to both mesoscales and mesoregimes. Finally, the potential universality of mesoscience and its importance, particularly to enable virtual process engineering (VPE) by realizing the consistency of logic and structure between the problem, the model, the software, and the computer, are discussed. The review concludes by illustrating possible case studies to collect more evidence and a potential framework for mesoscience.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-084249
2018-06-07
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/9/1/annurev-chembioeng-060817-084249.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-084249&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Wikipedia. 2016. Meson. https://en.wikipedia.org/wiki/Meson
  2. 2. Wikipedia. 2017. Mesoscopic physics. https://en.wikipedia.org/wiki/Mesoscopic_physics
  3. 3.  Bagshaw SA, Prouzet E, Pinnavaia TJ 1995. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242–44
    [Google Scholar]
  4. 4.  Schmidt-Winkel P, Lukens WW Jr, Zhao D, Yang P, Chmelka BF, Stucky GD 1999. Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc 121:254–55
    [Google Scholar]
  5. 5.  Liu HQ, Liang NQ 2000. An elastoplastic constitutive relation of whisker-reinforced composite for meso damage: part II—failure surfaces. Theor. Appl. Fract. Mech. 33:199–206
    [Google Scholar]
  6. 6.  Viehland D 2000. Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3-PbTiO3 crystals. J. Appl. Phys. 88:4794–806
    [Google Scholar]
  7. 7.  Vyalikh A, Simon P, Rosseeva E, Buder J, Scheler U, Kniep R 2015. An NMR study of biomimetic fluorapatite-gelatine mesocrystals. Sci. Rep. 5:15797
    [Google Scholar]
  8. 8. Wikipedia. 2017. Mesophase. https://en.wikipedia.org/wiki/Mesophase
  9. 9. Wikipedia. 2017. Mesogen. https://en.wikipedia.org/wiki/Mesogen
  10. 10. Wikipedia. 2017. Mesoionic. https://en.wikipedia.org/wiki/Mesoionic
  11. 11. Wikipedia. 2017. Resonance (chemistry). https://en.wikipedia.org/wiki/Resonance_(chemistry)
  12. 12. Yourdictionary.com. 2017. Mesostate. http://www.yourdictionary.com/mesostate
  13. 13. Yourdictionary.com. 2017. Mesosternum. http://www.yourdictionary.com/mesosternum
  14. 14.  Marine Biodiversity Wiki 2008. Mesozooplankton. http://www.marbef.org/wiki/Mesozooplankton
  15. 15.  Vézina AF, Savenkoff C, Roy S, Klein B, Rivkin R et al. 2000. Export of biogenic carbon and structure and dynamics of the pelagic food web in the Gulf of St. Lawrence: part 2. Inverse analysis. Deep-Sea Res. II 47:609–35
    [Google Scholar]
  16. 16.  Waddington JM, Roulet NT 1996. Atmosphere-wetland carbon exchanges: scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Glob. Biogeochem. Cycles 10:233–45
    [Google Scholar]
  17. 17. Wikipedia. 2017. Mesoamerica. https://en.wikipedia.org/wiki/Mesoamerica
  18. 18. Mindat.org. 2017. Definition of mesostasis. https://www.mindat.org/glossary/mesostasis
  19. 19. Wikipedia. 2017. Mesopelagic zone. https://en.wikipedia.org/wiki/Mesopelagic_zone
  20. 20. Wikipedia. 2017. Mesosphere. https://en.wikipedia.org/wiki/Mesosphere
  21. 21. Wikipedia. 2017. Mesopause. https://en.wikipedia.org/wiki/Mesopause
  22. 22. Wikipedia. 2017. Mesohigh. https://en.wikipedia.org/wiki/Mesohigh
  23. 23.  Fujita T 1959. Precipitation and cold air production in mesoscale thunderstorm systems. J. Meteorol. 16:454–66
    [Google Scholar]
  24. 24.  Fuller ML 1900. Geological and mineralogical chemistry. J. Am. Chem. Soc. 22:1266–68
    [Google Scholar]
  25. 25.  Orlanski I 1975. A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 56:527–30
    [Google Scholar]
  26. 26.  Zhang Y, Bocquet M, Mallet V, Seigneur C, Baklanov A 2012. Real-time air quality forecasting, part I: history, techniques, and current status. Atmos. Environ. 60:632–55
    [Google Scholar]
  27. 27.  Li J 2016. Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale. Engineering 2:276–85
    [Google Scholar]
  28. 28.  Huang W, Li J, Edwards PP 2017. Mesoscience: exploring the common principle at mesoscales. Natl. Sci. Rev. In press
    [Google Scholar]
  29. 29.  Li J, Ge W, Wang W, Yang N, Liu X et al. 2013. From Multiscale Modeling to Meso-Science: A Chemical Engineering Perspective Berlin: Springer
    [Google Scholar]
  30. 30.  Li J, Huang W, Edwards PP, Kwauk M, Houghton JT, Slocombe D 2013. On the universality of mesoscience: science of “the in-between. .” arXiv 1302.5861v1[nlin.AO]
  31. 31.  Li J, Ge W, Kwauk M 2009. Meso-scale phenomena from compromise—a common challenge, not only for chemical engineering. arXiv 0912.5407v3[nlin.AO]
  32. 32.  Li J 2015. Approaching virtual process engineering with exploring mesoscience. Chem. Eng. J. 278:541–55
    [Google Scholar]
  33. 33.  Li J 2015. Mesoscales: the path to transdisciplinarity. Chem. Eng. J. 277:112–15
    [Google Scholar]
  34. 34.  Li J, Huang W 2014. Towards Mesoscience: The Principle of Compromise in Competition Berlin: Springer
    [Google Scholar]
  35. 35.  Li J, Huang W, Chen J, Ge W, Hou C 2018. Mesoscience based on the EMMS principle of compromise in competition. Chem. Eng. J. 333:327–35
    [Google Scholar]
  36. 36.  Ge W, Li J 2003. Macro-scale phenomena reproduced in microscopic systems—pseudo-particle modeling of fluidization. Chem. Eng. Sci. 58:1565–85
    [Google Scholar]
  37. 37.  Li J, Ge W, Wang W, Yang N, Huang W 2016. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience. Curr. Opin. Chem. Eng. 13:10–23
    [Google Scholar]
  38. 38.  Guo L 2016. What is systematology. J. Syst. Sci. Math. Sci. 36:291–301
    [Google Scholar]
  39. 39.  Huang WL, Li J 2016. Compromise between minimization and maximization of entropy production in reversible Gray-Scott model. Chem. Eng. Sci. 155:233–38
    [Google Scholar]
  40. 40.  Ertl G 1991. Oscillatory kinetics and spatio-temporal self-organization in reactions at solid surfaces. Science 254:1750–55
    [Google Scholar]
  41. 41.  Reh L 1971. Fluidized bed processing. Chem. Eng. Prog. 67:258–63
    [Google Scholar]
  42. 42.  Reh L 1998. Aggregative gas-solid flow: a challenge for continuous fine particle processing Presented at PARTEC 1998, Numberg, Ger.
    [Google Scholar]
  43. 43.  Nicolis G, Prigogine I 1977. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations New York: Wiley
    [Google Scholar]
  44. 44.  Nicolis C, Nicolis G 2010. Stability, complexity and the maximum dissipation conjecture. Q. J. R. Meteorol. Soc. 136:1161–69
    [Google Scholar]
  45. 45.  Li J, Kwauk M 1994. Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Method Beijing: Metall. Ind. Press
    [Google Scholar]
  46. 46.  Li J, Tung Y, Kwauk M 1988. Method of energy minimization in multi-scale modeling of particle-fluid two-phase flow. Circulating Fluidized Bed Technology II P Basu, JF Large 89–103 London: Pergamon
    [Google Scholar]
  47. 47.  Ge W, Li J 1997. Pseudo-particle approach to hydrodynamics of particle-fluid systems. Circulating Fluidized Bed Technology V M Kwauk, J Li, pp 260–65 Beijing: Science
    [Google Scholar]
  48. 48.  Li J, Zhang Z, Ge W, Sun Q, Yuan J 1999. A simple variational criterion for turbulent flow in pipe. Chem. Eng. Sci. 54:1151–54
    [Google Scholar]
  49. 49.  Wang L, Qiu X, Zhang L, Li J 2016. Turbulence originating from the compromise-in-competition between viscosity and inertia. Chem. Eng. J. 300:83–97
    [Google Scholar]
  50. 50.  Li Y, Mu Y, Yuan S, Guo L 2017. The game theoretical approach for multi-phase complex systems in chemical engineering. J. Syst. Sci. Complex. 30:4–19
    [Google Scholar]
  51. 51.  Li J, Reh L, Kwauk M 1990. Application of energy minimization principle to hydrodynamics of circulating fluidized beds. Circulating Fluidized Bed Technology III P Basu, M Horio, M Hasatani 105–11 London: Pergamon
    [Google Scholar]
  52. 52.  Li J, Kwauk M, Reh L 1992. Role of energy minimization in gas/solid fluidization. Fluidization VII OE Potter, DJ Nichlin 83–91 New York: Eng. Found.
    [Google Scholar]
  53. 53.  Yang N, Wang W, Ge W, Li J 2003. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chem. Eng. J. 96:71–80
    [Google Scholar]
  54. 54.  Ghadirian E, Arastoopour H 2016. CFD simulation of a fluidized bed using the EMMS approach for the gas-solid drag force. Powder Technol 288:35–44
    [Google Scholar]
  55. 55. Comput. Particle Fluid Dyn. 2014. CPFD software collaborates with IPE for state of the art drag model improvements News, Aug 11 http://cpfd-software.com/news/cpfd-software-collaborates-with-ipe-for-state-of-the-art-drag-model-improve
    [Google Scholar]
  56. 56. EMMS Group. 2014. On-line gas-solid flow predictor based on the Energy-Minimization Multi-scale (EMMS) model. http://159.226.63.40/emms/solver.php
  57. 57.  Ge W, Chen F, Gao J, Gao S, Huang J et al. 2007. Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism. Chem. Eng. Sci. 62:3346–77
    [Google Scholar]
  58. 58.  Yang N, Chen J, Zhao H, Ge W, Li J 2007. Explorations on the multi-scale flow structure and stability condition in bubble columns. Chem. Eng. Sci. 62:6978–91
    [Google Scholar]
  59. 59.  Liu M, Li J, Kwauk M 2001. Application of the energy-minimization multi-scale method to gas-liquid-solid fluidized beds. Chem. Eng. Sci. 56:6805–12
    [Google Scholar]
  60. 60.  Han M, Xu J, Ren Y, Li J 2016. Simulations of flow induced structural transition of the β-switch region of glycoprotein Ibα. Biophys. Chem. 209:9–20
    [Google Scholar]
  61. 61.  Huang WL, Li J 2016. Mesoscale model for heterogeneous catalysis based on the principle of compromise in competition. Chem. Eng. Sci. 147:83–90
    [Google Scholar]
  62. 62.  Sun F, Huang WL, Li J 2016. Structural characteristics of adlayer in heterogeneous catalysis. Chem. Eng. Sci. 153:87–92
    [Google Scholar]
  63. 63.  Sun F, Huang WL, Li J 2017. Mesoscale structures in the adlayer of A-B2 heterogeneous catalysis. Langmuir 33:11582–89
    [Google Scholar]
  64. 64.  Li J, Kwauk M 2003. Exploring complex systems in chemical engineering—the multi-scale methodology. Chem. Eng. Sci. 58:521–35
    [Google Scholar]
  65. 65.  Li J, Zhang J, Ge W, Liu X 2004. Multi-scale methodology for complex systems. Chem. Eng. Sci. 59:1687–700
    [Google Scholar]
  66. 66.  Ge W, Wang W, Yang N, Li J, Kwauk M et al. 2011. Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm. Chem. Eng. Sci. 66:4426–58
    [Google Scholar]
  67. 67.  Liu X, Jiang Y, Zhang N, Li J 2016. Gas penetrating flow through dynamic particle clusters. Powder Technol 297:409–14
    [Google Scholar]
  68. 68.  Liu X, Guo L, Xia Z, Lu B, Zhao M et al. 2012. Harnessing the power of virtual reality. Chem. Eng. Prog. 108:28–33
    [Google Scholar]
  69. 69.  Herbert P, Reh L, Nicolai R 1999. The ETH experience: experimental database and results from the past eight years. AIChE Symp. Ser. 321:9561–66
    [Google Scholar]
  70. 70.  Lu L, Xu J, Ge W, Gao G, Jiang Y et al. 2016. Computer virtual experiment on fluidized beds using a coarse-grained discrete particle method—EMMS-DPM. Chem. Eng. Sci. 155:314–37
    [Google Scholar]
  71. 71.  Ge W, Guo L, Li J, Chen Z, Hu S, Liu X 2016. Thinkings on development strategy of supercomputing. Bull. Chin. Acad. Sci. 31:614–23
    [Google Scholar]
  72. 72.  Li J, Ge W, Wang W, Yang N 2010. Focusing on the meso-scales of multi-scale phenomena—in search for a new paradigm in chemical engineering. Particuology 8:634–39
    [Google Scholar]
  73. 73.  Nicolis C, Nicolis G 2010. Stability, complexity and the maximum dissipation conjecture. Q. J. R. Meteorol. Soc. 136:1161–69
    [Google Scholar]
  74. 74.  Martyushev L 2013. Entropy and entropy production: old misconceptions and new breakthroughs. Entropy 15:1152–70
    [Google Scholar]
  75. 75.  Prigogine I 1967. Introduction to Thermodynamics of Irreversible Processes New York: Wiley, 3rd ed..
    [Google Scholar]
  76. 76.  Ziegler H 1983. An Introduction to Thermomechanics New York: North-Holland, 1st ed..
    [Google Scholar]
  77. 77.  Li J 2000. Compromise and resolution—exploring the multi-scale nature of gas-solid fluidization. Powder Technol 111:50–59
    [Google Scholar]
  78. 78.  Edwards PP, Ramakrishnan TV, Rao CNR 1995. The metal-nonmetal transition: a global perspective. J. Phys. Chem. 99:5228–39
    [Google Scholar]
  79. 79.  Steinberg V, Voronel A, Linsky D, Schindewolf U 1980. Metallic-nonmetallic phase coexistence above the consolute point of sodium-ammonia solution. Phys. Rev. Lett. 45:1338–41
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-084249
Loading
/content/journals/10.1146/annurev-chembioeng-060817-084249
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error