1932

Abstract

Multiphase reactors are very common in chemical industry, and numerous review articles exist that are focused on types of reactors, such as bubble columns, trickle beds, fluid catalytic beds, etc. Currently, there is a high degree of empiricism in the design process of such reactors owing to the complexity of coupled flow and reaction mechanisms. Hence, we focus on synthesizing recent advances in computational and experimental techniques that will enable future designs of such reactors in a more rational manner by exploring a large design space with high-fidelity models (computational fluid dynamics and computational chemistry models) that are validated with high-fidelity measurements (tomography and other detailed spatial measurements) to provide a high degree of rigor. Understanding the spatial distributions of dispersed phases and their interaction during scale up are key challenges that were traditionally addressed through pilot scale experiments, but now can be addressed through advanced modeling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-061114-123229
2015-07-24
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/6/1/annurev-chembioeng-061114-123229.html?itemId=/content/journals/10.1146/annurev-chembioeng-061114-123229&mimeType=html&fmt=ahah

Literature Cited

  1. Levenspiel O. 1.  1998. Chemical Reaction Engineering Hoboken, NJ: Wiley [Google Scholar]
  2. Fogler HS. 2.  2010. Essentials of Chemical Reaction Engineering Upper Saddle River, NJ: Prentice Hall [Google Scholar]
  3. Boudart M. 3.  1968. Kinetics of Chemical Processes Upper Saddle River, NJ: Prentice Hall [Google Scholar]
  4. Sholl D, Steckel JA. 4.  2009. Density Functional Theory: A Practical Introduction Hoboken, NJ: Wiley [Google Scholar]
  5. Joshi JB, Patil TA, Ranade VV, Shah YT. 5.  1990. Measurement of hydrodynamic parameters in multiphase sparged reactors. Rev. Chem. Eng. 6:73–227 [Google Scholar]
  6. Marchisio DL, Fox RO. 6.  2007. Multiphase Reacting Flows: Modeling and Simulation New York: Springer [Google Scholar]
  7. Joshi JB, Nere NK, Rane CV, Murthy BN, Mathpati CS. 7.  et al. 2011. CFD simulation of stirred tanks: comparison of turbulence models. Part II: axial flow impellers, multiple impellers and multiphase dispersions. Can. J. Chem. Eng. 89:754–816 [Google Scholar]
  8. Bourne JR, Yu SY. 8.  1994. Investigation of micromixing in stirred-tank reactors using parallel reactions. Ind. Eng. Chem. Res. 33:41–55 [Google Scholar]
  9. Ranade VV, Chaudhari R, Gunjal PR. 9.  2011. Trickle Bed Reactors: Reactor Engineering & Applications Amsterdam: Elsevier [Google Scholar]
  10. Weekman VW Jr. 10.  1968. A model of catalytic cracking conversion in fixed, moving, and fluid-bed reactors. Ind. Eng. Chem. Process Des. Dev. 7:90–95 [Google Scholar]
  11. Jesus NJC, Melo PA, Nele M, Pinto JC. 11.  2011. Oscillatory behaviour of an industrial slurry polyethylene reactor. Can. J. Chem. Eng. 89:582–92 [Google Scholar]
  12. Saccone G, Salatino P, Lettieri P. 12.  2010. CFD Modeling: of Fluidized Bed Reactors Saarbrücken, Ger: VDM Verlag [Google Scholar]
  13. Deen NG, Annaland MVS, Van der Hoef MA, Kuipers JAM. 13.  2007. Review of discrete particle modeling of fluidized beds. Chem. Eng. Sci. 62:28–44 [Google Scholar]
  14. Anderson TB, Jackson R. 14.  1967. A fluid mechanical description of fluidized beds. Ind. Eng. Chem. Fundam. 6:527–39 [Google Scholar]
  15. Vial C, Poncin S, Wild G, Midoux N. 15.  2002. Experimental and theoretical analysis of the hydrodynamics in the riser of an external loop airlift reactor. Chem. Eng. Sci. 57:4745–62 [Google Scholar]
  16. Deckwer W-D. 16.  1991. Bubble Column Reactors Hoboken, NJ: Wiley [Google Scholar]
  17. Sommerfeld M. 17.  2004. Bubbly Flows: Analysis, Modeling and Calculation (Heat and Mass Transfer) New York: Springer [Google Scholar]
  18. Wang TF, Wang JF, Jin Y. 18.  2007. Slurry reactors for gas-to-liquid processes: a review. Ind. Eng. Chem. Res. 46:5824–47 [Google Scholar]
  19. Ranade VV. 19.  2001. Computational Flow Modeling for Chemical Reactor Engineering Waltham, MA: Academic [Google Scholar]
  20. Jakobsen HA. 20.  2014. Chemical Reactor Modeling: Multiphase Reactive Flows New York: Springer [Google Scholar]
  21. Norskov JK, Abild-Pedersen F, Studt F, Bligaard T. 21.  2011. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 108:937–43 [Google Scholar]
  22. Bell AT, Head-Gordon M. 22.  2011. Quantum mechanical modeling of catalytic processes. Annu. Rev. Chem. Biomol. Eng. 2:453–77 [Google Scholar]
  23. Gubbins KE, Liu Y-C, Moore JD, Palmer JC. 23.  2011. The role of molecular modeling in confined systems: impact and prospects. Phys. Chem. Chem. Phys. 13:58–85 [Google Scholar]
  24. Miller WH. 24.  2001. The semiclassical initial value representation: a potentially practical way for adding quantum effects to classical molecular dynamics simulations. J. Phys. Chem. A 105:2942–55 [Google Scholar]
  25. Hoomans BPB, Kuipers JAM, Briels WJ, van Swaaij WPM. 25.  1996. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem. Eng. Sci. 51:99–118 [Google Scholar]
  26. Tryggvason G, Scardovelli R, Zaleski S. 26.  2011. Direct Numerical Simulations of Gas-Liquid Multiphase Flows Cambridge: Cambridge Univ. Press [Google Scholar]
  27. Couper JR, Penney WR, Fair JR, Walas SM. 27.  2012. Chemical Process Equipment: Selection and Design Oxford, UK: Butterworth-Heinemann, 3rd ed.. [Google Scholar]
  28. Madrigal A. 28.  2009. Humans have made, found or used over 50 million unique chemicals. Wired.com Sept. 9. http://www.wired.com/2009/09/humans-have-made-found-or-used-over-50-million-unique-chemicals/ [Google Scholar]
  29. Davis GE. 29.  1904. A Handbook Of Chemical Engineering, Volumes I and II. Manchester: Davis Bros, 2nd ed.. [Google Scholar]
  30. Groggins PH. 30.  1947. Unit Processes in Organic Synthesis New York: McGraw Hill, 3rd ed.. [Google Scholar]
  31. Danckwerts PV. 31.  1970. Gas-Liquid Reactions New York: McGraw-Hill Chem. Eng. Ser. [Google Scholar]
  32. Walas SM. 32.  1990. Chemical Process Equipment: Selection and Design Oxford, UK: Butterworth-Heinemann [Google Scholar]
  33. Bałdyga J, Bourne JR. 33.  1999. Turbulent Mixing and Chemical Reactions Hoboken, NJ: Wiley [Google Scholar]
  34. Coker AK. 34.  2001. Modeling of Chemical Kinetics and Reactor Design Houston: Gulf Prof. Publ. [Google Scholar]
  35. van Mourik T, Bühl M, Gaigeot M-P. 35.  2014. Density functional theory across chemistry, physics and biology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372:20120488 [Google Scholar]
  36. Kee RJ, Rupley FM, Miller JA. 36.  1989. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics Livermore, CA: Sandia Natl. Labs [Google Scholar]
  37. Drennan SA. 37.  2009. Enabling Detailed Chemistry: Reaction Design Provides CHEMKIN-CFD for Free to ANSYS FLUENT Users Who Are Looking to Improve the Accuracty of Their Flow Simulations. ANSYS Advant. http://www.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/article/AA-V3-I2-Enabling-Detailed-Chemistry.pdf [Google Scholar]
  38. Hill CG. 38.  1977. An Introduction to Chemical Engineering Kinetics and Reactor Design Hoboken, NJ: John Wiley & Sons [Google Scholar]
  39. Miller JA, Kee RJ, Westbrook CK. 39.  1990. Chemical-kinetics and combustion modeling. Annu. Rev. Phys. Chem. 41:345–87 [Google Scholar]
  40. Coltrin ME, Kee RJ, Miller JA. 40.  1984. A mathematical-model of the coupled fluid-mechanics and chemical-kinetics in a chemical vapor-deposition reactor. J. Electrochem. Soc. 131:425–34 [Google Scholar]
  41. Miller JA, Branch MC, Kee RJ. 41.  1981. A chemical kinetic-model for the selective reduction of nitric-oxide by ammonia. Combust. Flame 43:81–98 [Google Scholar]
  42. Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X. 42.  et al. 2006. octopus: a tool for the application of time-dependent density functional theory. Phys. Status Solidi B Basic Solid State Phys. 243:2465–88 [Google Scholar]
  43. Mozharov S, Nordon A, Littlejohn D, Wiles C, Watts P. 43.  et al. 2011. Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry. J. Am. Chem. Soc. 133:3601–8 [Google Scholar]
  44. Zinoveva S, De Silva R, Louis RD, Datta P, Kumar C. 44.  et al. 2007. The wet chemical synthesis of Co nanoparticles in a microreactor system: A time-resolved investigation by X-ray absorption spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 582:239–41 [Google Scholar]
  45. Kinne M, Fuhrmann T, Whelan CM, Zhu JF, Pantförder J. 45.  et al. 2002. Kinetic parameters of CO adsorbed on Pt(111) studied by in situ high resolution x-ray photoelectron spectroscopy. J. Chem. Phys. 117:10852–59 [Google Scholar]
  46. Chen C, Yang BL, Yuan J, Wang ZW, Wang LY. 46.  2007. Establishment and solution of eight-lump kinetic model for FCC gasoline secondary reaction using particle swarm optimization. Fuel 86:2325–32 [Google Scholar]
  47. Gupta RK, Kumar V, Srivastava VK. 47.  2010. Modeling of fluid catalytic cracking riser reactor: a review. Int. J. Chem. React. Eng. 8:1542–6580 [Google Scholar]
  48. Ancheyta-Juárez J, López-Isunza F, Aguilar-Rodriguez E, Moreno-Mayorga JC. 48.  1997. A strategy for kinetic parameter estimation in the fluid catalytic cracking process. Ind. Eng. Chem. Res. 36:5170–74 [Google Scholar]
  49. Hillewaert LP, Dierickx JL, Froment GF. 49.  1988. Computer generation of reaction schemes and rate-equations for thermal cracking. Aiche J. 34:17–24 [Google Scholar]
  50. Clymans PJ, Froment GF. 50.  1984. Computer-generation of reaction paths and rate-equations in the thermal-cracking of normal and branched paraffins. Comput. Chem. Eng. 8:137–42 [Google Scholar]
  51. Van der Laan GP, Beenackers A. 51.  1999. Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review. Catal. Rev. Sci. Eng. 41:255–318 [Google Scholar]
  52. Joshi JB, Doraiswamy LK. 52.  2008. Chemical reaction engineering. Albright's Chemical Engineering Handbook LF Albright 737–968 Boca Raton, FL: CRC Press1909 [Google Scholar]
  53. Joshi JB, Tabib MV, Deshpande SS, Mathpati CS. 53.  2009. Dynamics of flow structures and transport phenomena, 1. Experimental and numerical techniques for identification and energy content of flow structures. Ind. Eng. Chem. Res. 48:8244–84 [Google Scholar]
  54. Pope SB. 54.  2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  55. Goldstein RJ. 55.  1996. Fluid Mechanics Measurements Washington, DC: Taylor & Francis [Google Scholar]
  56. Babkovskaia N, Haugen NEL, Brandenburg A. 56.  2011. A high-order public domain code for direct numerical simulations of turbulent combustion. J. Comput. Phys. 230:1–12 [Google Scholar]
  57. Haile JM. 57.  1997. Molecular Dynamics Simulation: Elementary Methods Hoboken, NJ: Wiley Intersci. [Google Scholar]
  58. ben-Avraham D, Havlin S. 58.  2000. Diffusion and Reactions in Fractals and Disordered Systems Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  59. Aris R. 59.  1975. The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts: Vol. 1: The Theory of the Steady State. Oxford, UK: Oxford Univ. Press [Google Scholar]
  60. Astarita G. 60.  1967. Mass Transfer with Chemical Reaction Amsterdam: Elsevier [Google Scholar]
  61. Spalart PR. 61.  1999. Strategies for Turbulence Modeling and Simulations Amsterdam: Elsevier [Google Scholar]
  62. Dimotakis PE. 62.  2005. Turbulent mixing. Annu. Rev. Fluid Mech. 37:329–56 [Google Scholar]
  63. Pope SB. 63.  2010. Self-conditioned fields for large-eddy simulations of turbulent flows. J. Fluid Mech. 652:139–69 [Google Scholar]
  64. Wilcox DC. 64.  1993. Turbulence Modeling for CFD La Cañada Flintridge, CA: DCW Ind. [Google Scholar]
  65. Haworth DC. 65.  2010. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36:168–259 [Google Scholar]
  66. Fox RO. 66.  2003. Computational Models for Turbulent Reacting Flows Cambridge: Cambridge Univ. Press [Google Scholar]
  67. Pope SB. 67.  1981. Transport equation for the joint probability density function of velocity and scalars in turbulent flow. Phys. Fluids 24:588–96 [Google Scholar]
  68. Fox RO. 68.  2014. On multiphase turbulence models for collisional fluid-particle flows. J. Fluid Mech. 742:368–424 [Google Scholar]
  69. Whitaker S. 69.  2010. The Method of Volume Averaging (Theory and Applications of Transport in Porous Media) New York: Springer [Google Scholar]
  70. Whitaker S. 70.  1986. Flow in porous media I: a theoretical derivation of Darcy's law. Transp. Porous Media 1:3–25 [Google Scholar]
  71. Slattery JC. 71.  1969. Single-phase flow through porous media. AIChE J. 15:866–72 [Google Scholar]
  72. Capriz G, Ghionna VN, Giovine P. 72.  2002. Modeling and Mechanics of Granular and Porous Material Basel, Switz: Birkhäuser [Google Scholar]
  73. van Sint Annaland M, Bokkers GA, Goldschmidt MJV, Olaofe OO, van der Hoef MA, Kuipers JAM. 73.  2009. Development of a multi-fluid model for poly-disperse dense gas–solid fluidised beds, part I: model derivation and numerical implementation. Chem. Eng. Sci. 64:4222–36 [Google Scholar]
  74. Gidaspow D, Jung J, Singh RK. 74.  2004. Hydrodynamics of fluidization using kinetic theory: an emerging paradigm. Powder Technol. 148:123–41 [Google Scholar]
  75. Gidaspow D. 75.  1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions Waltham, MA: Academic [Google Scholar]
  76. Li J, Kuipers JAM. 76.  2007. Effect of competition between particle-particle and gas-particle interactions on flow patterns in dense gas-fluidized beds. Chem. Eng. Sci. 62:3429–42 [Google Scholar]
  77. Wu CL, Berrouk AS, Nandakumar K. 77.  2009. Three-dimensional discrete particle model for gas–solid fluidized beds on unstructured mesh. Chem. Eng. J. 152:514–29 [Google Scholar]
  78. Hoomans BPB, Kuipers JAM, Briels WJ, van Swaaij WPM. 78.  1996. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem. Eng. Sci. 51:99–118 [Google Scholar]
  79. Ramkrishna D. 79.  2000. Population Balances Theory and Applications to Particulate Systems in Engineering Waltham, MA: Academic [Google Scholar]
  80. Ramkrishna D, Singh MR. 80.  2014. Population balance modeling: current status and future prospects. Annu. Rev. Chem. Biomol. Eng. 5:123–46 [Google Scholar]
  81. Sporleder F, Borka Z, Solsvik J, Jakobsen HA. 81.  2012. On the population balance equation. Rev. Chem. Eng. 28:149–69 [Google Scholar]
  82. Yeoh GH, Cheung CP, Tu J. 82.  2014. Multiphase Flow Analysis Using Population Balance Modeling: Bubbles, Drops and Particles Amsterdam: Butterworth-Heinemann [Google Scholar]
  83. Becker PJ, Puel F, Dubbelboer A, Janssen J, Sheibat-Othman N. 83.  2014. Coupled population balance–CFD simulation of droplet breakup in a high pressure homogenizer. Comput. Chem. Eng. 68:140–50 [Google Scholar]
  84. Cheng JC, Fox RO. 84.  2010. Kinetic modeling of nanoprecipitation using CFD coupled with a population balance. Ind. Eng. Chem. Res. 49:10651–62 [Google Scholar]
  85. Chen P, Sanyal J, Duduković MP. 85.  2005. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures. Chem. Eng. Sci. 60:1085–101 [Google Scholar]
  86. Smoluchowski MV. 86.  1916. Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Z. Angew Phys 17:557–71 [Google Scholar]
  87. Sajjadi B, Raman AAA, Shah RSSRE, Ibrahim S. 87.  2013. Review on applicable breakup/coalescence models in turbulent liquid-liquid flows. Rev. Chem. Eng. 29:131–58 [Google Scholar]
  88. Tenneti S, Subramaniam S. 88.  2014. Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46199–230 [Google Scholar]
  89. Veeramani C, Minev PD, Nandakumar K. 89.  2007. A fictitious domain formulation for flows with rigid particles: a non-Lagrange multiplier version. J. Comput. Phys. 224:867–79 [Google Scholar]
  90. Glowinski R, Pan TW, Hesla TI, Joseph DD, Periaux J. 90.  2001. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169:363–426 [Google Scholar]
  91. de Jong JF, van Sint Annaland M, Kuipers. 91.  2012. Membrane-assisted fluidized beds—part 1: development of an immersed boundary discrete particle model. Chem. Eng. Sci. 84:814–21 [Google Scholar]
  92. Aidun CK, Clausen JR. 92.  2010. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42:439–72 [Google Scholar]
  93. Ladd AJC, Verberg R. 93.  2001. Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104:1191–251 [Google Scholar]
  94. Natarajan R, Acrivos A. 94.  1993. The instability of the steady flow past spheres and disks. J. Fluid Mech. 254:323–44 [Google Scholar]
  95. Kriebitzsch SHL, van der Hoef MA, Kuipers JAM. 95.  2013. Fully resolved simulation of a gas-fluidized bed: a critical test of DEM models. Chem. Eng. Sci. 91:1–4 [Google Scholar]
  96. Baltussen MW, Seelen LJH, Kuipers JAM, Deen NG. 96.  2013. Direct numerical simulations of gas–liquid–solid three phase flows. Chem. Eng. Sci. 100:293–99 [Google Scholar]
  97. Deen NG, Kriebitzsch SHL, van der Hoef MA, Kuipers JAM. 97.  2012. Direct numerical simulation of flow and heat transfer in dense fluid-particle systems. Chem. Eng. Sci. 81:329–44 [Google Scholar]
  98. Jain D, Deen NG, Kuipers JAM, Antonyuk S, Heinrich S. 98.  2012. Direct numerical simulation of particle impact on thin liquid films using a combined volume of fluid and immersed boundary method. Chem. Eng. Sci. 69:530–40 [Google Scholar]
  99. Dijkhuizen W, Roghair I, Van Sint Annaland M, Kuipers JAM. 99.  2010. DNS of gas bubbles behaviour using an improved 3D front tracking model—drag force on isolated bubbles and comparison with experiments. Chem. Eng. Sci. 65:1415–26 [Google Scholar]
  100. Kuipers JAM, van Swaaij WPM. 100.  1997. Application of computational fluid dynamics to chemical reaction engineering. Rev. Chem. Eng. 13:1–118 [Google Scholar]
  101. Bekdemir C, Somers B, de Goey P. 101.  2014. DNS with detailed and tabulated chemistry of engine relevant igniting systems. Combust. Flame 161:210–21 [Google Scholar]
  102. Chakraborty N, Lipatnikov AN. 102.  2013. Effects of Lewis number on conditional fluid velocity statistics in low Damköhler number turbulent premixed combustion: a direct numerical simulation analysis. Phys. Fluids 25:045101 [Google Scholar]
  103. Luong MB, Luo ZY, Lu TF, Chung SH, Yoo CS. 103.  2013. Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities. Combust. Flame 160:2038–47 [Google Scholar]
  104. Minamoto Y, Dunstan TD, Swaminathan N, Cant RS. 104.  2013. DNS of EGR-type turbulent flame in MILD condition. Proc. Combust. Inst. 34:3231–38 [Google Scholar]
  105. Mousazadeh F, van Den Akker HEA, Mudde RF. 105.  2013. Direct numerical simulation of an exothermic gas-phase reaction in a packed bed with random particle distribution. Chem. Eng. Sci. 100:259–65 [Google Scholar]
  106. Hetsroni G. 106.  1989. Particles-turbulence interaction. Int. J. Multiphase Flow 15:735–46 [Google Scholar]
  107. Joshi JB. 107.  1983. Solid-liquid-fluidized beds—some design aspects. Trans. Inst. Chem. Eng. A Chem. Eng. Res. Des. 61:143–61 [Google Scholar]
  108. Pandit AB, Joshi JB. 108.  1998. Pressure drop in fixed, expanded, fluidized beds and packed columns. Rev. Chem. Eng. 14:321–71 [Google Scholar]
  109. Zhao F, van Wachem BGM. 109.  2013. Direct numerical simulation of ellipsoidal particles in turbulent channel flow. ACTA Mech. 224:2331–58 [Google Scholar]
  110. Gui N, Yan J, Fan JR, Cen KF. 110.  2013. A DNS study of the effect of particle feedback in a gas-solid three dimensional plane jet. Fuel 106:51–60 [Google Scholar]
  111. Kondaraju S, Choi M, Xu XF, Lee JS. 111.  2012. Direct numerical simulation of modulation of isotropic turbulence by poly-dispersed particles. Int. J. Numer. Methods Fluids 69:1237–48 [Google Scholar]
  112. Dritselis CD, Vlachos NS. 112.  2008. DNS/LES study of fluid-particle interaction in a turbulent channel flow at a low Reynolds number.. Numer. Anal. Appl. Math. 1048:735–38 [Google Scholar]
  113. Derksen JJ. 113.  2012. Direct numerical simulations of aggregation of monosized spherical particles in homogeneous isotropic turbulence. AIChE J. 58:2589–600 [Google Scholar]
  114. Xu Y, Subramaniam S. 114.  2010. Effect of particle clusters on carrier flow turbulence: a direct numerical simulation study. Flow Turbul. Combust. 85:735–61 [Google Scholar]
  115. Wei M, Wang LM, Li JH. 115.  2013. Unified stability condition for particulate and aggregative fluidization-exploring energy dissipation with direct numerical simulation. Particuology 11:232–41 [Google Scholar]
  116. Shnip AI, Kolhatkar RV, Dinkar S, Joshi JB. 116.  1992. Criterion for transition from homogeneous to heterogeneous regime in two dimensional bubble columns. Int. J. Multiphase Flow 18:705–26 [Google Scholar]
  117. Derksen JJ, Sundaresan S. 117.  2007. Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds. J. Fluid Mech. 587:303–36 [Google Scholar]
  118. Anderson TB, Jackson R. 118.  1969. A fluid mechanical description of fluidized beds—comparison of theory and experiment. Ind. Eng. Chem. Fundam. 8:137–44 [Google Scholar]
  119. Anderson TB, Jackson R. 119.  1968. Fluid mechanical description of fluidized beds—stability of state of uniform fluidization. Ind. Eng. Chem. Fundam. 7:12–21 [Google Scholar]
  120. Batchelor GK. 120.  1988. A new theory of the instability of a uniform fluidized bed. J. Fluid Mech. 193:75–110 [Google Scholar]
  121. Didwania AK, Homsy GM. 121.  1982. Resonant sideband instabilities in wave-propagation in fluidized-beds. J. Fluid Mech. 122:433–38 [Google Scholar]
  122. Joshi JB, Deshpande NS, Dinkar M, Phanikumar DV. 122.  2001. Hydrodynamic stability of multiphase reactors. Adv. Chem. Eng. 26:1–130 [Google Scholar]
  123. Thorat BN, Shevade AV, Bhilegaonkar KN, Aglawe RH, Veera UP. 123.  et al. 1998. Effect of sparger design and height to diameter ratio on fractional gas hold-up in bubble columns. Chem. Eng. Res. Des. 76:823–34 [Google Scholar]
  124. Thorat BN, Joshi JB. 124.  2004. Regime transition in bubble columns: experimental and predictions. Exp. Therm. Fluid Sci. 28:423–30 [Google Scholar]
  125. Sundaresan S. 125.  2003. Instabilities in fluidized beds. Annu. Rev. Fluid Mech. 35:63–88 [Google Scholar]
  126. Ghatage SV, Peng Z, Sathe MJ, Doroodchi E, Padhiyar N. 126.  et al. 2014. Stability analysis in solid-liquid fluidized beds: experimental and computational. Chem. Eng. J. 256:169–86 [Google Scholar]
  127. Deen NG, Peters EAJF, Padding JT, Kuipers JAM. 127.  2014. Review of direct numerical simulation of fluid-particle mass, momentum and heat transfer in gas-slid flows. Chem. Engg. Sci 116:710–24 [Google Scholar]
  128. Deen NG, Kuipers JAM. 128.  2014. Direct numerical simulation of fluid flow accompanied by coupled mass and heat transfer in dense fluid–particle systems. Chem. Eng. Sci. 116:645–56 [Google Scholar]
  129. Mathey F. 129.  2013. Numerical up-scaling approach for the simulation of heat-transfer in randomly packed beds. Int. J. Heat Mass Transf. 61:451–63 [Google Scholar]
  130. Patwardhan AW, Joshi JB. 130.  1999. Design of gas inducing reactor. Ind. Eng. Chem. Res. 37:49–80 [Google Scholar]
  131. Nere NK, Patwardhan AW, Joshi JB. 131.  2003. Liquid-phase mixing in stirred vessels: turbulent flow regime. Ind. Eng. Chem. Res. 42:2661–98 [Google Scholar]
  132. Kumaresan T, Joshi JB. 132.  2006. Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem. Eng. J. 115:173–93 [Google Scholar]
  133. Lorenz O, Schumpe A, Ekambara K, Joshi JB. 133.  2005. Liquid phase axial mixing in bubble columns operated at high pressures. Chem. Eng. Sci. 60:3573–86 [Google Scholar]
  134. Joshi JB, Ranade VV, Gharat SD, Lele SS. 134.  1990. Sparged loop reactors. Can. J. Chem. Eng. 68:705–41 [Google Scholar]
  135. Lele SS, Joshi JB. 135.  1994. Some design aspects of air-lift fluidized bed. Chem. Eng. J. 55:145–46 [Google Scholar]
  136. Lele SS, Joshi JB. 136.  1993. Hydrodynamics and mass transfer in air-lift reactors. Encyclopedia of Fluid Mechanics, Supplement 2 NP Cheremisinoff 409–510 Houston: Gulf Prof. Publ. [Google Scholar]
  137. Roy S, Joshi JB. 137.  2008. CFD study of mixing characteristics of bubble column and external loop airlift reactor. Asia-Pac. J. Chem. Eng. 3:97–105 [Google Scholar]
  138. Joshi JB, Sharma MM. 138.  1977. Mass-transfer and hydrodynamic characteristics of gas inducing type of agitated contactors. Can. J. Chem. Eng. 55:683–95 [Google Scholar]
  139. Murthy BN, Deshmukh NA, Patwardhan AW, Joshi JB. 139.  2007. Hollow self-inducing impellers: flow visualization and CFD simulation. Chem. Eng. Sci. 62:3839–48 [Google Scholar]
  140. Reddy RK, Joshi JB, Nandakumar K, Minev PD. 140.  2010. Direct numerical simulations of a freely falling sphere using fictitious domain method: breaking of axisymmetric wake. Chem. Eng. Sci. 65:2159–71 [Google Scholar]
  141. Reddy RK, Jin S, Nandakumar K, Minev PD, Joshi JB. 141.  2010. Direct numerical simulation of free falling sphere in creeping flow. Int. J. Comput. Fluid Dyn. 24:109–20 [Google Scholar]
  142. Reddy RK, Sathe MJ, Joshi JB, Nandakumar K, Evans GM. 142.  2013. Recent developments in experimental (PIV) and numerical (DNS) investigation of solid-liquid fluidized beds. Chem. Eng. Sci. 92:1–12 [Google Scholar]
  143. Mathpati CS, Tabib MV, Deshpande SS, Joshi JB. 143.  2009. Dynamics of flow structures and transport phenomena, 2. Relationship with design objectives and design optimization. Ind. Eng. Chem. Res. 48:8285–311 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-061114-123229
Loading
/content/journals/10.1146/annurev-chembioeng-061114-123229
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error