1932

Abstract

Although thermal desalination technology provides potable water in arid regions (e.g., Israel and the Gulf), its relatively high cost has limited application to less arid regions with large populations (e.g., California). Energy-intensive distillation is currently being replaced with less costly pressure- and electrically driven membrane-based processes. Reverse osmosis (RO) is a preferred membrane technology owing to process and pre- and posttreatment improvements that have significantly reduced energy requirements and cost. Further technical advances will require a deeper understanding of the fundamental science underlying RO. This includes determining the mechanism for water selectivity; elucidating the behavior of molecular water near polar and apolar surfaces, as well as the advantages and limitations of hydrophobic versus hydrophilic pores; learning the rules of selective water transport from nature; and designing synthetic analogs for selective water transport. Molecular dynamics simulations supporting experiments will play an important role in advancing these efforts. Finally, future improvements in RO are limited by inherent technical mass transfer limitations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-061114-123202
2016-06-07
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-061114-123202.html?itemId=/content/journals/10.1146/annurev-chembioeng-061114-123202&mimeType=html&fmt=ahah

Literature Cited

  1. 1. UN Dev. Progr 2006. Beyond scarcity: power, poverty and the global water crisis. Hum. Dev. Rep., UN Dev. Progr., New York [Google Scholar]
  2. 2. Natl. Acad. Eng 2014. NAE Grand Challenges for Engineering. Washington, DC: Natl. Acad. Eng http://www.engineeringchallenges.org/cms/8996.aspx [Google Scholar]
  3. Maddocks A, Luo T. 3.  2015. World Resources Institute Aqueduct Water Risk Atlas Washington, DC: World Res. Inst http://www.wri.org/resources/maps/aqueduct-water-risk-atlas [Google Scholar]
  4. Miller GW. 4.  2006. Integrated concepts in water reuse: managing global water needs. Desalination 187:65–75 [Google Scholar]
  5. Elimelech M, Phillip WA. 5.  2011. The future of seawater desalination: energy, technology, and the environment. Science 333:712–17 [Google Scholar]
  6. 6. Global Water Intell 2013. Industrial Desalination and Water Reuse: Ultrapure Water, Challenging Waste Streams and Improved Water Efficiency. Oxford, UK: Global Water Intell. [Google Scholar]
  7. Kurihara M, Hanakawa M. 7.  2013. Mega-ton Water System: Japanese national research and development project on seawater desalination and wastewater reclamation. Desalination 308:131–37 [Google Scholar]
  8. Ghaffour N. 8.  2009. The challenge of capacity-building strategies and perspectives for desalination for sustainable water use in MENA. Desalination Water Treat. 5:48–53 [Google Scholar]
  9. Ghaffour N, Missimer TM, Amy GL. 9.  2013. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207 [Google Scholar]
  10. Pankratz T. 10.  2008. MEDRC workshop on membrane technology used in desalination and wastewater treatment for reuse Muscat, Oman, March [Google Scholar]
  11. Stoughton RW, Lietzke MH. 11.  1965. Calculation of some thermodynamic properties of sea salt solutions at elevated temperatures from data on NaCI solutions. J. Chem. Eng. Data 10:254–60 [Google Scholar]
  12. Spiegler K, El-Sayed Y. 12.  2001. The energetics of desalination processes. Desalination 134:109–28 [Google Scholar]
  13. Song L, Hu J, Ong S, Ng W, Elimelech M, Wilf M. 13.  2003. Emergence of thermodynamic restriction and its implications for full-scale reverse osmosis processes. Desalination 155:213–28 [Google Scholar]
  14. Wilf M. 14.  1997. Design consequences of recent improvements in membrane performance. Desalination 113:157–63 [Google Scholar]
  15. Zhu A, Christofides PD, Cohen Y. 15.  2008. Effect of thermodynamic restriction on energy cost optimization of RO membrane water desalination. Ind. Eng. Chem. Res. 48:6010–21 [Google Scholar]
  16. Cohen-Tanugi D, McGovern RK, Dave SH, Lienhard JH, Grossman JC. 16.  2014. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7:1134–41 [Google Scholar]
  17. Zamani F, Chew JW, Akhondi E, Krantz WB, Fane AG. 17.  2015. Unsteady-state shear strategies to enhance mass-transfer for the implementation of ultrapermeable membranes in reverse osmosis: a review. Desalination 356:328–48 [Google Scholar]
  18. Zhu A, Rahardianto A, Christofides PD, Cohen Y. 18.  2010. Reverse osmosis desalination with high permeability membranes—cost optimization and research needs. Desalination Water Treat. 15:256–66 [Google Scholar]
  19. Dreizin Y, Tenne A, Hoffman D. 19.  2008. Integrating large scale seawater desalination plants within Israel's water supply system. Desalination 220:132–49 [Google Scholar]
  20. Al-Mashharawi SK, Ghaffour N, Al-Ghamdi M, Amy GL. 20.  2012. Evaluating the efficiency of different microfiltration and ultrafiltration membranes used as pretreatment for Red Sea water reverse osmosis desalination. Desalination Water Treat. 51:617–26 [Google Scholar]
  21. Voutchkov N. 21.  2004. Beach wells versus open surface intake. Water Wastewater Int. 19:22–23 [Google Scholar]
  22. Peters T, Pintó D. 22.  2010. Seawater intake and partial pre-treatment with Neodren—results from investigation and long-term operation. Desalination Water Treat. 24:117–22 [Google Scholar]
  23. Lattemann S, Kennedy M, Amy G. 23.  2010. Seawater desalination—a green technology?. J. Water Supply: Res. Technol.–AQUA 59:134–51 [Google Scholar]
  24. Rahmawati K, Ghaffour N, Aubry C, Amy GL. 24.  2012. Boron removal efficiency from Red Sea water using different SWRO/BWRO membranes. J. Membr. Sci. 423:522–29 [Google Scholar]
  25. Waly T, Kennedy MD, Witkamp GJ, Amy G, Schippers JC. 25.  2009. Will calcium carbonate really scale in seawater reverse osmosis?. Desalination Water Treat. 5:146–52 [Google Scholar]
  26. Lattemann S, Höpner T. 26.  2008. Environmental impact and impact assessment of seawater desalination. Desalination 220:1–15 [Google Scholar]
  27. Hoepner T, Lattemann S. 27.  2003. Chemical impacts from seawater desalination plants—a case study of the northern Red Sea. Desalination 152:133–40 [Google Scholar]
  28. Gacem Y, Taleb S, Ramdani A, Senadjki S, Ghaffour N. 28.  2012. Physical and chemical assessment of MSF distillate and SWRO product for drinking purpose. Desalination 290:107–14 [Google Scholar]
  29. Ghaffour N, Missimer TM, Amy GL. 29.  2013. Combined desalination, water reuse, and aquifer storage and recovery to meet water supply demands in the GCC/MENA region. Desalination Water Treat. 51:38–43 [Google Scholar]
  30. Cohen Y, Christofides PD, Rahardianto A, Bartman AR, Zhu A. 30.  et al. 2011. Apparatus, system and method for integrated filtration and reverse osmosis desalination US Patent No. 13/822,622 [Google Scholar]
  31. Rahardianto A, McCool BC, Cohen Y. 31.  2008. Reverse osmosis desalting of inland brackish water of high gypsum scaling propensity: kinetics and mitigation of membrane mineral scaling. Environ. Sci. Technol. 42:4292–97 [Google Scholar]
  32. Shih W-Y, Rahardianto A, Lee R-W, Cohen Y. 32.  2005. Morphometric characterization of calcium sulfate dihydrate (gypsum) scale on reverse osmosis membranes. J. Membr. Sci. 252:253–63 [Google Scholar]
  33. Humplik T, Lee J, O'Hern S, Fellman B, Baig M. 33.  et al. 2011. Nanostructured materials for water desalination. Nanotechnology 22:292001 [Google Scholar]
  34. AlMarzooqi FA, Al Ghaferi AA, Saadat I, Hilal N. 34.  2014. Application of capacitive deionisation in water desalination: a review. Desalination 342:3–15 [Google Scholar]
  35. Al-Shammiri M, Safar M. 35.  1999. Multi-effect distillation plants: state of the art. Desalination 126:45–59 [Google Scholar]
  36. Kalogirou SA. 36.  2005. Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci. 31:242–81 [Google Scholar]
  37. Semiat R. 37.  2000. Present and future. Water Int. 25:54–65 [Google Scholar]
  38. Faraday M. 38.  1833. Experimental researches in electricity. Third series. Philos. Trans. R. Soc. Lond. 123:23–54 [Google Scholar]
  39. Michels T. 39.  1993. Recent achievements of low temperature multiple effect desalination in the western areas of Abu Dhabi. UAE. Desalination 93:111–18 [Google Scholar]
  40. 40. Global Water Intell., Int. Desalination Assoc 2006–2007. IDA Desalination Yearbook. Water Desalination Rep., Global Water Intell., Int. Desalination Assoc., Topsfield, MA [Google Scholar]
  41. Al Mudaiheem A, Miyamura H. 41.  1985. Construction and commissioning of Al Jobail Phase II desalination plant. Desalination 55:1–11 [Google Scholar]
  42. Awerbuch L. 42.  2002. Vision for desalination—challenges and opportunities Presented at Int. Desalination Assoc. World Congr. Desalination Water Reuse, Manama, Bahrain [Google Scholar]
  43. Van der Bruggen B, Vandecasteele C. 43.  2002. Distillation versus membrane filtration: overview of process evolutions in seawater desalination. Desalination 143:207–18 [Google Scholar]
  44. Ophir A, Gendel A, Kronenberg G. 44.  1994. The LT-MED process for SW Cogen plants. Desalination Water Reuse 4:28–31 [Google Scholar]
  45. Buros OK. 45.  1980. The U.S.A.I.D. Desalination Manual. Topsfield, MA: Int. Desalination Environ. Assoc. [Google Scholar]
  46. Spiegler KS, Laird ADK. 46.  1980. Principles of Desalination New York: Academic, 2nd. ed. [Google Scholar]
  47. Khawaji AD, Kutubkhanah IK, Wie J-M. 47.  2008. Advances in seawater desalination technologies. Desalination 221:47–69 [Google Scholar]
  48. Talbot D. 48.  2015. Megascale desalination: the world's largest and cheapest reverse-osmosis desalination plant is up and running in Israel. MIT Technol. Rev. http://www.technologyreview.com/featuredstory/534996/megascale-desalination/ [Google Scholar]
  49. Al Ghamdi M, Hughes C, Kotake S. 49.  1987. The Makkah-Taif MSF desalination plant. Desalination 66:3–10 [Google Scholar]
  50. Al-Sofi MA-K, Al-Hussain MA, Al-Omran AA-A, Farran KM. 50.  1994. A full decade of operating experience on Al-Khobar-II multi-stage flash (MSF) evaporators (1982–1992). Desalination 96:313–23 [Google Scholar]
  51. Khawaji A, Wie J, Khan T. 51.  1997. Operating experience of the Royal Commission acid-dosed MSF seawater desalination plant Proc. IDA World Congr. Desalination Water Reuse, Madrid, Spain [Google Scholar]
  52. Khawaji AD, Wie J-M. 52.  1994. Potabilization of desalinated water at Madinat Yanbu Al-Sinaiyah. Desalination 98:135–46 [Google Scholar]
  53. Kirby H, Serovy G. 53.  1987. The Dubai E Power Generation and Desalination Station, ASME COGEN-TURBO International Symposium on Turbomachinery, Combined-Cycle and Cogeneration Presented at Int. Gas Turbine Inst., Anaheim, CA [Google Scholar]
  54. 54. World Health Organ 1979. Health effects of the removal of substances occurring naturally in drinking-water, with special reference to demineralized and desalinated water. Rep. Work. Group, March 20–23, 1978, Brussels [Google Scholar]
  55. Gabbrielli E. 55.  1981. A tailored process for remineralization and potabilization of desalinated water. Desalination 39:503–20 [Google Scholar]
  56. Nada N, Zahrani A, Ericsson B. 56.  1987. Experience on pre-and post-treatment from sea water desalination plants in Saudi Arabia. Desalination 66:303–18 [Google Scholar]
  57. Al-Rqobah H, Al-Munayyis AH. 57.  1989. A recarbonation process for treatment of distilled water produced by MSF plants in Kuwait. Desalination 73:295–312 [Google Scholar]
  58. Kutty P, Nomani A, Thankachan T. 58.  1991. Evaluation of water quality parameters in drinking water from SWCC MSF plants Presented at Int. Desalination Assoc. World Congr. Desalination Water Reuse, Washington, DC [Google Scholar]
  59. Darwish M. 59.  1995. Desalination process: a technical comparison Presented at Int. Desalination Assoc. World Congr. Desalination Water Sci., Abu Dhabi, United Arab Emirates [Google Scholar]
  60. Reahl ER. 60.  2006. Half a century of desalination with electrodialysis GE Water & Process Technol. Tech. Pap., Gen. Electr. Co., Trevose, PA [Google Scholar]
  61. Rubinstein I, Zaltzman B. 61.  2000. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 62:2238–51 [Google Scholar]
  62. Zaltzman B, Rubinstein I. 62.  2007. Electro-osmotic slip and electroconvective instability. J. Fluid Mech. 579:173–226 [Google Scholar]
  63. Porter M. 63.  1990. Handbook of Membrane Industrial Technology Park Ridge, NJ: Noyes [Google Scholar]
  64. Anderson MA, Cudero AL, Palma J. 64.  2010. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?. Electrochim. Acta 55:3845–56 [Google Scholar]
  65. Dion L. 65.  1906. Apparatus for treating liquids. US Patent No. 820,482.15 [Google Scholar]
  66. Arnold BB, Murphy GW. 66.  1961. Studies on the electrochemistry of carbon and chemically-modified carbon surfaces. J. Phys. Chem. 65:135–38 [Google Scholar]
  67. Caudle DD, Tucker JH, Cooper JL, Arnold BB, Papastamataki A. 67.  1966. Electrochemical Demineralization of Water with Carbon Electrodes Washington, DC: US Dep. Inter. [Google Scholar]
  68. Reid GW, Stevens A, Abichandani J, Townsend F, Al-Awady M. 68.  1968. Field Operation of a 20 Gallons Per Day Pilot Plant Unit for Electrochemical Desalination of Brackish Water. Washington, DC: US Dep. Inter. [Google Scholar]
  69. Johnson AM, Venolia W, Newman J, Wilbourne RG. 69.  1970. The Electrosorb Process for Desalting Water Washington, DC: US Dep. Inter. [Google Scholar]
  70. Oren Y, Soffer A. 70.  1983. Water desalting by means of electrochemical parametric pumping. J. Appl. Electrochem. 13:473–87 [Google Scholar]
  71. Oren Y, Soffer A. 71.  1983. Water desalting by means of electrochemical parametric pumping. II. Separation properties of a multistage column. J. Appl. Electrochem. 13:489–505 [Google Scholar]
  72. Farmer JC, Richardson JH, Fix DV, Thomson SL, May SC. 72.  1996. Desalination with carbon aerogel electrodes Lawrence Livermore Natl. Lab. Rep. No. UCRL-ID-125298, Livermore, CA [Google Scholar]
  73. 73. Filtr. Ind. Anal 2012. Municipal water treatment: Filtration and separation market worth US $4.5 bn. Filtr. Ind. Anal. 2012:23 [Google Scholar]
  74. Seo S-J, Jeon H, Lee JK, Kim G-Y, Park D. 74.  et al. 2010. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 44:2267–75 [Google Scholar]
  75. Jung S-M, Choi J-H, Kim J-H. 75.  2012. Application of capacitive deionization (CDI) technology to insulin purification process. Sep. Purif. Technol. 98:31–35 [Google Scholar]
  76. Yuan L, Yang X, Liang P, Wang L, Huang Z-H. 76.  et al. 2012. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresour. Technol. 110:735–38 [Google Scholar]
  77. Feng C, Hou C-H, Chen S, Yu C-P. 77.  2013. A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions. Chemosphere 91:623–28 [Google Scholar]
  78. Farmer J. 78.  1994. Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes US Patent No. 5425858 A [Google Scholar]
  79. Farmer J. 79.  1994. Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes US Patent No. 5954937 A [Google Scholar]
  80. Tran TD, Farmer JC, Murguia L. 80.  2001. Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes. US Patent No. 6,309,532 [Google Scholar]
  81. Welgemoed T, Schutte C. 81.  2005. Capacitive Deionization Technology™: an alternative desalination solution. Desalination 183:327–40 [Google Scholar]
  82. Hou C, Huang C, Hu C. 82.  2013. Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions. Int. J. Environ. Sci. Technol. 10:753–60 [Google Scholar]
  83. Frackowiak E, Béguin F. 83.  2001. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–50 [Google Scholar]
  84. Pröbstle H, Wiener M, Fricke J. 84.  2003. Carbon aerogels for electrochemical double layer capacitors. J. Porous Mater. 10:213–22 [Google Scholar]
  85. Lee J-B, Park K-K, Eum H-M, Lee C-W. 85.  2006. Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination 196:125–34 [Google Scholar]
  86. Li H, Gao Y, Pan L, Zhang Y, Chen Y, Sun Z. 86.  2008. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water Res. 42:4923–28 [Google Scholar]
  87. Li H, Pan L, Lu T, Zhan Y, Nie C, Sun Z. 87.  2011. A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. J. Electroanal. Chem. 653:40–44 [Google Scholar]
  88. Li L, Zou L, Song H, Morris G. 88.  2009. Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride. Carbon 47:775–81 [Google Scholar]
  89. Mossad M, Zou L. 89.  2012. A study of the capacitive deionisation performance under various operational conditions. J. Hazard. Mater. 213–14:491–97 [Google Scholar]
  90. Hou C-H, Huang C-Y. 90.  2013. A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination 314:124–29 [Google Scholar]
  91. Xu P, Drewes JE, Heil D, Wang G. 91.  2008. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res. 42:2605–17 [Google Scholar]
  92. Gabelich CJ, Tran TD, Suffet IM. 92.  2002. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ. Sci. Technol. 36:3010–19 [Google Scholar]
  93. Ying T-Y, Yang K-L, Yiacoumi S, Tsouris C. 93.  2002. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. J. Colloid Interface Sci. 250:18–27 [Google Scholar]
  94. Mossad M, Zou L. 94.  2013. Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts. J. Hazard. Mater.244–45387–93 [Google Scholar]
  95. Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM. 95.  2013. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58:1388–442 [Google Scholar]
  96. Wang G, Pan C, Wang L, Dong Q, Yu C. 96.  et al. 2012. Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochim. Acta 69:65–70 [Google Scholar]
  97. Zhao Y, Wang Y, Wang R, Wu Y, Xu S, Wang J. 97.  2013. Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Desalination 324:127–33 [Google Scholar]
  98. Turek M. 98.  2003. Cost effective electrodialytic seawater desalination. Desalination 153:371–76 [Google Scholar]
  99. Reid CE, Breton EJ. 99.  1959. Water and ion flow across cellulosic membranes. J. Appl. Polym. Sci. 1:133–43 [Google Scholar]
  100. Reid CE, Kuppers JR. 100.  1959. Physical characteristics of osmotic membranes of organic polymers. J. Appl. Polym. Sci. 2:264–72 [Google Scholar]
  101. Reid CE. 101.  1966. Principles of reverse osmosis. Desalination by Reverse Osmosis U Merten 1–14 Cambridge, MA: MIT Press [Google Scholar]
  102. Loeb S, Sourirajan S. 102.  1962. Seawater demineralization by means of an osmotic membrane. Saline Water Conversion II, Advances in Chemistry Series RF Gould 117–32 Washington, DC: Am. Chem. Soc. [Google Scholar]
  103. Cadotte JE. 103.  1985. Evolution of composite reverse osmosis membranes. Materials Science of Synthetic Membranes, ACS Symposium Series DR Lloyd 273–94 Washington, DC: Am. Chem. Soc. [Google Scholar]
  104. Strathmann H, Kock K, Amar P, Baker RW. 104.  1975. The formation mechanism of assymetric membranes. Desalination 16:2179–203 [Google Scholar]
  105. Mahon HI. 105.  1963. Proceedings of desalination research conference Publ. No. 942, p. 345, Natl. Acad. Sci., Washington, DC [Google Scholar]
  106. Kleinstreuer C, Belfort G. 106.  1984. Mathematical modelling of fluid flow and solute distribution in pressure-driven membrane modules. Synthetic Membrane Processes: Fundamentals and Water Applications G Belfort 131–90 New York: Academic [Google Scholar]
  107. Glueckauf E. 107.  1965. On the mechanism of osmotic desalting with porous membranes Presented at First Int. Symp. Water Desalination, Washington, DC [Google Scholar]
  108. Scatchard G. 108.  1964. The effect of dielectric constant difference on hyperfiltration of salt solutions. J. Phys. Chem. 68:1056–61 [Google Scholar]
  109. Sourirajan S, Matsuura T. 109.  1977. Physicochemical criteria for reverse osmosis preparations. Reverse Osmosis and Synthetic Membranes: Theory, Technology, Engineering S Sourirajan. Ottawa: Natl. Res. Counc. Can. [Google Scholar]
  110. Belfort G, Sinai N. 110.  1980. Relaxation studies of adsorbed water on porous glass: varying temperature and pore size at constant coverages. Water in Polymers, ACS Symposium Series SP Rowland 323–46 Washington, DC: Am. Chem. Soc. [Google Scholar]
  111. Belfort G, Sinai N. 111.  1980. Relaxation studies of adsorbed water in porous glass Presented at Water in Polymers: 178th Meet. Am. Chem. Soc., Washington, DC [Google Scholar]
  112. Luck WA. 112.  1976. Water in biological systems. Top. Curr. Chem. 64:114–80 [Google Scholar]
  113. Belfort G, Scherfig J, Seevers DO. 113.  1974. Nuclear magnetic resonance relaxation studies of adsorbed water on porous glass of varying pore size. J. Colloid Interface Sci. 47:106–16 [Google Scholar]
  114. Belfort G. 114.  1972. Nuclear magnetic resonance in a porous glass desalination membrane as a function of external salt concentration. Nature 237:60–61 [Google Scholar]
  115. Almagor E, Belfort G. 115.  1978. Relaxation studies of adsorbed water on porous glass: I. Varying coverages and pore size at constant temperature. J. Colloid Interface Sci. 66:146–52 [Google Scholar]
  116. Ballou EV, Wydeven T, Leban MI. 116.  1971. Solute rejection by porous glass membranes. I. Hyperfiltration of sodium chloride and urea feed solutions. Environ. Sci. Technol. 5:1032–38 [Google Scholar]
  117. Peter C, Hummer G. 117.  2005. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophys. J. 89:2222–34 [Google Scholar]
  118. Schnabel R, Holzel A, Gotter K. 118.  1988. Porous glass membrane tubes US Patent No. 4,780,369 [Google Scholar]
  119. Schnabel R, Holzel A, Gotter K. 119.  1977. Process for production of porous glass membrane tubes. US Patent No. 4,042,359 [Google Scholar]
  120. Surwade SP, Smirnov SN, Vlassiouk IV, Unocic RR, Veith GM. 120.  et al. 2015. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10:459–64 [Google Scholar]
  121. Striolo A. 121.  2006. The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett. 6:633–39 [Google Scholar]
  122. Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB. 122.  et al. 2006. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–37 [Google Scholar]
  123. Paul DR. 123.  2012. Creating new types of carbon-based membranes. Science 335:413–14 [Google Scholar]
  124. Nair R, Wu H, Jayaram P, Grigorieva I, Geim A. 124.  2012. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335:442–44 [Google Scholar]
  125. Tajkhorshid E, Nollert P, Jensen , Miercke LJW, O'Connell J. 125.  et al. 2002. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–30 [Google Scholar]
  126. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP. 126.  et al. 2002. Aquaporin water channels—from atomic structure to clinical medicine. J. Physiol. 542:3–16 [Google Scholar]
  127. Yang L, Garde S. 127.  2007. Modeling the selective partitioning of cations into negatively charged nanopores in water. J. Chem. Phys. 126:084706 [Google Scholar]
  128. Chandler D. 128.  2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:640–47 [Google Scholar]
  129. Godawat R, Jamadagni SN, Garde S. 129.  2009. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. PNAS 106:15119–24 [Google Scholar]
  130. Acharya H, Vembanur S, Jamadagni SN, Garde S. 130.  2010. Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins. Faraday Discuss. 146:353–65 [Google Scholar]
  131. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. 131.  2001. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414:43–48 [Google Scholar]
  132. Miyazawa A, Fujiyoshi Y, Unwin N. 132.  2003. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–55 [Google Scholar]
  133. Wikström M, Verkhovsky MI, Hummer G. 133.  2003. Water-gated mechanism of proton translocation by cytochrome c oxidase. Biochim. Biophys. Acta Bioenerg. 1604:61–65 [Google Scholar]
  134. Wikström M. 134.  1998. Proton translocation by bacteriorhodopsin and heme-copper oxidases. Curr. Opin. Struct. Biol. 8:480–88 [Google Scholar]
  135. Beckstein O, Biggin PC, Bond P, Bright JN, Domene C. 135.  et al. 2003. Ion channel gating: insights via molecular simulations. FEBS Lett. 555:85–90 [Google Scholar]
  136. Anishkin A, Sukharev S. 136.  2004. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys. J. 86:2883–95 [Google Scholar]
  137. Parsegian A. 137.  1969. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221:844–46 [Google Scholar]
  138. Zhao Y, Qiu C, Li X, Vararattanavech A, Shen W. 138.  et al. 2012. Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Membr. Sci. 423:422–28 [Google Scholar]
  139. Chui JKW, Fyles TM. 139.  2012. Ionic conductance of synthetic channels: analysis, lessons, and recommendations. Chem. Soc. Rev. 41:148–75 [Google Scholar]
  140. Le Duc Y, Michau M, Gilles A, Gence V, Legrand Y-M. 140.  et al. 2011. Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 50:11366–72 [Google Scholar]
  141. Davis JT, Spada GP. 141.  2007. Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem. Soc. Rev. 36:296–313 [Google Scholar]
  142. Barboiu M, Gilles A. 142.  2013. From natural to bioassisted and biomimetic artificial water channel systems. Acc. Chem. Res. 46:2814–23 [Google Scholar]
  143. Barboiu M. 143.  2012. Artificial water channels. Angew. Chem. Int. Ed. 51:11674–76 [Google Scholar]
  144. Majumder M, Chopra N, Andrews R, Hinds BJ. 144.  2005. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438:44 [Google Scholar]
  145. Yang HY, Han ZJ, Yu SF, Pey KL, Ostrikov K, Karnik R. 145.  2013. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun.2220 [Google Scholar]
  146. Majumder M, Corry B. 146.  2011. Anomalous decline of water transport in covalently modified carbon nanotube membranes. Chem. Commun. 47:7683–85 [Google Scholar]
  147. Van Hooijdonk E, Bittencourt C, Snyders R, Colomer J-F. 147.  2013. Functionalization of vertically aligned carbon nanotubes. Beilstein J. Nanotechnol. 4:129–52 [Google Scholar]
  148. Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ. 148.  2014. Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109 [Google Scholar]
  149. Mauter MS, Elimelech M. 149.  2008. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42:5843–59 [Google Scholar]
  150. Darmanin T, de Givenchy ET, Amigoni S, Guittard F. 150.  2013. Superhydrophobic surfaces by electrochemical processes. Adv. Mater. 25:1378–94 [Google Scholar]
  151. Darmanin T, Guittard F. 151.  2014. Wettability of conducting polymers: from superhydrophilicity to superoleophobicity. Prog. Polym. Sci. 39:656–82 [Google Scholar]
  152. Karan S, Samitsu S, Peng X, Kurashima K, Ichinose I. 152.  2012. Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets. Science 335:444–47 [Google Scholar]
  153. Robertson J. 153.  2002. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 37:129–281 [Google Scholar]
  154. Koenig SP, Wang L, Pellegrino J, Bunch JS. 154.  2012. Selective molecular sieving through porous graphene. Nat. Nano 7:728–32 [Google Scholar]
  155. Garaj S, Liu S, Golovchenko JA, Branton D. 155.  2013. Molecule-hugging graphene nanopores. PNAS 110:12192–96 [Google Scholar]
  156. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N. 156.  et al. 2010. DNA translocation through graphene nanopores. Nano Lett. 10:2915–21 [Google Scholar]
  157. O'Hern SC, Boutilier MSH, Idrobo J-C, Song Y, Kong J. 157.  et al. 2014. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14:1234–41 [Google Scholar]
  158. Hummers WS, Offeman RE. 158.  1958. Preparation of graphitic oxide. J. Am. Chem. Soc. 80:1339 [Google Scholar]
  159. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB. 159.  et al. 2007. Preparation and characterization of graphene oxide paper. Nature 448:457–60 [Google Scholar]
  160. Eda G, Chhowalla M. 160.  2010. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22:2392–415 [Google Scholar]
  161. Burress JW, Gadipelli S, Ford J, Simmons JM, Zhou W, Yildirim T. 161.  2010. Graphene oxide framework materials: theoretical predictions and experimental results. Angew. Chem. Int. Ed. Engl. 49:8902–4 [Google Scholar]
  162. Nicolai A, Sumpter BG, Meunier V. 162.  2014. Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 16:8646–54 [Google Scholar]
  163. Mi B. 163.  2014. Graphene oxide membranes for ionic and molecular sieving. Science 343:740–42 [Google Scholar]
  164. Jou J-D, Yoshida W, Cohen Y. 164.  1999. A novel ceramic-supported polymer membrane for pervaporation of dilute volatile organic compounds. J. Membr. Sci. 162:269–84 [Google Scholar]
  165. Yoshida W, Cohen Y. 165.  2003. Ceramic-supported polymer membranes for pervaporation of binary organic/organic mixtures. J. Membr. Sci. 213:145–57 [Google Scholar]
  166. Grimaldi J, Imbrogno J, Kilduff JE, Belfort G. 166.  2015. New class of synthetic membranes: organophilic pervaporation brushes for organics recovery. ACS Chem. Mater. 27:4142–48 [Google Scholar]
  167. Campbell J, Szekely G, Davies RP, Braddock DC, Livingston AG. 167.  2014. Fabrication of hybrid polymer/metal organic framework membranes: mixed matrix membranes versus in situ growth. J. Mater. Chem. A 2:9260–71 [Google Scholar]
  168. Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG. 168.  2014. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114:10735–806 [Google Scholar]
  169. Mahlab D, Ben Yosef N, Belfort G. 169.  1980. Interferometric measurement of concentration polarization profile for dissolved species in unstirred batch hyperfiltration (reverse osmosis). Chem. Eng. Commun. 6:225–43 [Google Scholar]
  170. Mahlab D, Ben Yosef N, Belfort G. 170.  1981. Intrinsic membrane compaction and aqueous solute studies of hyperfiltration (reverse-osmosis) membranes using interferometry. Synthetic Membranes AF Turbak 147–58 Washington, DC: Am. Chem. Soc. [Google Scholar]
  171. Hermans P, Bredée H. 171.  1936. Principles of the mathematical treatment of constant-pressure filtration. J. Soc. Chem. Ind. 55:1–4 [Google Scholar]
  172. Palacio L, Ho CC, Zydney AL. 172.  2002. Application of a pore-blockage–cake-filtration model to protein fouling during microfiltration. Biotechnol. Bioeng. 79:260–70 [Google Scholar]
  173. Kilduff JE, Mattaraj S, Sensibaugh J, Pieracci JP, Yuan Y, Belfort G. 173.  2002. Modeling flux decline during nanofiltration of NOM with poly (arylsulfone) membranes modified using UV-assisted graft polymerization. Environ. Eng. Sci. 19:477–95 [Google Scholar]
  174. Baruah GL, Venkiteshwaran A, Belfort G. 174.  2005. Global model for optimizing crossflow microfiltration and ultrafiltration processes: a new predictive and design tool. Biotechnol. Prog. 21:1013–25 [Google Scholar]
  175. Kim SJ, Ko SH, Kang KH, Han J. 175.  2010. Direct seawater desalination by ion concentration polarization. Nat. Nano 5:297–301 [Google Scholar]
  176. Shaffer DL, Werber JR, Jaramillo H, Lin S, Elimelech M. 176.  2015. Forward osmosis: Where are we now?. Desalination 356:271–84 [Google Scholar]
  177. Deshmukh A, Yip NY, Lin S, Elimelech M. 177.  2015. Desalination by forward osmosis: identifying performance limiting parameters through module-scale modeling. J. Membr. Sci. 491:159–67 [Google Scholar]
  178. Fane AG, Wang R, Hu MX. 178.  2015. Synthetic membranes for water purification: status and future. Angew. Chem. Int. Ed. 54:3368–86 [Google Scholar]
  179. Mani A, Bazant MZ. 179.  2011. Deionization shocks in microstructures. Phys. Rev. E 84:061504 [Google Scholar]
  180. Mi B, Elimelech M. 180.  2008. Chemical and physical aspects of organic fouling of forward osmosis membranes. J. Membr. Sci. 320:292–302 [Google Scholar]
  181. Achilli A, Cath TY, Marchand EA, Childress AE. 181.  2009. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination 239:10–21 [Google Scholar]
  182. Elimelech M, Phillip WA. 182.  2011. The future of seawater desalination: energy, technology, and the environment. Science 333:712–17 [Google Scholar]
  183. Yoo WC, Stoeger JA, Lee P-S, Tsapatsis M, Stein A. 183.  2010. High-performance randomly oriented zeolite membranes using brittle seeds and rapid thermal processing. Angew. Chem. Int. Ed. 49:8699–703 [Google Scholar]
  184. Yang L, Garde S. 184.  2007. Modeling the selective partitioning of cations into negatively charged nanopores in water. J. Chem. Phys. 126:084706 [Google Scholar]
  185. Nicolai A, Sumpter BG, Meunier V. 185.  2014. Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 16:8646–54 [Google Scholar]
  186. Kilduff JE, Mattaraj S, Sensibaugh J, Pieracci JP, Yuan Y, Belfort G. 186.  2002. Modeling flux decline during nanofiltration of NOM with poly(arylsulfone) membranes modified using UV-assisted graft polymerization. Environ. Eng. Sci. 19:6477–95 [Google Scholar]
  187. Belfort G, Weigand RJ, Mahar JT. 187.  1985. Particulate membrane fouling and recent developments in fluid mechanics of dilute suspensions. Reverse Osmosis and Ultrafiltration S Sourirajan, T Matsuura 383–401 Washington, DC: Am. Chem. Soc. [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-061114-123202
Loading
/content/journals/10.1146/annurev-chembioeng-061114-123202
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error