1932

Abstract

Substantial natural gas liquids recovery from tight shale formations has produced a significant boon for the US chemical industry. As fracking technology improves, shale liquids may represent the same for other geographies. As with any major industry disruption, the advent of shale resources permits both the chemical industry and the community an excellent opportunity to have open, foundational discussions on how both public and private institutions should research, develop, and utilize these resources most sustainably. This review summarizes current chemical industry processes that use ethane and propane from shale gas liquids to produce the two primary chemical olefins of the industry: ethylene and propylene. It also discusses simplified techno-economics related to olefins production from an industry perspective, attempting to provide a mutually beneficial context in which to discuss the next generation of sustainable olefin process development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-084345
2018-06-07
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/9/1/annurev-chembioeng-060817-084345.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-084345&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Liss W 2012. Demand outlook: a golden age of natural gas. CEP Magazine Aug 35–40
    [Google Scholar]
  2. 2.  Alper J 2016. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop Washington, DC: Natl. Acad. Press
    [Google Scholar]
  3. 3. Am. Chem. Counc. 2017. U.S. chemical investment linked to shale gas: $179 billion and counting Fact sheet, Am. Chem. Counc., July. https://www.americanchemistry.com/Policy/Energy/Shale-Gas/Fact-Sheet-US-Chemical-Investment-Linked-to-Shale-Gas.pdf
    [Google Scholar]
  4. 4.  Tullo AH 2017. Shell advances Pennsylvania cracker. Chem. Eng. News 95:1612
    [Google Scholar]
  5. 5.  Tullo AH 2014. Ethylene planned for North Dakota. Chem. Eng. News 92:4210
    [Google Scholar]
  6. 6.  Tullo AH 2014. The U.S. methanol building boom. Chem. Eng. News 92:12–13
    [Google Scholar]
  7. 7.  Voith M 2009. World chemical outlook: United States. Chem. Eng. News 87:12–14
    [Google Scholar]
  8. 8.  Alfadala HE, El-Halwagi MM 2017. Qatar's chemical industry: monetizing natural gas. CEP Magazine Feb 38–41
    [Google Scholar]
  9. 9. ICIS. 2017. PE LDPE liner grade DEL US assessment bulk contract month contract survey: contract period ICIS Dashboard Price Hist., Reed Bus Inf. Ltd., RELX Group London: accessed July 9 2017. https://www.icis.com/chemicals/ A value of 44.5 MMBtu/mt was used for unit conversion.
    [Google Scholar]
  10. 10. US Energy Inf. Adm. 2017. Average Price of Electricity to Ultimate Customers by end-use sector accessed July 9, 2017. https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a; US Energy Inf. Adm. 2017. Wholesale spot petroleum prices, accessed July 9, 2017. https://www.eia.gov/petroleum/ Values of 0.003412 MMBtu/kWh and 8.70 MMBtu/gal were used for unit conversion.
    [Google Scholar]
  11. 11. Natl. Res. Counc. 2006. Sustainability in the Chemical Industry: Grand Challenges and Research Needs Washington, DC: Natl. Acad. Press
    [Google Scholar]
  12. 12.  Kelly MJ 2016. Lessons from technology development for energy and sustainability. MRS Energy Sustain 3:1–13
    [Google Scholar]
  13. 13. Int. Energy Agency. 2013. Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes Paris: Int. Energy Agency http://www.iea.org/publications/freepublications/publication/technology-roadmap-chemical-industry-via-catalytic-processes.html
    [Google Scholar]
  14. 14.  Pavone A 2014. Ethylene via ethane steam cracking PEP Rep. 29H, Proc. Econ. Progr., IHS Chem London: https://www.ihs.com/products/chemical-technology-pep-ethylene-ethane-steam-cracking-29h.html
    [Google Scholar]
  15. 15.  Lange J-P 2005. Economics of alkane conversion. Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities E Derouane, V Parmon, F Lemos, F Ramôa Ribeiro 51–83 Dordrecht, Neth: Springer
    [Google Scholar]
  16. 16.  Wittcoff RA, Reuben BG, Plotkin JS 2012. Industrial Organic Chemicals Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  17. 17.  Weissermel K, Arpe H-J 2003. Industrial Organic Chemistry Weinheim, Ger: Wiley-VCH Verlag
    [Google Scholar]
  18. 18.  Sundaram KM, Shreehan MM, Olszewski EF 2000. Ethylene. Kirk-Othmer Encyclopedia of Chemical Technology A Seidel Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  19. 19.  Zimmermann H, Walzl R 2000. Ethylene. Ullmann's Encyclopedia of Industrial Chemistry B Elvers. Weinheim Ger: Wiley-VCH Verlag
    [Google Scholar]
  20. 20.  Kelly M 2016. Propylene process summary PEP Rev. 2016-11 Proc. Econ. Progr., IHS Chem London:
    [Google Scholar]
  21. 21.  Wan V, Asaro M 2015. Propane dehydrogenation process technologies PEP Rep. 267A Proc. Econ. Progr., IHS Chem London:
    [Google Scholar]
  22. 22.  Wan VY 2011. Propylene production via metathesis of ethylene and butenes PEP Rev. 2011-04 Proc. Econ. Progr., IHS Chem London:
    [Google Scholar]
  23. 23.  Ballal G 2017. Propylene by olefin conversion processes PEP Rep. 267C Proc. Econ. Progr., IHS Chem London:
    [Google Scholar]
  24. 24.  Rouhi AM 2015. From coal to chemical building blocks: an academic success story for China. Chem. Eng. News 93:3430–31
    [Google Scholar]
  25. 25.  Mesters C 2016. A selection of recent advances in C1 chemistry. Annu. Rev. Chem. Biomol. Eng. 7:223–38
    [Google Scholar]
  26. 26. Lawrence Livermore Natl. Lab. 2017. Estimated U.S. energy consumption in 2016: 97.3 quads Energy Flow Charts, Lawrence Livermore Natl. Lab., accessed Aug. 1, 2017. https://flowcharts.llnl.gov/commodities/energy
    [Google Scholar]
  27. 27.  Arora A, Gambardella A 2001. Implications for energy innovation from the chemical industry. Accelerating Energy Innovation: Insights from Multiple Sectors RM Henderson, RG Newell 87–111 Chicago: Univ. Chicago Press
    [Google Scholar]
  28. 28.  Lippe D 2017. US olefins industry prepares for waves of new capacity. Oil Gas J 115:363–68
    [Google Scholar]
  29. 29.  Wang B, Ortiz J, Morales J Jr, Nah J, Fu K et al. 2017. World Analysis: Polyethylene London: IHS Chem https://connect.ihs.com/ChemicalResearch?pageId=RSRCHMRA_WA#viewer/default/%2FDocument%2FShow%2Fphoenix%2F631691%3FconnectPath%3DCapabilities_RSRCHMRA.RSRCHMRA_WA
    [Google Scholar]
  30. 30.  Teske V, Carr C 2015. Propylene. Chemical Economics Handbook London: IHS Chem.
    [Google Scholar]
  31. 31.  Khare R, Liu Z, Han Y, Bhan A 2017. A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5. J. Catal. 348:300–5
    [Google Scholar]
  32. 32.  Mohammadkhani B, Haghighi M, Sadeghpour P 2016. Altering C2H4/C3H6 yield in methanol to light olefins over HZSM-5, SAPO-34 and SAPO-34/HZSM-5 nanostructured catalysts: influence of Si/Al ratio and composite formation. RSC Adv 6:25460–71
    [Google Scholar]
  33. 33.  Cao G, Colle TH, Martens LRM, Brown SH, Xu T 2011. Controlling prime olefin ratio in an oxygenates-to-olefins reaction US Patent No. 20110054128A1
    [Google Scholar]
  34. 34.  Xu C, Al Shoaibi AS, Wang C, Carstensen H-H, Dean AM 2011. Kinetic modeling of ethane pyrolysis at high conversion. J. Phys. Chem. A 115:10470–90
    [Google Scholar]
  35. 35.  van Goethem MWM, Barendregt S, Grievink J, Verheijen PJT, Dente M, Ranzi E 2013. A kinetic modelling study of ethane cracking for optimal ethylene yield. Chem. Eng. Res. Des. 91:1106–10
    [Google Scholar]
  36. 36.  van Goethem MWM, Barendregt S, Grievink J, Moulijn JA, Verheijen PJT 2010. Model-based, thermo-physical optimisation for high olefin yield in steam cracking reactors. Chem. Eng. Res. Des. 88:1305–19
    [Google Scholar]
  37. 37.  Song Y, Valenyi LJ, Leff AA, Kliewer WR, Metcalfe JE 1992. Steamless pyrolysis of ethane to ethylene. Chem. Ind. 46:319–39
    [Google Scholar]
  38. 38.  Sadrameli SM 2015. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review I: thermal cracking review. Fuel 140:102–15
    [Google Scholar]
  39. 39.  Sabbe MK, Van Geem KM, Reyniers M-F, Marin GB 2011. First principle-based simulation of ethane steam cracking. AIChE J 57:482–96
    [Google Scholar]
  40. 40.  Ranjan P, Kannan P, Al Shoaibi A, Srinivasakannan C 2012. Modeling of ethane thermal cracking kinetics in a pyrocracker. Chem. Eng. Technol. 35:1093–97
    [Google Scholar]
  41. 41.  Van Geem KM, Heynderickx GJ, Marin GB 2004. Effect of radial temperature profiles on yields in steam cracking. AIChE J 50:173–83
    [Google Scholar]
  42. 42.  Plehiers PM, Reyniers GC, Froment GF 1990. Simulation of the run length of an ethane cracking furnace. Ind. Eng. Chem. Res. 29:636–41
    [Google Scholar]
  43. 43.  Matheu DM, Grenda JM 2005. A systematically generated, pressure-dependent mechanism for high-conversion ethane pyrolysis. 2. Radical disproportionations, missing reaction families, and the consequences of pressure dependence. J. Phys. Chem. A 109:5343–51
    [Google Scholar]
  44. 44.  Shokrollahi Yancheshmeh MS, Seifzadeh Haghighi S, Gholipour MR, Dehghani O, Rahimpour MR, Raeissi S 2013. Modeling of ethane pyrolysis process: a study on effects of steam and carbon dioxide on ethylene and hydrogen productions. Chem. Eng. J. 215–16:550–60
    [Google Scholar]
  45. 45.  Van Geem KM, Reyniers M-F, Marin GB 2005. Two severity indices for scale-up of steam cracking coils. Ind. Eng. Chem. Res. 44:3402–11
    [Google Scholar]
  46. 46.  Shalaby HM, Al-Madaj M, Tanoli N 2011. Failure of welded dilution steam coil made of alloy 800HT. Corros. Eng. Sci. Technol. 46:685–91
    [Google Scholar]
  47. 47.  Sarris SA, Olahova N, Verbeken K, Reyniers M-F, Marin GB, Van Geem KM 2017. Optimization of the in situ pretreatment of high temperature Ni-Cr alloys for ethane steam cracking. Ind. Eng. Chem. Res. 56:1424–38
    [Google Scholar]
  48. 48.  Muñoz Gandarillas AE, Van Geem KM, Reyniers M-F, Marin GB 2014. Coking resistance of specialized coil materials during steam cracking of sulfur-free naphtha. Ind. Eng. Chem. Res. 53:13644–55
    [Google Scholar]
  49. 49.  Jazayeri SM, Karimzadeh R 2011. Experimental investigation of initial coke formation over stainless steel, chromium, and iron in thermal cracking of ethane with hydrogen sulfide as an additive. Energy Fuels 25:4235–47
    [Google Scholar]
  50. 50.  Schietekat CM, Sarris SA, Reyniers PA, Kool LB, Peng W et al. 2015. Catalytic coating for reduced coke formation in steam cracking reactors. Ind. Eng. Chem. Res. 54:9525–35
    [Google Scholar]
  51. 51.  Wang J, Reyniers M-F, Van Geem KM, Marin GB 2008. Influence of silicon and silicon/sulfur-containing additives on coke formation during steam cracking of hydrocarbons. Ind. Eng. Chem. Res. 47:1468–82
    [Google Scholar]
  52. 52.  Wang J, Reyniers M-F, Marin GB 2007. Influence of dimethyl disulfide on coke formation during steam cracking of hydrocarbons. Ind. Eng. Chem. Res. 46:4134–48
    [Google Scholar]
  53. 53.  Van Geem KM, Dhuyvetter I, Prokopiev S, Reyniers M-F, Viennet D, Marin GB 2009. Coke formation in the transfer line exchanger during steam cracking of hydrocarbons. Ind. Eng. Chem. Res. 48:10343–58
    [Google Scholar]
  54. 54.  Chan KYG, Inal F, Senkan S 1998. Suppression of coke formation in the steam cracking of alkanes: ethane and propane. Ind. Eng. Chem. Res. 37:901–7
    [Google Scholar]
  55. 55.  Cai H, Krzywicki A, Oballa MC 2002. Coke formation in steam crackers for ethylene production. Chem. Eng. Process. 41:199–214
    [Google Scholar]
  56. 56.  Heynderickx GJ, Schools EM, Marin GB 2006. Simulation of the decoking of an ethane cracker with a steam/air mixture. Chem. Eng. Sci. 61:1779–89
    [Google Scholar]
  57. 57.  Heynderickx GJ, Schools EM, Marin GB 2006. Optimization of the decoking procedure of an ethane cracker with a steam/air mixture. Ind. Eng. Chem. Res. 45:7520–29
    [Google Scholar]
  58. 58.  Tullo AH 2017. Another ethylene plant to rise on the Gulf. Chem. Eng. News 95:1417
    [Google Scholar]
  59. 59.  van Goethem MWM, Barendregt S, Grievink J, Moulijn JA, Verheijen PJT 2007. Ideal chemical conversion concept for the industrial production of ethene from hydrocarbons. Ind. Eng. Chem. Res. 46:4045–62
    [Google Scholar]
  60. 60.  Sholl DS, Lively RP 2016. Seven chemical separations to change the world. Nature 532:435–37
    [Google Scholar]
  61. 61.  Peters MS, Timmerhaus KD, West RE 2003. Plant Design and Economics for Chemical Engineers New York: McGraw-Hill High. Educ.
    [Google Scholar]
  62. 62.  Couper JR, Hertz DW, Smith L 2006. Process economics. Perry's Chemical Engineers' Handbook RH Perry, DW Green, Chapter 9 New York: McGraw-Hill, 8th ed..
    [Google Scholar]
  63. 63. Microsoft. 2013. Excel statistical functions: PEARSON On-line help files, Microsoft. https://support.microsoft.com/en-us/help/828129/excel-statistical-functions-pearson
    [Google Scholar]
  64. 64.  Short PL 2005. Gearing up for more: Middle Eastern producers seek their place on world supply, marketing, and R&D stages. Chem. Eng. News 83:30–31
    [Google Scholar]
  65. 65.  Zhang M, Yu Y 2013. Dehydration of ethanol to ethylene. Ind. Eng. Chem. Res. 52:9505–14
    [Google Scholar]
  66. 66.  Phung TK, Proietti Hernández L, Lagazzo A, Busca G 2015. Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects. Appl. Catal. A 493:77–89
    [Google Scholar]
  67. 67.  Pan Q, Ramanathan A, Snavely WK, Chaudhari RV, Subramaniam B 2014. Intrinsic kinetics of ethanol dehydration over Lewis acidic ordered mesoporous silicate, Zr-KIT-6. Top. Catal. 57:1407–11
    [Google Scholar]
  68. 68.  Tullo AH 2012. Dow will delay biopolymers plant. Chem. Eng. News 90:5022
    [Google Scholar]
  69. 69.  Elordi G, Olazar M, Lopez G, Artetxe M, Bilbao J 2011. Continuous polyolefin cracking on an HZSM-5 zeolite catalyst in a conical spouted bed reactor. Ind. Eng. Chem. Res. 50:6061–70
    [Google Scholar]
  70. 70.  Artetxe M, Lopez G, Elordi G, Amutio M, Bilbao J, Olazar M 2012. Production of light olefins from polyethylene in a two-step process: pyrolysis in a conical spouted bed and downstream high-temperature thermal cracking. Ind. Eng. Chem. Res. 51:13915–23
    [Google Scholar]
  71. 71.  He C, You F 2014. Shale gas processing integrated with ethylene production: novel process designs, exergy analysis, and techno-economic analysis. Ind. Eng. Res. 53:11442–59
    [Google Scholar]
  72. 72.  Gärtner CA, vanVeen AC, Lercher JA 2013. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 5:3196–217
    [Google Scholar]
  73. 73.  Cavani F, Ballarini N, Cericola A 2007. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation?. Catal. Today 127:113–31
    [Google Scholar]
  74. 74.  Bodke AS, Henning D, Schmidt LD, Bharadwaj SS, Maj JJ, Siddall J 2000. Oxidative dehydrogenation of ethane at millisecond contact times: effect of H2 addition. J. Catal. 191:62–74
    [Google Scholar]
  75. 75.  Rebeilleau-Dassonneville M, Rosini S, van Veen AC, Farrusseng D, Mirodatos C 2005. Oxidative activation of ethane on catalytic modified dense ionic oxygen conducting membranes. Catal. Today 104:131–37
    [Google Scholar]
  76. 76.  Wang D, Rosynek MP, Lunsford JH 1995. The role of Cl in a Li+-ZnO-Cl catalyst on the oxidative coupling of methane and the oxidative dehydrogenation of ethane. Chem. Eng. Technol. 18:118–24
    [Google Scholar]
  77. 77.  Crowl DA, Louvar JF 2002. Fire and explosions. Chemical Process Safety: Fundamentals with Applications Upper Saddle River, NJ: Prentice Hall
    [Google Scholar]
  78. 78.  Zboray M, Bell AT, Iglesia E 2009. Role of C-H bond strength in the rate and selectivity of oxidative dehydrogenation of alkanes. J. Phys. Chem. C 113:12380–86
    [Google Scholar]
  79. 79.  Skoufa Z, Giannakakis G, Heracleous E, Lemonidou AA 2017. Simulation-aided effective design of a catalytic reactor for ethane oxidative dehydrogenation over NiNbOx. Catal. . Today 299:102–11
    [Google Scholar]
  80. 80.  Valente JS, Quintana-Solórzano R, Armendáriz-Herrera H, Barragán-Rodriguez G, López-Nieto JM 2014. Kinetic study of oxidative dehydrogenation of ethane over MoVTeNb mixed-oxide catalyst. Ind. Eng. Chem. Res. 53:1775–86
    [Google Scholar]
  81. 81.  Fattahi M, Kazemeini M, Khorasheh F, Darvishi A, Rashidi AM 2013. Fixed-bed multi-tubular reactors for oxidative dehydrogenation in ethylene process. Chem. Eng. Technol. 36:1691–700
    [Google Scholar]
  82. 82.  Rodríguez ML, Ardissone DE, López E, Pedernera MN, Borio DO 2011. Reactor designs for ethylene production via ethane oxidative dehydrogenation: comparison of performance. Ind. Eng. Chem. Res. 50:2690–97
    [Google Scholar]
  83. 83.  Che-Galicia G, Ruiz-Martínez RS, López-Isunza F, Castillo-Araiza CO 2015. Modeling of oxidative dehydrogenation of ethane to ethylene on a MoVTeNbO/TiO2 catalyst in an industrial-scale packed bed catalytic reactor. Chem. Eng. J. 280:682–94
    [Google Scholar]
  84. 84.  Haribal VP, Neal LM, Li F 2017. Oxidative dehydrogenation of ethane under a cyclic redox scheme—process simulations and analysis. Energy 119:1024–35
    [Google Scholar]
  85. 85.  Fukudome K, Ikenaga N-o, Miyake T, Suzuki T 2011. Oxidative dehydrogenation of propane using lattice oxygen of vanadium oxides on silica. Catal. Sci. Technol. 1:987–98
    [Google Scholar]
  86. 86.  Elbadawi AH, Ba-Shammakh MS, Al-Ghamdi S, Razzak SA, Hossain MM, de Lasa HI 2016. A fluidizable VOx/γ-Al2O3-ZrO2 catalyst for the ODH of ethane to ethylene operating in a gas phase oxygen free environment. Chem. Eng. Sci. 145:59–70
    [Google Scholar]
  87. 87.  Yusuf S, Neal LM, Li F 2017. Effect of promoters on manganese-containing mixed metal oxides for oxidative dehydrogenation of ethane via a cyclic redox scheme. ACS Catal 7:5163–73
    [Google Scholar]
  88. 88.  Chu B, Truter L, Nijhuis TA, Cheng Y 2015. Oxidative dehydrogenation of ethane to ethylene over phase-pure M1 MoVNbTeOx catalysts in a micro-channel reactor. Catal. Sci. Technol. 5:2807–13
    [Google Scholar]
  89. 89.  Yang B, Yuschak T, Mazanec T, Tonkovich AL, Perry S 2008. Multi-scale modeling of microstructured reactors for the oxidative dehydrogenation of ethane to ethylene. Chem. Eng. J. 135:S147–S52
    [Google Scholar]
  90. 90.  Rodriguez ML, Ardissone DE, Lemonidou AA, Heracleous E, Lopez E et al. 2009. Simulation of a membrane reactor for the catalytic oxydehydrogenation of ethane. Ind. Eng. Chem. Res. 48:1090–95
    [Google Scholar]
  91. 91.  Lobera MP, Balaguer M, Garcia-Fayos J, Serra JM 2012. Rare earth-doped ceria catalysts for ODHE reaction in a catalytic modified MIEC membrane reactor. ChemCatChem 4:2102–11 S02/1–S02/4
    [Google Scholar]
  92. 92.  Hamel C, Tota A, Klose F, Tsotsas E, Seidel-Morgenstern A 2010. Packed-bed membrane reactors. Membrane Reactors: Distributing Reactants to Improve Selectivity and Yield A Seidel-Morgenstern 133–65 Weinheim, Ger: Wiley-VCH Verlag
    [Google Scholar]
  93. 93.  Tranter RS, Raman A, Sivaramakrishnan R, Brezinsky K 2005. Ethane oxidation and pyrolysis from 5 bar to 1000 bar: experiments and simulation. Int. J. Chem. Kinet. 37:306–31
    [Google Scholar]
  94. 94.  Chen Q, Schweitzer EJA, Van Den Oosterkamp PF, Berger RJ, De Smet CRH, Marin GB 1997. Oxidative pyrolysis of ethane. Ind. Eng. Chem. Res. 36:3248–51
    [Google Scholar]
  95. 95.  Dar HJ, Nanot SU, Jens KJ, Jakobsen HA, Tangstad E, Chen D 2012. Kinetic analysis and upper bound of ethylene yield of gas phase oxidative dehydrogenation of ethane to ethylene. Ind. Eng. Chem. Res. 51:10571–85
    [Google Scholar]
  96. 96.  Lange JP, Schoonebeek RJ, Mercera PDL, van Breukelen FW 2005. Oxycracking of hydrocarbons: chemistry, technology and economic potential. Appl. Catal. A 283:243–53
    [Google Scholar]
  97. 97.  Cavani F, Trifirò F 1999. Selective oxidation of light alkanes: interaction between the catalyst and the gas phase on different classes of catalytic materials. Catal. Today 51:561–80
    [Google Scholar]
  98. 98.  Maffia GJ, Gaffney AM, Mason OM 2016. Techno-economic analysis of oxidative dehydrogenation options. Top. Catal. 59:1573–79
    [Google Scholar]
  99. 99.  Yang M, You F 2017. Comparative techno-economic and environmental analysis of ethylene and propylene manufacturing from wet shale gas and naphtha. Ind. Eng. Chem. Res. 56:4038–51
    [Google Scholar]
  100. 100.  Ibeh CC 2011. Polypropylene. Thermoplastic Materials: Properties, Manufacturing Methods, and Applications Boca Raton, FL: CRC Press
    [Google Scholar]
  101. 101.  Popoff N, Mazoyer E, Pelletier J, Gauvin RM, Taoufik M 2013. Expanding the scope of metathesis: a survey of polyfunctional, single-site supported tungsten systems for hydrocarbon valorization. Chem. Soc. Rev. 42:9035–54
    [Google Scholar]
  102. 102.  Sun W, Saeys M 2011. Construction of an ab initio kinetic model for industrial ethane pyrolysis. AIChE J 57:2458–71
    [Google Scholar]
  103. 103.  Tullo AH 2003. Propylene on demand. Chem. Eng. News 81:15–16
    [Google Scholar]
  104. 104. Thyssenkrupp Ind. Solut. 2017. The STAR Process® by Uhde Dortmund, Ger: Thyssenkrupp Ind. Solut https://www.thyssenkrupp-industrial-solutions.com/media/products_services/chemical_plants_processes/gasification/tkis_star_process.pdf
    [Google Scholar]
  105. 105.  Pretz M, Fish B, Luo L, Stears B 2017. Shaping the future of on-purpose propylene production. Hydrocarbon Processing April 29–36
    [Google Scholar]
  106. 106.  Vora BV 2012. Development of dehydrogenation catalysts and processes. Top. Catal. 55:1297–308
    [Google Scholar]
  107. 107.  Bricker JC 2012. Advanced catalytic dehydrogenation technologies for production of olefins. Top. Catal. 55:1309–14
    [Google Scholar]
  108. 108.  Ziaka ZD, Minet RG, Tsotsis TT 1993. A high temperature catalytic membrane reactor for propane dehydrogenation. J. Membr. Sci. 77:221–32
    [Google Scholar]
  109. 109.  Nawaz Z 2015. Light alkane dehydrogenation to light olefin technologies: a comprehensive review. Rev. Chem. Eng. 31:413–36
    [Google Scholar]
  110. 110.  Wang S, Zhu ZH 2004. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation—a review. Energy Fuels 18:1126–39
    [Google Scholar]
  111. 111.  Luo YR 2007. Comprehensive Handbook of Chemical Bond Energies Boca Raton, FL: CRC Press
    [Google Scholar]
  112. 112.  Carrero CA, Schloegl R, Wachs IE, Schomaecker R 2014. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS Catal 4:3357–80
    [Google Scholar]
  113. 113.  Kube P, Frank B, Wrabetz S, Kroehnert J, Haevecker M et al. 2017. Functional analysis of catalysts for lower alkane oxidation. ChemCatChem 9:573–85
    [Google Scholar]
  114. 114.  Li X, Lunkenbein T, Pfeifer V, Jastak M, Nielsen PK et al. 2016. Selective alkane oxidation by manganese oxide: site isolation of MnOx chains at the surface of MnWO4 nanorods. Angew. Chem. 55:4092–96
    [Google Scholar]
  115. 115.  Schloegl R 2011. Active sites for propane oxidation: some generic considerations. Top. Catal. 54:627–38
    [Google Scholar]
  116. 116.  You R, Zhang X, Luo L, Pan Y, Pan H et al. 2017. NbOx/CeO2-rods catalysts for oxidative dehydrogenation of propane: Nb-CeO2 interaction and reaction mechanism. J. Catal. 348:189–99
    [Google Scholar]
  117. 117.  Barman S, Maity N, Bhatte K, Ould-Chikh S, Dachwald O et al. 2016. Single-site VOx moieties generated on silica by surface organometallic chemistry: a way to enhance the catalytic activity in the oxidative dehydrogenation of propane. ACS Catal 6:5908–21
    [Google Scholar]
  118. 118.  Rossetti I, Mancini GF, Ghigna P, Scavini M, Piumetti M et al. 2012. Spectroscopic enlightening of the local structure of VOx active sites in catalysts for the ODH of propane. J. Phys. Chem. C 116:22386–98
    [Google Scholar]
  119. 119.  Li Z, Peters AW, Bernales V, Ortuno MA, Schweitzer NM et al. 2017. Metal-organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature. ACS Cent. Sci. 3:31–38
    [Google Scholar]
  120. 120.  Hossain MM 2017. Kinetics of oxidative dehydrogenation of propane to propylene using lattice oxygen of VOx/CaO/γAl2O3 catalysts. Ind. Eng. Chem. Res. 56:4309–18
    [Google Scholar]
  121. 121.  Kim TH, Gim MY, Song JH, Choi WC, Park Y-K et al. 2017. Deactivation behavior of CrOy/Al2O3-ZrO2 catalysts in the dehydrogenation of propane to propylene by lattice oxygen. Catal. Commun. 97:37–41
    [Google Scholar]
  122. 122.  Fukudome K, Suzuki T 2015. Highly selective oxidative dehydrogenation of propane to propylene over VOx-SiO2 catalysts. Catal. Surv. Asia 19:172–87
    [Google Scholar]
  123. 123.  Kube P, Frank B, Schloegl R, Trunschke A 2017. Isotope studies in oxidation of propane over vanadium oxide. ChemCatChem 9:183446–55
    [Google Scholar]
  124. 124.  Yu J, Xu Y, Guliants VV 2014. Propane ammoxidation over Mo-V-Te-Nb-O M1 phase: density functional theory study of propane oxidative dehydrogenation steps. Catal. Today 238:28–34
    [Google Scholar]
  125. 125.  Rojas E, Calatayud M, Bañares MA, Guerrero-Pérez MO 2012. Theoretical and experimental study of light hydrocarbon ammoxidation and oxidative dehydrogenation on (110)-VSbO4 surfaces. J. Phys. Chem. C 116:9132–41
    [Google Scholar]
  126. 126.  Grant JT, Carrero CA, Goeltl F, Venegas J, Mueller P et al. 2016. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 354:1570–73
    [Google Scholar]
  127. 127.  Li J, Li J, Zhao Z, Fan X, Liu J et al. 2017. Size effect of TS-1 supports on the catalytic performance of PtSn/TS-1 catalysts for propane dehydrogenation. J. Catal. 352:361–70
    [Google Scholar]
  128. 128.  Carrero C, Kauer M, Dinse A, Wolfram T, Hamilton N et al. 2014. High performance (VOx)n-(TiOx)m/SBA-15 catalysts for the oxidative dehydrogenation of propane. Catal. Sci. Technol. 4:3786–94
    [Google Scholar]
  129. 129.  Atanga MA, Rezaei F, Jawad A, Fitch M, Rownaghi AA 2018. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Appl. Catal. B 220:429–45
    [Google Scholar]
  130. 130.  Koirala R, Buechel R, Krumeich F, Pratsinis SE, Baiker A 2015. Oxidative dehydrogenation of ethane with CO2 over flame-made Ga-loaded TiO2. ACS Catal 5:690–702
    [Google Scholar]
  131. 131.  Ansari MB, Park S-E 2012. Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ. Sci 5:9419–37
    [Google Scholar]
  132. 132.  Karamullaoglu G, Dogu T 2007. Oxidative dehydrogenation of ethane over chromium-vanadium mixed oxide and chromium oxide catalysts. Ind. Eng. Chem. Res. 46:7079–86
    [Google Scholar]
  133. 133.  Centi G, Perathoner S 2004. Heterogeneous catalytic reactions with CO2: status and perspectives. Stud. Surf. Sci. Catal. 153:1–8
    [Google Scholar]
  134. 134.  Wu G, Fei H, Zhang N, Guan N, Li L, Grunert W 2013. Oxidative dehydrogenation of propane with nitrous oxide over Fe-ZSM-5 prepared by grafting: characterization and performance. Appl. Catal. A 468:230–39
    [Google Scholar]
  135. 135.  Sazama P, Sathu NK, Tabor E, Wichterlova B, Sklenak S, Sobalik Z 2013. Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition. J. Catal. 299:188–203
    [Google Scholar]
  136. 136.  Ates A, Hardacre C, Goguet A 2012. Oxidative dehydrogenation of propane with N2O over Fe-ZSM-5 and Fe-SiO2: influence of the iron species and acid sites. Appl. Catal. A 441–42:30–41
    [Google Scholar]
  137. 137.  Kondratenko EV, Brueckner A 2010. On the nature and reactivity of active oxygen species formed from O2 and N2O on VOx/MCM-41 used for oxidative dehydrogenation of propane. J. Catal. 274:111–16
    [Google Scholar]
  138. 138.  Rozanska X, Kondratenko EV, Sauer J 2008. Oxidative dehydrogenation of propane: differences between N2O and O2 in the reoxidation of reduced vanadia sites and consequences for selectivity. J. Catal. 256:84–94
    [Google Scholar]
  139. 139.  Ovsitser O, Kondratenko EV 2009. Similarity and differences in the oxidative dehydrogenation of C2-C4 alkanes over nano-sized VOx species using N2O and O2. Catal. Today 142:138–42
    [Google Scholar]
  140. 140.  Premji ZA, Lo JMH, Clark PD 2014. Experimental and ab initio investigations of H2S-assisted propane oxidative dehydrogenation reactions. J. Phys. Chem. A 118:1541–56
    [Google Scholar]
  141. 141.  Agnihotra NK 2016. Ammonia production by Haldor Topsøe conventional technology PEP Rev. 2016-14, Proc. Econ Progr., IHS Chem London:
    [Google Scholar]
  142. 142.  Banholzer WF, Jones ME 2013. Chemical engineers must focus on practical solutions. AIChE J 59:2708–20
    [Google Scholar]
  143. 143.  Stangland EE 2015. The shale gas revolution: A methane-to-organic chemicals renaissance?. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2014 Symposium107–16 Washington, DC: Natl. Acad. Press
    [Google Scholar]
  144. 144.  Hickman DA, Jones ME, Jovanovic ZR, Olken MM, Podkolzin SG et al. 2010. Reactor scale-up for fluidized bed conversion of ethane to vinyl chloride. Ind. Eng. Chem. Res. 49:10674–81
    [Google Scholar]
  145. 145.  Cavani F 2010. Catalytic selective oxidation faces the sustainability challenge: turning points, objectives reached, old approaches revisited and solutions still requiring further investigation. J. Chem. Technol. Biotechnol. 85:1175–83
    [Google Scholar]
  146. 146. US Energy Inf. Adm. 2017. U.S. Natural Gas Monthly Supply and Disposition Balance accessed Aug. 1, 2017. https://www.eia.gov/dnav/ng/ng_sum_sndm_s1_m.htm
    [Google Scholar]
  147. 147. US Energy Inf. Adm. 2017. Natural Gas Pricing accessed Aug. 1, 2017. http://www.eia.gov/naturalgas/
    [Google Scholar]
  148. 148. ICIS. 2017. ICIS pricing reports, various Chem. Dashboard Price Hist Reed Bus. Inf. Ltd., RELX Group London: accessed Aug. 1, 2017. http://www.icispricing.com
    [Google Scholar]
  149. 149.  Chang R, Lacson J 2017. Process Economics Tool: PEP Yearbook Price History London: IHS Chem.
    [Google Scholar]
  150. 150. NexantThinking. 1999. Process evaluation/research planning. On-purpose nitrous oxide production for phenol manufacture Rep. 98–99S14, Nexant Inc. (former. Chem Syst.) London:
    [Google Scholar]
  151. 151.  Wang S, Murata K, Hayakawa T, Suzuki K 2000. Oxidative dehydrogenation of ethane over zirconia-supported lithium chloride catalysts. Chem. Eng. Technol. 23:1099–103
    [Google Scholar]
  152. 152.  Kumar CP, Gaab S, Müller TE, Lercher JA 2008. Oxidative dehydrogenation of light alkanes on supported molten alkali metal chloride catalysts. Top. Catal. 50:156–67
    [Google Scholar]
  153. 153.  Au CT, Zhou XP, Wan HL 1996. The activation of O2 and the oxidative dehydrogenation of C2H6 over SmOF catalyst. Catal. Lett. 40:101–4
    [Google Scholar]
  154. 154.  Tope B, Zhu Y, Lercher JA 2007. Oxidative dehydrogenation of ethane over Dy2O3/MgO supported LiCl containing eutectic chloride catalysts. Catal. Today 123:113–21
    [Google Scholar]
  155. 155.  Conway SJ, Wang DJ, Lunsford JH 1991. Selective oxidation of methane and ethane over Li+-MgO-Cl catalysts promoted with metal oxides. Appl. Catal. A 79:L1–L5
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-084345
Loading
/content/journals/10.1146/annurev-chembioeng-060817-084345
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error