Block copolymer self-assembly provides a platform for fabricating dense, ordered nanostructures by encoding information in the chemical architecture of multicomponent macromolecules. Depending on the volume fraction of the components and chain topology, these macromolecules form a variety of spatially periodic microphases in thermodynamic equilibrium. The kinetics of self-assembly, however, often results in initial morphologies with defects, and the subsequent ordering is protracted. Different strategies have been devised to direct the self-assembly of copolymer materials by external fields to align and perfect the self-assembled nanostructures. Understanding and controlling the thermodynamics of defects, their response to external fields, and their dynamics is important because applications in microelectronics either require extremely low defect densities or aim at generating specific defects at predetermined locations to fabricate irregular device-oriented structures for integrated circuits. In this review, we discuss defect morphologies of block copolymers in the bulk and thin films, highlighting () analogies to and differences from defects in other crystalline materials, () the stability of defects and their dynamics, and () the influence of external fields.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Bates FS, Fredrickson GH. 1.  1990. Block copolymer thermodynamics—theory and experiment. Annu. Rev. Phys. Chem. 41:525–57 [Google Scholar]
  2. Park C, Yoon J, Thomas EL. 2.  2003. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44:6725–60 [Google Scholar]
  3. Segalman RA. 3.  2005. Patterning with block copolymer thin films. Mater. Sci. Eng. R 48:191–226 [Google Scholar]
  4. Darling SB. 4.  2007. Directing the self-assembly of block copolymers. Prog. Polym. Sci. 32:1152–204 [Google Scholar]
  5. Hamley IW. 5.  2009. Ordering in thin films of block copolymers: fundamentals to potential applications. Prog. Polym. Sci. 34:1161–210 [Google Scholar]
  6. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH. 6.  2012. Multiblock polymers: Panacea or Pandora's box?. Science 336:434–40 [Google Scholar]
  7. Matsen MW, Schick M. 7.  1994. Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett. 72:2660–63 [Google Scholar]
  8. Tyler CA, Morse DC. 8.  2005. Orthorhombic Fddd network in triblock and diblock copolymer melts. Phys. Rev. Lett. 94:208302 [Google Scholar]
  9. Fredrickson GH, Helfand E. 9.  1987. Fluctuation effects in the theory of microphase separation in block copolymers. J. Chem. Phys. 87:697–705 [Google Scholar]
  10. Nagpal U, Müller M, Nealey PF, de Pablo JJ. 10.  2012. Free energy of defects in ordered assemblies of block copolymer domains. ACS Macro Lett. 1:418–22 [Google Scholar]
  11. Kim HC, Park SM, Hinsberg WD. 11.  2010. Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem. Rev. 110:146–77 [Google Scholar]
  12. Marencic AP, Adamson DH, Chaikin PM, Register RA. 12.  2010. Shear alignment and realignment of sphere-forming and cylinder-forming block copolymer thin films. Phys. Rev. E 81:011503 [Google Scholar]
  13. Herr DJC. 13.  2011. Directed block copolymer self-assembly for nanoelectronics fabrication. J. Mater. Res. 26:122–39 [Google Scholar]
  14. Koo K, Ahn H, Kim SW, Ryu DY, Russell TP. 14.  2013. Directed self-assembly of block copolymers in the extreme: guiding microdomains from the small to the large. Soft Matter 9:9059–71 [Google Scholar]
  15. Bates CM, Maher MJ, Janes DW, Ellison CJ, Willson CG. 15.  2014. Block copolymer lithography. Macromolecules 47:2–12 [Google Scholar]
  16. Hu H, Gopinadhan M, Osuji CO. 16.  2014. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 10:3867–89 [Google Scholar]
  17. Chen Z-R, Kornfield JA, Smith SD, Grothaus JT, Satkowski MM. 17.  1997. Pathways to macroscale order in nanostructured block copolymers. Science 277:1248–53 [Google Scholar]
  18. Ren SR, Hamley IW, Teixeira PIC, Olmsted PD. 18.  2001. Cell dynamics simulations of shear-induced alignment and defect annihilation in stripe patterns formed by block copolymers. Phys. Rev. E 63:041503 [Google Scholar]
  19. Angelescu DE, Waller JH, Adamson DH, Deshpande P, Chou SY. 19.  et al. 2004. Macroscopic orientation of block copolymer cylinders in single-layer films by shearing. Adv. Mater. 16:1736–40 [Google Scholar]
  20. Angelescu DE, Waller JH, Register RA, Chaikin PM. 20.  2005. Shear-induced alignment in thin films of spherical nanodomains. Adv. Mater. 17:1878–81 [Google Scholar]
  21. Luo KF, Yang YL. 21.  2004. Orientational phase transitions in hexagonal cylinder phase and kinetic pathways of lamellar phase to hexagonal phase transition of asymmetric diblock copolymers under steady shear flow. Polymer 19:6745–51 [Google Scholar]
  22. Arya G, Rottler J, Panagiotopoulos AZ, Srolovitz DJ, Chaikin PM. 22.  2005. Shear ordering in thin films of spherical block copolymer. Langmuir 21:11518–27 [Google Scholar]
  23. Wu MW, Register RA, Chaikin PM. 23.  2006. Shear alignment of sphere-morphology block copolymer thin films with viscous fluid flow. Phys. Rev. E 74:040801 [Google Scholar]
  24. Rottler J, Srolovitz DJ. 24.  2007. Mechanism of shear-induced alignment in bilayer thin films of spherical particles. Phys. Rev. Lett. 98:175503 [Google Scholar]
  25. Marencic AP, Wu MW, Register RA, Chaikin PM. 25.  2007. Orientational order in sphere-forming block copolymer thin films aligned under shear. Macromolecules 40:7299–305 [Google Scholar]
  26. Pujari S, Keaton MA, Chaikin PM, Register RA. 26.  2012. Alignment of perpendicular lamellae in block copolymer thin films by shearing. Soft Matter 8:5358–63 [Google Scholar]
  27. Sakurai S. 27.  2008. Progress in control of microdomain orientation in block copolymers—efficiencies of various external fields. Polymer 81:2781–96 [Google Scholar]
  28. Amundson K, Helfand E, Quan X, Hudson SD, Smith SD. 28.  1994. Alignment of lamellar block copolymer microstructure in an electric field. 2. Mechanisms of alignment. Macromolecules 27:6559–70 [Google Scholar]
  29. Morkved TL, Lu M, Urbas AM, Ehrichs EE, Jaeger HM. 29.  et al. 1996. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273:931–33 [Google Scholar]
  30. Thurn-Albrecht T, DeRouchey J, Russell TP, Jaeger HM. 30.  2000. Overcoming interfacial interactions with electric fields. Macromolecules 33:3250–53 [Google Scholar]
  31. Böker A, Elbs H, Hänsel H, Knoll A, Ludwigs S. 31.  et al. 2002. Microscopic mechanisms of electric-field-induced alignment of block copolymer microdomains. Phys. Rev. Lett. 89:135502 [Google Scholar]
  32. Zvelindovsky AV, Sevink GJA. 32.  2003. Comment on “Microscopic mechanisms of electric-field-induced alignment of block copolymer microdomains.”. Phys. Rev. Lett. 90:049601 [Google Scholar]
  33. Olszowka V, Kuntermann V, Böker A. 33.  2008. Control of orientational order in block copolymer thin films by electric fields: a combinatorial approach. Macromolecules 41:5515–18 [Google Scholar]
  34. Pinna M, Schreier L, Zvelindovsky AV. 34.  2008. Mechanisms of electric-field-induced alignment of block copolymer lamellae. Soft Matter 5:970–73 [Google Scholar]
  35. Zhang JL, Yu XH, Yang P, Peng J, Luo C. 35.  et al. 2010. Microphase separation of block copolymer thin films. Macromol. Rapid Commun. 31:591–608 [Google Scholar]
  36. Liedel C, Hund M, Olszowka V, Böker A. 36.  2012. On the alignment of a cylindrical block copolymer: a time-resolved and 3-dimensional SFM study. Soft Matter 8:995–1002 [Google Scholar]
  37. Ruppel M, Pester CW, Langner KM, GJA Sevink, Schoberth HG. 37.  et al. 2013. Electric field induced selective disordering in lamellar block copolymers. ACS Nano 7:3854–67 [Google Scholar]
  38. Welling U, Müller M, Shaley H, Tsori Y. 38.  2014. Block copolymer ordering in cylindrical capacitors. Macromolecules 47:1850–64 [Google Scholar]
  39. Kim SO, Solak HH, Stoykovich MP, Ferrier NJ, de Pablo JJ, Nealey PF. 39.  2003. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424:411–14 [Google Scholar]
  40. Segalman RA, Yokoyama H, Kramer EJ. 40.  2001. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13:1152–55 [Google Scholar]
  41. Bita I, Yang JKW, Jung YS, Ross CA, Thomas EL, Berggren KK. 41.  2008. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 321:939–43 [Google Scholar]
  42. Ruiz R, Kang HM, Detcheverry FA, Dobisz E, Kercher DS. 42.  et al. 2008. Density multiplication and improved lithography by directed block copolymer assembly. Science 321:936–39 [Google Scholar]
  43. Cheng JY, Rettner CT, Sanders DP, Kim HC, Hinsberg WD. 43.  2008. Dense self-assembly on sparse chemical patterns: rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater. 20:3155–58 [Google Scholar]
  44. Liu CC, Ramírez-Hernández A, Han E, Craig GSW, Tada Y. 44.  et al. 2013. Chemical patterns for directed self-assembly of lamellae-forming block copolymers with density multiplication of features. Macromolecules 46:1415–24 [Google Scholar]
  45. Tada Y, Akasaka S, Takenaka M, Yoshida H, Ruiz R. 45.  et al. 2009. Nine-fold density muliplication of hcp lattice pattern by directed self-assembly of block copolymer. Polymer 50:4250–56 [Google Scholar]
  46. Stoykovich MP, Müller M, Kim SO, Solak HH, Edwards EW. 46.  et al. 2005. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308:1442–46 [Google Scholar]
  47. Stoykovich MP, Kang H, Daoulas KCh, Liu G, Liu C-C. 47.  et al. 2007. Directed self-assembly of block copolymers for nanolithography: fabrication of isolated features and essential integrated circuit geometries. ACS Nano 1:168–75 [Google Scholar]
  48. Yang JKW, Jung YS, Chang J-B, Mickiwicz RA, Alexander-Katz A. 48.  et al. 2010. Complex self-assembled patterns using sparse commensurate templates with locally varying motifs. Nat. Nanotechnol. 5:256–60 [Google Scholar]
  49. Mickiewicz RA, Yang JKW, Hannon AF, Jung Y-S, Alexander-Katz A. 49.  et al. 2010. Enhancing the potential of block copolymer lithography with polymer self-consistent field theory simulations. Macromolecules 43:8290–95 [Google Scholar]
  50. Chang J-B, Son JG, Hannon AF, Alexander-Katz A, Ross CA, Berggren KK. 50.  2012. Aligned sub-10-nm block copolymer patterns templated by post arrays. ACS Nano 6:2071–77 [Google Scholar]
  51. Chang JB, Choi HK, Hannon AF, Alexander-Katz A, Ross CA. 51.  2014. Design rules for self-assembled block copolymer patterns using tiled templates. Nat. Commun. 5:3305 [Google Scholar]
  52. Tavakkoli KG A, Gotrick KW, Hannon AF, Alexander-Katz A, Ross CA, Berggren KK. 52.  2012. Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science 336:1294–98 [Google Scholar]
  53. Hannon AF, Gotrik KW, Ross CA, Alexander-Katz A. 53.  2013. Inverse design of topographical templates for directed self-assembly of block copolymers. ACS Macro Lett. 2:251–55 [Google Scholar]
  54. Qin J, Khaira GS, Su Y, Garner GP, Miskin M. 54.  et al. 2013. Evolutionary pattern design for copolymer directed self-assembly. Soft Matter 9:11467–72 [Google Scholar]
  55. Zhang L, Wang L, Lin J. 55.  2014. Harnessing anisotropic nanoposts to enhance long-range orientation order of directed self-assembly nanostructures via large-cell simulations. ACS Macro Lett. 3:712–16 [Google Scholar]
  56. Gennes PGD. 56.  1969. The Physics of Liquid Crystals Oxford: Clarendon [Google Scholar]
  57. Chaikin PM, Lubensky TC. 57.  1995. Principles of Condensed Matter Physics Cambridge: Cambridge Univ. Press [Google Scholar]
  58. Hammond MR, Sides SW, Fredrickson GH, Kramer EJ. 58.  2003. Adjustment of block copolymer nanodomain sizes at lattice defect sites. Macromolecules 36:8712–16 [Google Scholar]
  59. Tsarkova L, Horvat A, Krausch G, Zvelindovsky AV, Sevink GJA. 59.  et al. 2006. Defect evolution in block copolymer thin film via temporal phase transitions. Langmuir 22:8089–95 [Google Scholar]
  60. Horvat A, Sevink GJA, Zvelindovsky AV, Krekhov A, Tsarkova L. 60.  2008. Specific features of defect structure and dynamics in the cylinder phase of block copolymers. ACS Nano 2:1143–52 [Google Scholar]
  61. Campbell IP, Lau GJ, Feaver JL, Stoykovich MP. 61.  2012. Network connectivity and long-range continuity of lamellar morphologies in block copolymer thin films. Macromolecules 45:1587–94 [Google Scholar]
  62. Ji S, Nagpal U, Liu G, Delcambre SP, Müller M. 62.  et al. 2012. Directed assembly of non-equilibrium ABA triblock copolymer morphologies on nanopatterned substrates. ACS Nano 6:5440–48 [Google Scholar]
  63. Li WH, Nealey PF, de Pablo JJ, Müller M. 63.  2014. Defect removal in the course of directed self-assembly is facilitated in the vicinity of the order-disorder transition. Phys. Rev. Lett. 113:168301 [Google Scholar]
  64. Hahm J, Lopes WA, Jaeger HM, Sibener SJ. 64.  1998. Defect evolution in ultrathin films of polystyrene-block-polymethylmethacrylate diblock copolymers observed by atomic force microscropy. J. Chem. Phys. 109:10111–14 [Google Scholar]
  65. Hahm J, Sibener SJ. 65.  2000. Cylinder alignment in annular structures of microsphere-separated polystyrene-b-poly(methylmethacrylate). Langmuir 16:4766–69 [Google Scholar]
  66. Hahm J, Sibener SJ. 66.  2001. Time-resolved atomic force microscopy imaging studies of asymmetric PS-b-PMMA ultrathin films: dislocation and disclination transformations, defect mobility, and evolution of nanoscale morphology. J. Chem. Phys. 114:4730–40 [Google Scholar]
  67. Kim SO, Kim BH, Kim K, Koo CM, Stoykovich MP. 67.  et al. 2006. Defect structure in thin films of a lamellar block copolymer self-assembled on neutral homogeneous and chemically nanopatterned surfaces. Macromolecules 39:5466–70 [Google Scholar]
  68. Kim BH, Lee HM, Lee J-H, Son S-W, Jeong S-J. 68.  et al. 2009. Spontaneous lamellar alignment in thickness-modulated block copolymer films. Adv. Funct. Mater. 19:2584–91 [Google Scholar]
  69. Campbell IP, He C, Stoykovich MP. 69.  2013. Topologically distinct lamellar block copolymer morphologies formed by solvent and thermal annealing. ACS Macro Lett. 2:918–23 [Google Scholar]
  70. Campbell IP, Hirokawa S, Stoykovich MP. 70.  2013. Processing approaches for the defect engineering of lamellar-forming block copolymers in thin films. Macromolecules 46:9599–608 [Google Scholar]
  71. Mansky P, Russell TP, Hawker CJ, Mays J, Cook DC, Satija SK. 71.  1997. Interfacial segregation in disordered block copolymers: effect of tunable surface potentials. Phys. Rev. Lett. 79:237–40 [Google Scholar]
  72. Peters RD, Yang XM, Kim TK, Sohn BH, Nealey PF. 72.  2000. Using self-assembled monolayers exposed to X-rays to control the wetting behavior of thin films of diblock copolymers. Langmuir 16:4625–31 [Google Scholar]
  73. Ruiz R, Sandstrom RL, Black CT. 73.  2007. Induced orientational order in symmetric diblock copolymer thin films. Adv. Mater. 19:587–91 [Google Scholar]
  74. Tong Q, Sibener SJ. 74.  2013. Visualization of individual defect mobility and annihilation within cylinder-forming diblock copolymer thin films on nanopatterned substrates. Macromolecules 46:8538–44 [Google Scholar]
  75. Hammond MR, Cochran E, Fredrickson GH, Kramer EJ. 75.  2005. Temperature dependence of order, disorder, and defects in laterally confined diblock copolymer cylinder monolayers. Macromolecules 38:6575–85 [Google Scholar]
  76. Mishra V, Fredrickson GH, Kramer EJ. 76.  2012. Effect of film thickness and domain spacing on the defect densities in directed self-assembly of cylindrical morphology block copolymers. ACS Nano 6:2629–41 [Google Scholar]
  77. Toner J, Nelson DR. 77.  1981. Smectic, cholesteric, and Rayleigh-Bénard order in two dimensions. Phys. Rev. B 23:316–34 [Google Scholar]
  78. Matsen MW. 78.  2000. Equilibrium behavior of asymmetric ABA triblock copolymer melts. J. Chem. Phys. 113:5539–44 [Google Scholar]
  79. Lipowsky R, Döereiner H-G, Hiergeist C, Indrani V. 79.  1995. Membrane curvature induced by polymers and colloids. Physica A 249:536–43 [Google Scholar]
  80. Müller M, Gompper G. 80.  2002. Elastic properties of polymer interfaces: aggregation of pure diblock, mixed diblock, and triblock copolymers. Phys. Rev. E 66:041805 [Google Scholar]
  81. Li RR, Dapkus PD, Thompson ME, Jeong WG, Harrison C. 81.  et al. 2000. Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography. Appl. Phys. Lett. 76:1689–91 [Google Scholar]
  82. Park M, Chaikin PM, Register RA, Adamson DH. 82.  2001. Large area dense nanoscale patterning of arbitrary surfaces. Appl. Phys. Lett. 79:257–59 [Google Scholar]
  83. Asakawa K, Hiraoka T, Hieda H, Sakurai M, Kamata Y, Naito K. 83.  2002. Nano-patterning for patterned media using block copolymer. J. Photopolym. Sci. Technol. 15:465–70 [Google Scholar]
  84. Cheng JY, Ross CA, Thomas EL, Smith HI, Vansco GJ. 84.  2002. Fabrication of nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett. 81:3657–59 [Google Scholar]
  85. Segalman RA, Hexemer A, Kramer EJ. 85.  2003. Edge effects on the order and freezing of a 2D array of block copolymer spheres. Phys. Rev. Lett. 91:3272–88 [Google Scholar]
  86. Segalman RA, Hexemer A, Hayward RC, Kramer EJ. 86.  2003. Ordering and melting of block copolymer spherical domains in 2 and 3 dimensions. Macromolecules 36:3272–88 [Google Scholar]
  87. Segalman RA, Hexemer A, Kramer EJ. 87.  2003. Effects of lateral confinement on order in spherical domain block copolymer thin films. Macromolecules 36:6831–39 [Google Scholar]
  88. Harrison C, Angelescu DE, Trawick M, Cheng Z, Huse DA. 88.  et al. 2004. Pattern coarsening in a 2D hexagonal system. Europhys. Lett. 67:800–6 [Google Scholar]
  89. Vega DA, Harrison CK, Angelescu DE, Trawick ML, Huse DA. 89.  et al. 2005. Ordering mechanisms in two-dimensional sphere-forming block copolymers. Phys. Rev. E 71:061803 [Google Scholar]
  90. Kramer EJ. 90.  2005. Melted by mistakes. Nature 437:824–25 [Google Scholar]
  91. Gómez LR, Vallés EM, Vega DA. 91.  2006. Lifshitz-Safran coarsening dynamics in a 2D hexagonal system. Phys. Rev. Lett. 97:188302 [Google Scholar]
  92. Aissou K, Baron T, Kogelschatz M, Pascale A. 92.  2007. Phase behavior in thin films of cylinder-forming diblock copolymer: deformation and division of heptacoordinated microdomains. Macromolecules 40:5054–59 [Google Scholar]
  93. Aissou K, Kogelschatz M, Baron T. 93.  2009. Self-assembling study of a cylinder-forming block copolymer via a nucleation-growth mechanism. Nanotechnology 20:095602 [Google Scholar]
  94. Liu C-C, Craig GSW, Kang H, Ruiz R, Nealey PF, Ferrier NJ. 94.  2010. Practical implementation of order parameter calculation for directed assembly of block copolymer thin films. J. Polym. Sci. B Polym. Phys. 48:2589–603 [Google Scholar]
  95. Pezzutti AD, Vega DA, Villar MA. 95.  2011. Dynamics of dislocations in a two-dimensional block copolymer system with hexagonal symmetry. Philos. Trans. R. Soc. A 369:335–50 [Google Scholar]
  96. Komura M, Komiyama H, Nagai K, Iyoda T. 96.  2013. Direct observation of faceted grain growth of hexagonal cylinder domains in a side chain liquid crystalline block copolymer matrix. Macromolecules 46:9013–20 [Google Scholar]
  97. Li W, Xie N, Qiu F, Yang Y, Shi A-C. 97.  2011. Ordering kinetics of block copolymers directed by periodic two-dimensional rectangular fields. J. Chem. Phys. 134:144901 [Google Scholar]
  98. Zippelius A, Halperin BI, Nelson DR. 98.  1980. Dynamics of two-dimensional melting. Phys. Rev. B 22:2514–41 [Google Scholar]
  99. Young AP. 99.  1979. Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 19:1855–66 [Google Scholar]
  100. Nelson DR, Halperin BI. 100.  1979. Dislocation-mediated melting in two dimensions. Phys. Rev. B 19:2457–84 [Google Scholar]
  101. Halperin BI, Nelson DR. 101.  1978. Theory of two-dimensional melting. Phys. Rev. Lett. 41:121–24 [Google Scholar]
  102. Kosterlitz JM, Thouless DJ. 102.  1973. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6:1181 [Google Scholar]
  103. Thomas EL, Anderson DM, Henkee CS, Hoffman D. 103.  1988. Periodic area-minimizing surfaces in block copolymers. Nature 334:598–601 [Google Scholar]
  104. Gido SP, Gunther J, Thomas EL, Hoffman D. 104.  1993. Lamellar diblock copolymer grain-boundary morphology. 1. Twist boundary characterization. Macromolecules 26:4506–20 [Google Scholar]
  105. Gido SP, Thomas EL. 105.  1994. Lamellar diblock copolymer grain-boundary morphology. 2. Scherk twist boundary energy calculations. Macromolecules 27:849–61 [Google Scholar]
  106. Gido SP, Thomas EL. 106.  1994. Lamellar diblock copolymer grain-boundary morphology. 4. Tilt boundaries. Macromolecules 27:6137–44 [Google Scholar]
  107. Gido SP, Thomas EL. 107.  1997. Lamellar diblock copolymer grain boundary morphology. 3. Helicoid section twist boundary energy. Macromolecules 30:3739–46 [Google Scholar]
  108. Burgaz E, Gido SP. 108.  2000. T-junction grain boundaries in block copolymer-homopolymer blends. Macromolecules 33:8739–45 [Google Scholar]
  109. Nishikawa Y, Kawada H, Hasegawa H, Hashimoto T. 109.  1993. Grain boundary morphology of lamellar microdomains. Acta Polym. 44:192–200 [Google Scholar]
  110. Cohen Y, Albalak RJ, Dair BJ, Capel MS, Thomas EL. 110.  2000. Deformation of oriented lamellar block copolymer films. Macromolecules 33:6502–16 [Google Scholar]
  111. Jinnai H, Sawa K, Nishi T. 111.  2006. Direct observation of twisted grain boundary in a block copolymer lamellar nanostructure. Macromolecules 39:5815–19 [Google Scholar]
  112. Listak J, Bockstaller MR. 112.  2006. Stabilization of grain boundary morphologies in lamellar block copolymer/nanoparticle blends. Macromolecules 39:5820–25 [Google Scholar]
  113. Ryu HJ, Fortner DB, Lee S, Ferebee R, De Graef M. 113.  et al. 2013. Role of grain boundary defects during grain coarsening of lamellar block copolymers. Macromolecules 46:204–15 [Google Scholar]
  114. Ryu HJ, Sun J, Avgeropoulos A, Bockstaller MR. 114.  2013. Retardation of grain growth and grain boundary pinning in athermal block copolymer blend systems. Macromolecules 46:1419–27 [Google Scholar]
  115. Matsen MW. 115.  1997. Kink grain boundaries in a block copolymer lamellar phase. J. Chem. Phys. 107:8110–19 [Google Scholar]
  116. Duque D, Schick M. 116.  2000. Self-consistent field theory of twist grain boundaries in block copolymers. J. Chem. Phys. 113:5525–30 [Google Scholar]
  117. Tsori Y, Andelman D, Schick M. 117.  2000. Defects in lamellar diblock copolymers: chevron- and omega-shaped tilt boundaries. Phys. Rev. E 61:2848–58 [Google Scholar]
  118. Kyrylyuk AV, Fraaije JGEM. 118.  2005. Three-dimensional structure and motion of twist grain boundaries in block copolymer melts. Macromolecules 38:8546–53 [Google Scholar]
  119. Boyer D, Viñals J. 119.  2001. Grain-boundary motion in layered phases. Phys. Rev. E 63:061704 [Google Scholar]
  120. Yoo CD, Viñals J. 120.  2012. Anisotropic linear response in block copolymer lamellar phases. Macromolecules 45:4848–56 [Google Scholar]
  121. Liu G, Ramírez-Hernández A, Yoshida H, Nygård K, Satapathy DK. 121.  et al. 2012. Morphology of lamellae-forming block copolymer films between two orthogonal chemically nanopatterned striped surfaces. Phys. Rev. Lett. 108:065502 [Google Scholar]
  122. Ramírez-Hernández A, Liu G, Nealey PF, de Pablo JJ. 122.  2012. Symmetric diblock copolymers confined by two nanopatterned surfaces. Macromolecules 45:2588–96 [Google Scholar]
  123. Parry AO, Evans R. 123.  1990. Influence of wetting on phase equilibria: a novel mechanism for critical-point shifts in films. Phys. Rev. Lett. 64:439–42 [Google Scholar]
  124. Müller M, Albano EV, Binder K. 124.  2000. Symmetric polymer blend confined into a film with antisymmetric surfaces: interplay between wetting behavior and the phase diagram. Phys. Rev. E 62:5281–95 [Google Scholar]
  125. Müller M. 125.  2012. Geometry-controlled interface localization-delocalization transition in block copolymers. Phys. Rev. Lett. 109:087801 [Google Scholar]
  126. García NA, Davis RL, Kim SY, Chaikin PM, Register RA, Vega DA. 126.  2014. Mixed-morphology and mixed-orientation block copolymer bilayers. RSC Adv. 4:38412–17 [Google Scholar]
  127. Li WH, Müller M.127.  2015. Directed self-assembly of block copolymers: optimizing molecular architecture, thin-film properties, and kinetics. Prog. Polym. Sci. In press [Google Scholar]
  128. Kang H, Detcheverry FA, Mangham AN, Stoykovich MP, Daoulas KCh. 128.  et al. 2008. Hierarchical assembly of nanoparticle superstructures from block copolymer-nanoparticle composites. Phys. Rev. Lett. 100:148303 [Google Scholar]
  129. Kim Y, Chen H, Alexander-Katz A. 129.  2014. Free energy landscape and localization of nanoparticles at block copolymer model defects. Soft Matter 10:3284–91 [Google Scholar]
  130. Daoulas KC, Cavallo A, Shenhar R, Müller M. 130.  2010. Directed assembly of supramolecular copolymers in thin films: thermodynamic and kinetic advantages. Phys. Rev. Lett. 105:108301 [Google Scholar]
  131. Kirchheim R. 131.  2009. On the solute-defect interaction in the framework of a defactant concept. Int. J. Mater. Res. 100:483–87 [Google Scholar]
  132. Xie N, Li WH, Qiu F, Shi AC. 132.  2014. σ phase formed in conformationally asymmetric AB-type block copolymers. ACS Macro Lett 3906–10 [Google Scholar]
  133. Takahashi H, Laachi N, Delaney KT, Hur S-M, Weinheimer CJ. 133.  et al. 2012. Defectivity in laterally confined lamella-forming diblock copolymers: thermodynamic and kinetic aspects. Macromolecules 45:6253–65 [Google Scholar]
  134. Cooke DM, Shi AC. 134.  2006. Effects of polydispersity on phase behavior of diblock copolymers. Macromolecules 39:6661–71 [Google Scholar]
  135. Schröder-Turk GE, Fogden A, Hyde ST. 135.  2007. Local v/a variations as a measure of structural packing frustration in bicontinuous mesophases, and geometric arguments for an alternating Im m (I-WP) phase in block-copolymers with polydispersity. Eur. Phys. J. B 59:115–26 [Google Scholar]
  136. Meuler AJ, Ellison CJ, Hillmyer MA, Bates FS. 136.  2008. Polydispersity-induced stabilization of the core-shell gyroid. Macromolecules 41:6272–75 [Google Scholar]
  137. Matsen MW. 137.  2012. Effect of architecture on the phase behavior of AB-type block copolymer melts. Macromolecules 45:2161–65 [Google Scholar]
  138. Xu YC, Li WH, Qiu F, Lin ZQ. 138.  2014. Self-assembly of 21-arm star-like diblock copolymer in bulk and under cylindrical confinement. Nanoscale 6:6844–52 [Google Scholar]
  139. Grason GM, DiDonna BA, Kamien RD. 139.  2003. Geometric theory of diblock copolymer phases. Phys. Rev. Lett. 91:058304 [Google Scholar]
  140. Matsen MW. 140.  1998. Gyroid versus double-diamond in ABC triblock copolymer melts. J. Chem. Phys. 108:785–96 [Google Scholar]
  141. Qin J, Bates FS, Morse DC. 141.  2010. Phase behavior of nonfrustrated ABC triblock copolymers: weak and intermediate segregation. Macromolecules 43:5128–36 [Google Scholar]
  142. Xie N, Liu MJ, Deng HL, Li W, Qiu F, Shi A-C. 142.  2014. Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers. J. Am. Chem. Soc. 136:2974–77 [Google Scholar]
  143. Tang C, Hur S-m, Stahl BC, Sivanandan K, Dimitriou M. 143.  et al. 2010. Thin film morphology of block copolymer blends with tunable supramolecular interactions for lithographic applications. Macromolecules 43:2880–89 [Google Scholar]
  144. Daoulas KC, Cavallo A, Shenhar R, Müller M. 144.  2009. Phase behaviour of quasi-block copolymers: a DFT-based Monte-Carlo study. Soft Matter 5:4499–509 [Google Scholar]
  145. Flack WW, Soong DS, Bell AT, Hess DW. 145.  1984. A mathematical model for spin coating of polymer resists. J. Appl. Phys. 56:1199–206 [Google Scholar]
  146. Paradiso SP, Delaney KT, García-Cervera CJ, Ceniceros HD, Fredrickson GH. 146.  2014. Block copolymer self assembly during rapid solvent evaporation: insights into cylinder growth and stability. ACS Macro Lett. 3:16–20 [Google Scholar]
  147. Münch A, Please CP, Wagner B. 147.  2011. Spin coating of an evaporating polymer solution. Phys. Fluids 23:102101 [Google Scholar]
  148. Müller M, Smith GD. 148.  2005. Phase separation in binary mixtures containing polymers: a quantitative comparison of single-chain-in-mean-field simulations and computer simulations of the corresponding multichain systems. J. Polym. Sci. B Polym. Phys. 43:934–58 [Google Scholar]
  149. Welander AM, Kang HM, Stuen KO, Solak HH, Müller M. 149.  et al. 2008. Rapid directed assembly of block copolymer films at elevated temperatures. Macromolecules 41:2759–61 [Google Scholar]
  150. Hur S-M, Khaira GS, Ramirez-Hernandez A, Müller M, Nealey PF, de Pablo JJ. 150.  2015. Simulation of defect reduction in block copolymer thin films by solvent annealing. ACS Macro Lett. 4:11–15 [Google Scholar]
  151. Rudov AA, Patyukova ES, Neratova IV, Khalatur PG, Posselt D. 151.  et al. 2013. Structural changes in lamellar diblock copolymer thin films upon swelling in nonselective solvents. Macromolecules 46:5786–95 [Google Scholar]
  152. Lin YC, Müller M, Binder K. 152.  2004. Stability of thin polymer films: influence of solvents. J. Chem. Phys. 121:3816–28 [Google Scholar]
  153. Edwards EW, Stoykovich MP, Müller M, Solak HH, de Pablo JJ, Nealey PF. 153.  2005. Mechanism and kinetics of ordering in diblock copolymer thin films on chemically nanopatterned substrates. J. Polym. Sci. B Polym. Physics 43:3444–59 [Google Scholar]
  154. Marencic AP, Chaikin PM, Register RA. 154.  2012. Orientational order in cylinder-forming block copolymer thin films. Phys. Rev. E 86:021507 [Google Scholar]
  155. E W, Ren W, Vanden-Eijnden E. 155.  2007. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys. 126:164103 [Google Scholar]
  156. E W, Ren W, Vanden-Eijnden E. 156.  2002. String method for the study of rare events. Phys. Rev. B 66:6688–93 [Google Scholar]
  157. Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G. 157.  2006. String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125:024106 [Google Scholar]
  158. Zhang C-Z, Wang Z-G. 158.  2006. Random isotropic structures and possible glass transitions in diblock copolymer melts. Phys. Rev. E 73:031804 [Google Scholar]
  159. Müller M, Li WH, Orozco Rey JC, Welling U. 159.  2015. Defect annihilation in chemoepitaxial directed self-assembly: Computer simulation and self-consistent filed theory. MRS Proc. 1750:mrsf14–kk03-05 [Google Scholar]
  160. Cahn JW. 160.  1977. Critical-point wetting. J. Chem. Phys. 66:3667–72 [Google Scholar]
  161. Peach M, Koehler JS. 161.  1950. The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80:436–39 [Google Scholar]
  162. LeSar R. 162.  2014. Simulations of dislocation structure and response. Annu. Rev. Condens. Matter Phys. 5:375–407 [Google Scholar]
  163. Pershan PS. 163.  1974. Dislocation effects in smectic-A liquid crystals. J. Appl. Phys. 45:1590–604 [Google Scholar]
  164. Kléman M, Williams CE. 164.  1974. Interaction between parallel edge dislocation lines in a smectic a liquid crystal. J. Phys. Lett. 35:49–51 [Google Scholar]
  165. Ambrožič M, Kralj S, Sluckin TJ, Žumer S, Svenšek D. 165.  2004. Annihilation of edge dislocations in smectic-a liquid crystals. Phys. Rev. E 70:051704 [Google Scholar]
  166. Harrison C, Adamson DH, Cheng Z, Sebastian JM, Sethuraman S. 166.  et al. 2000. Mechanisms of ordering in striped patterns. Science 290:1558–60 [Google Scholar]
  167. Christensen JJ, Bray AJ. 167.  1998. Pattern dynamics of Rayleigh-Bénard convective rolls and weakly segregated diblock copolymers. Phys. Rev. E 58:5364–70 [Google Scholar]
  168. Shiwa Y, Taneike T, Yokojima Y. 168.  1996. Scaling behavior of block copolymers in spontaneous growth of lamellar domains. Phys. Rev. Lett. 77:4378–81 [Google Scholar]
  169. Abukhdeir NM, Rey AD. 169.  2008. Defect kinetics and dynamics of pattern coarsening in a two-dimensional smectic-A system. N. J. Phys. 10:063025 [Google Scholar]
  170. Xie N, Li WH, Zhang HD, Qiu F, Shi AC. 170.  2013. Kinetics of lamellar formation on sparsely stripped patterns. J. Chem. Phys. 139:194903 [Google Scholar]
  171. Yokojima Y, Shiwa Y. 171.  2002. Hydrodynamic interactions in ordering process of two-dimensional quenched block copolymers. Phys. Rev. E 65:056308 [Google Scholar]
  172. Bosse AW, Sides SW, Katsov K, García-Cervera CJ, Fredrickson GH. 172.  2006. Defects and their removal in block copolymer thin film simulations. J. Polym. Sci. B Polym. Phys. 44:2495–511 [Google Scholar]
  173. Li WH, Qiu F, Yang YL, Shi AC. 173.  2010. Ordering dynamics of directed self-assembly of block copolymers in periodic two-dimensional fields. Macromolecules 43:1644–50 [Google Scholar]
  174. Safran SA. 174.  1981. Domain growth of degenerate phases. Phys. Rev. Lett. 46:1581–84 [Google Scholar]
  175. Naughton JR, Matsen MW. 175.  2002. Limitations of the dilution approximation for concentrated block copolymer/solvent mixtures. Macromolecules 35:5688–96 [Google Scholar]
  176. Müller M, Binder K, Schäfer L. 176.  2000. Intra- and interchain correlations in semidilute polymer solutions: Monte Carlo simulations and renormalization group results. Macromolecules 33:4568–80 [Google Scholar]
  177. Olvera de la Cruz M. 177.  1989. Theory of microphase separation in block copolymer solutions. J. Chem. Phys. 90:1995–2002 [Google Scholar]
  178. Joanny JF, Leibler L, Ball R. 178.  1984. Is chemical mismatch important in polymer-solutions?. J. Chem. Phys. 81:4640–56 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error