Traditional methods for solids processing involve either high temperatures, necessary for melting or viscosity reduction, or hazardous organic solvents. Owing to the negative impact of the solvents on the environment, especially on living organisms, intensive research has focused on new, sustainable methods for the processing of these substances. Applying supercritical fluids for particle formation may produce powders and composites with special characteristics. Several processes for formation and design of solid particles using dense gases have been studied intensively. The unique thermodynamic and fluid-dynamic properties of supercritical fluids can be used also for impregnation of solid particles or for the formation of solid powderous emulsions and particle coating, e.g., for formation of solids with unique properties for use in different applications. We give an overview of the application of sub- and supercritical fluids as green processing media for particle formation processes and present recent advances and trends in development.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Papin D. 1.  1681. A New Digester or Engine for Softening Bones London: Dawsons of Pall Mall
  2. De La Tour CC. 2.  1822. Exposé de quelques résultats obtenus par l'action combinée de la chaleur et de la compression sur certains liquides, tels que l'eau, l'alcool, l'éther sulfurique et l'essence de pétrole rectifiée. Ann. Chim. Phys. 21:2127 [Google Scholar]
  3. Jessop PG, Leitner W. 3.  1999. Chemical Synthesis Using Supercritical Fluids Weinheim, Ger.: Wiley–VCH
  4. Hunter E, Lias S. 4.  2011. Chemistry WebBook: NIST Standard Reference Database Washington, DC: US Secr. Commer http://webbook.nist.gov/chemistry [Google Scholar]
  5. Knez Ž, Škerget M, Knez Hrnčič M, Čuček D. 5.  2014. Particle formation using sub- and supercritical fluids. Supercritical Fluid Technology for Energy and Environmental V Anikeev, Fan M 31–67 Amsterdam: Elsevier Sci. Technol. [Google Scholar]
  6. Knez Ž, Škerget M, Knez Hrnčič M. 6.  2010. Principles of supercritical fluid extraction and applications in the food, beverage and nutraceutical industries. Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries SH Rizvi 3–36 Cambridge, UK: Woodhead Publ. [Google Scholar]
  7. Knez Ž, Weidner E. 7.  2001. Precipitation of solids with dense gases. High Pressure Process Technology: Fundamentals and Applications A Bertucco, G Vetter 9587–611 London: Elsevier [Google Scholar]
  8. Jung J, Perrut M. 8.  2001. Particle design using supercritical fluids: literature and patent survey. J. Supercrit. Fluids 20:3179–219 [Google Scholar]
  9. Knez Ž, Weidner E. 9.  2003. Particles formation and particle design using supercritical fluids. Curr. Opin. Solid State Mater. Sci. 7:4353–61 [Google Scholar]
  10. Brunner G. 10.  2004. Supercritical Fluids as Solvents and Reaction Media Amsterdam: Elsevier
  11. Blagden N, De Matas M, Gavan P, York P. 11.  2007. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 59:7617–30 [Google Scholar]
  12. Kawashima Y, York P. 12.  2008. Drug delivery applications of supercritical fluid technology. Adv. Drug Deliv. Rev. 60:3297–98 [Google Scholar]
  13. Moribe K, Tozuka Y, Yamamoto K. 13.  2008. Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation. Adv. Drug Deliv. Rev. 60:3328–38 [Google Scholar]
  14. Gosselin P, Thibert R, Preda M, McMullen J. 14.  2003. Polymorphic properties of micronized carbamazepine produced by RESS. Int. J. Pharm. 252:1225–33 [Google Scholar]
  15. Gosselin P, Lacasse F-X, Preda M, Thibert R, Clas S-D, McMullen JN. 15.  2003. Physicochemical evaluation of carbamazepine microparticles produced by the rapid expansion of supercritical solutions and by spray-drying. Pharm. Dev. Technol. 8:111–20 [Google Scholar]
  16. Chiou AH-J, Yeh M-K, Chen C-Y, Wang D-P. 16.  2007. Micronization of meloxicam using a supercritical fluids process. J. Supercrit. Fluids 42:1120–28 [Google Scholar]
  17. Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, de Azevedo EG. 17.  2010. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J. Supercrit. Fluids 53:1156–64 [Google Scholar]
  18. Adami R, Järvenpää E, Osséo SL, Huopalahti R. 18.  2008. Influence of supercritical antisolvent micronization parameters on nalmefene HCl powder characteristics. Adv. Powder Technol. 19:6523–40 [Google Scholar]
  19. Tien Y-C, Su C-S, Lien L-H, Chen Y-P. 19.  2010. Recrystallization of erlotinib hydrochloride and fulvestrant using supercritical antisolvent process. J. Supercrit. Fluids 55:1292–99 [Google Scholar]
  20. Chen Y-M, Tang M, Chen Y-P. 20.  2010. Recrystallization and micronization of sulfathiazole by applying the supercritical antisolvent technology. Chem. Eng. J. 165:1358–64 [Google Scholar]
  21. Bolten D, Türk M. 21.  2012. Micronisation of carbamazepine through rapid expansion of supercritical solution (RESS). J. Supercrit. Fluids 62:32–40 [Google Scholar]
  22. Lin P-C, Su C-S, Tang M, Chen Y-P. 22.  2012. Micronization of ethosuximide using the rapid expansion of supercritical solution (RESS) process. J. Supercrit. Fluids 72:84–89 [Google Scholar]
  23. Bagratashvili V, Egorov A, Krotova L, Mironov A, Panchenko VY. 23.  et al. 2012. Supercritical fluid micronization of risperidone pharmaceutical substance. Russ. J. Phys. Chem. B. 6:7804–12 [Google Scholar]
  24. Rossmann M, Braeuer A, Leipertz A, Schluecker E. 24.  2013. Manipulating the size, the morphology and the polymorphism of acetaminophen using supercritical antisolvent (SAS) precipitation. J. Supercrit. Fluids 82:230–37 [Google Scholar]
  25. Martín A, Cocero MJ. 25.  2008. Micronization processes with supercritical fluids: fundamentals and mechanisms. Adv. Drug Deliv. Rev. 60:3339–50 [Google Scholar]
  26. Škerget M, Knez Ž, Knez Hrnčič M. 26.  2011. Solubility of solids in sub- and supercritical fluids: a review. J. Chem. Eng. Data 56:4694–719 [Google Scholar]
  27. Dohrn R, Fonseca JM, Peper S. 27.  2012. Experimental methods for phase equilibria at high pressures. Annu. Rev. Chem. Biomol. Eng. 3:343–67 [Google Scholar]
  28. Fonseca J, Dohrn R, Peper S. 28.  2011. High-pressure fluid-phase equilibria: experimental methods and systems investigated (2005–2008). Fluid Phase Equilib. 300:11–69 [Google Scholar]
  29. Dohrn R, Peper S, Fonseca J. 29.  2010. High-pressure fluid-phase equilibria: experimental methods and systems investigated (2000–2004). Fluid Phase Equilib. 288:11–54 [Google Scholar]
  30. Christov M, Dohrn R. 30.  2002. High-pressure fluid phase equilibria: experimental methods and systems investigated (1994–1999). Fluid Phase Equilib. 202:1153–218 [Google Scholar]
  31. Dohrn R, Brunner G. 31.  1995. High-pressure fluid-phase equilibria: experimental methods and systems investigated (1988–1993). Fluid Phase Equilib. 106:1213–82 [Google Scholar]
  32. Chrastil J. 32.  1982. Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 86:153016–21 [Google Scholar]
  33. Kumar SK, Johnston KP. 33.  1988. Modelling the solubility of solids in supercritical fluids with density as the independent variable. J. Supercrit. Fluids 1:115–22 [Google Scholar]
  34. Bartle KD, Clifford A, Jafar S, Shilstone G. 34.  1991. Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. J. Phys. Chem. Ref. Data 20:4713–56 [Google Scholar]
  35. Méndez-Santiago J, Teja AS. 35.  1999. The solubility of solids in supercritical fluids. Fluid Phase Equilib. 158:501–10 [Google Scholar]
  36. Del Valle JM, Aguilera JM. 36.  1988. An improved equation for predicting the solubility of vegetable oils in supercritical carbon dioxide. Ind. Eng. Chem. Res. 27:81551–53 [Google Scholar]
  37. Méndez-Santiago J, Teja AS. 37.  2000. Solubility of solids in supercritical fluids: consistency of data and a new model for cosolvent systems. Ind. Eng. Chem. Res. 39:124767–71 [Google Scholar]
  38. Sauceau M, Letourneau J-J, Richon D, Fages J. 38.  2003. Enhanced density-based models for solid compound solubilities in supercritical carbon dioxide with cosolvents. Fluid Phase Equilib. 208:199–113 [Google Scholar]
  39. Thakur R, Gupta RB. 39.  2005. Rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process: formation of griseofulvin nanoparticles. Ind. Eng. Chem. Res. 44:197380–87 [Google Scholar]
  40. González JC, Vieytes MR, Botana AM, Vieites JM, Botana LM. 40.  2001. Modified mass action law-based model to correlate the solubility of solids and liquids in entrained supercritical carbon dioxide. J. Chromatogr. A 910:1119–25 [Google Scholar]
  41. Pérez E, Cabanas A, Renuncio JA, Sánchez-Vicente Y, Pando C. 41.  2008. Cosolvent effect of methanol and acetic acid on dibenzofuran solubility in supercritical carbon dioxide. J. Chem. Eng. Data 53:112649–53 [Google Scholar]
  42. Sovova H. 42.  2001. Solubility of ferulic acid in supercritical carbon dioxide with ethanol as cosolvent. J. Chem. Eng. Data 46:51255–57 [Google Scholar]
  43. Kautz CB, Schneider GM, Shim J-J, Wagner B, Tuma D. 43.  2008. Solubilities of a 1,4-bis (alkylamino)-9,10-anthraquinone series in compressed carbon dioxide. J. Chem. Eng. Data 53:102356–71 [Google Scholar]
  44. Colussi S, Elvassore N, Kikic I. 44.  2006. A comparison between semi-empirical and molecular-based equations of state for describing the thermodynamic of supercritical micronization processes. J. Supercrit. Fluids 39:1118–26 [Google Scholar]
  45. Derr E, Deal C. 45.  1969. Analytical solution of groups: correlation of activity coefficients through structural group parameters. Inst. Chem. Eng. Symp. Ser. 32:340 [Google Scholar]
  46. Ronc M, Ratcliff G. 46.  1971. Prediction of excess free energies of liquid mixtures by an analytical group solution model. Can. J. Chem. Eng. 49:6825–30 [Google Scholar]
  47. Fredenslund A, Jones RL, Prausnitz JM. 47.  1975. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21:61086–99 [Google Scholar]
  48. Weidlich U, Gmehling J. 48.  1987. A modified UNIFAC model. 1. Prediction of VLE, he, and γ∞. Ind. Eng. Chem. Res. 26:71372–81 [Google Scholar]
  49. Holderbaum T, Gmehling J. 49.  1991. PSRK: a group contribution equation of state based on UNIFAC. Fluid Phase Equilib. 70:2251–65 [Google Scholar]
  50. Gmehling J. 50.  2009. Present status and potential of group contribution methods for process development. J. Chem. Thermodyn. 41:6731–47 [Google Scholar]
  51. Reverchon E, De Marco I. 51.  2011. Mechanisms controlling supercritical antisolvent precipitate morphology. Chem. Eng. J. 169:1358–70 [Google Scholar]
  52. Tabernero A, Martín del Valle EM, Galán MA. 52.  2012. Supercritical fluids for pharmaceutical particle engineering: methods, basic fundamentals and modelling. Chem. Eng. Process. Process Intensif. 60:9–25 [Google Scholar]
  53. Tavana A, Randolph AD. 53.  1989. Manipulating solids CSD in a supercritical fluid crystalizer: CO2-benzoic acid. AIChE J. 35:101625–30 [Google Scholar]
  54. Xia D, Gan Y, Cui F. 54.  2014. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals. Curr. Pharm. Des. 20:3408–35 [Google Scholar]
  55. Khan S, de Matas M, Zhang J, Anwar J. 55.  2013. Nanocrystal preparation: low-energy precipitation method revisited. Cryst. Growth Des. 13:72766–77 [Google Scholar]
  56. Lim RTY, Ng WK, Widjaja E, Tan RB. 56.  2013. Comparison of the physical stability and physicochemical properties of amorphous indomethacin prepared by co-milling and supercritical anti-solvent co-precipitation. J. Supercrit. Fluids 79:186–201 [Google Scholar]
  57. Lim RTY, Ng WK, Tan RB. 57.  2013. Dissolution enhancement of indomethacin via amorphization using co-milling and supercritical co-precipitation processing. Powder Technol. 240:79–87 [Google Scholar]
  58. Sacchetin PSC, Morales AR, Moraes ÂM, de Tarso Vieira e Rosa P. 58.  2013. Formation of PLA particles incorporating 17α-methyltestosterone by supercritical fluid technology. J. Supercrit. Fluids 77:52–62 [Google Scholar]
  59. Tenório-Neto ET, Silva EL, Cellet TSP, Silva EP, Franceschi E. 59.  et al. 2013. Coprecipitation of safrole oxide with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in supercritical carbon dioxide. J. Braz. Chem. Soc. 24:2327–35 [Google Scholar]
  60. Zhang J, Xie C, Wu J. 60.  2013. Method of using supercritical fluid anti-solvent crystallization to produce high purity caffeic acid phenethyl ester nano powders using a green solvent to conveniently produce high purity caffeic acid phenethyl ester nano powders. Patent No. TW201242680-A, TW426963-B1 Univ. Nat. Chung Hsing
  61. De Zordi N, Moneghini M, Kikic I, Grassi M, Del Rio Castillo AE. 61.  et al. 2012. Applications of supercritical fluids to enhance the dissolution behaviors of furosemide by generation of microparticles and solid dispersions. Eur. J. Pharm. Biopharm. 81:1131–41 [Google Scholar]
  62. Careno S, Boutin O, Badens E. 62.  2012. Drug recrystallization using supercritical anti-solvent (SAS) process with impinging jets: effect of process parameters. J. Cryst. Growth 342:134–41 [Google Scholar]
  63. Matson D, Petersen R, Smith R. 63.  1986. Formation of silica powders from the rapid expansion of supercritical solutions. Adv. Ceram. Mater. 1:3242 [Google Scholar]
  64. Debenedetti PG. 64.  1990. Homogeneous nucleation in supercritical fluids. AIChE J. 36:91289–98 [Google Scholar]
  65. Girotra P, Singh SK, Nagpal K. 65.  2013. Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm. Dev. Technol. 18:122–38 [Google Scholar]
  66. Janiszewska E, Witrowa-Rajchert D, Roj E. 66.  2013. Methods and trends of applying supercritical micronization. Zywnosc-Nauka Technol. Jakosc 20:65–15 [Google Scholar]
  67. Montes A, Gordilloa MD, Pereyraa CM, Giacomo GD, Martínez de la Ossaa EJ. 67.  2013. Poli (l-lactide) micronization by supercritical fluids. Chem. Eng. 32:2215–20 [Google Scholar]
  68. Sinha B, Müller RH, Möschwitzer JP. 68.  2013. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int. J. Pharm. 453:1126–41 [Google Scholar]
  69. Corazza M, Cardozo Filho L, Dariva C. 69.  2006. Modeling and simulation of rapid expansion of supercritical solutions. Braz. J. Chem. Eng. 23:3417–25 [Google Scholar]
  70. Ghoreishi S, Komeili S. 70.  2009. Modeling of fluorinated tetraphenylporphyrin nanoparticles size design via rapid expansion of supercritical solution. J. Supercrit. Fluids 50:2183–92 [Google Scholar]
  71. Helfgen B, Hils P, Holzknecht C, Türk M, Schaber K. 71.  2001. Simulation of particle formation during the rapid expansion of supercritical solutions. J. Aerosol Sci. 32:3295–319 [Google Scholar]
  72. Helfgen B, Türk M, Schaber K. 72.  2003. Hydrodynamic and aerosol modelling of the rapid expansion of supercritical solutions (RESS-process). J. Supercrit. Fluids 26:3225–42 [Google Scholar]
  73. Helfgen B, Türk M, Schaber K. 73.  2000. Theoretical and experimental investigations of the micronization of organic solids by rapid expansion of supercritical solutions. Powder Technol. 110:122–28 [Google Scholar]
  74. Hirunsit P, Huang Z, Srinophakun T, Charoenchaitrakool M, Kawi S. 74.  2005. Particle formation of ibuprofen-supercritical CO2 system from rapid expansion of supercritical solutions (RESS): a mathematical model. Powder Technol. 154:283–94 [Google Scholar]
  75. Türk M. 75.  1999. Formation of small organic particles by RESS: experimental and theoretical investigations. J. Supercrit. Fluids 15:179–89 [Google Scholar]
  76. Türk M. 76.  2000. Influence of thermodynamic behaviour and solute properties on homogeneous nucleation in supercritical solutions. J. Supercrit. Fluids 18:3169–84 [Google Scholar]
  77. Türk M, Helfgen B, Hils P, Lietzow R, Schaber K. 77.  2002. Micronization of pharmaceutical substances by rapid expansion of supercritical solutions (RESS): experiments and modeling. Part. Part. Syst. Charact. 19:5327–35 [Google Scholar]
  78. Weber M, Russell LM, Debenedetti PG. 78.  2002. Mathematical modeling of nucleation and growth of particles formed by the rapid expansion of a supercritical solution under subsonic conditions. J. Supercrit. Fluids 23:165–80 [Google Scholar]
  79. Franklin RK, Edwards JR, Chernyak Y, Gould RD, Henon F, Carbonell RG. 79.  2001. Formation of perfluoropolyether coatings by the rapid expansion of supercritical solutions (RESS) process. Part 2: numerical modeling. Ind. Eng. Chem. Res. 40:266127–39 [Google Scholar]
  80. Khalil I, Miller DR. 80.  2004. The structure of supercritical fluid free-jet expansions. AIChE J. 50:112697–704 [Google Scholar]
  81. Furukawa S, Kato S, Nitta T. 81.  2004. Molecular dynamics studies on clustering process of solute molecules through rapid expansion of supercritical fluids. Fluid Phase Equilib. 219:133–36 [Google Scholar]
  82. Römer F, Kraska T. 82.  2009. Molecular dynamics simulation of naphthalene particle formation by rapid expansion of a supercritical solution. J. Phys. Chem. C 113:4419028–38 [Google Scholar]
  83. Römer F, Kraska T. 83.  2010. Molecular dynamics simulation of the formation of pharmaceutical particles by rapid expansion of a supercritical solution. J. Supercrit. Fluids 55:2769–77 [Google Scholar]
  84. Debenedetti PG, Tom JW, Kwauk X, Yeo S-D. 84.  1993. Rapid expansion of supercritical solutions (RESS): fundamentals and applications. Fluid Phase Equilib. 82:311–21 [Google Scholar]
  85. Huang Z, Guo Y, Miao H, Teng L. 85.  2014. Solubility of progesterone in supercritical carbon dioxide and its micronization through RESS. Powder Technol. 258:66–77 [Google Scholar]
  86. Ardjmand M, Mirzajanzadeh M, Zabihi F. 86.  2014. Measurement and correlation of solid drugs solubility in supercritical systems. Chin. J. Chem. Eng. 22:5549–58 [Google Scholar]
  87. Bolten D, Staudt R, Türk M. 87.  2014. Adsorption von CO2 und racemischen wirkstoffen an nanoskaligen Trägern. Chem. Ing. Tech. 86:3375–79 [Google Scholar]
  88. Baseri H, Lotfollahi MN. 88.  2014. Effects of expansion parameters on characteristics of gemfibrozil powder produced by rapid expansion of supercritical solution process. Powder Technol 253:744–50 [Google Scholar]
  89. Hiendrawan S, Veriansyah B, Tjandrawinata RR. 89.  2014. Micronization of fenofibrate by rapid expansion of supercritical solution. J. Ind. Eng. Chem. 20:154–60 [Google Scholar]
  90. Montes A, Litwinowicz A, Gradl U, Gordillo M, Pereyra C, Martinez de la Ossa E. 90.  2013. Exploring high operating conditions in the ibuprofen precipitation by rapid expansion of supercritical solutions process. Ind. Eng. Chem. Res. 53:1474–80 [Google Scholar]
  91. Khapli S, Jagannathan R. 91.  2014. Supercritical CO2 based processing of amorphous fluoropolymer Teflon-AF: surfactant-free dispersions and superhydrophobic films. J. Supercrit. Fluids 85:49–56 [Google Scholar]
  92. Montes A, Gordillo MD, Pereyra C, Martínez de la Ossa EJ. 92.  2014. New insights into acrylic polymer precipitation by supercritical fluids. Chem. Eng. Technol. 37:1141–48 [Google Scholar]
  93. Asghari I, Esmaeilzadeh F. 93.  2013. Manipulation of key parameters in RESS process for attapulgite particles utilizing in drilling mud and investigation on its rheological characteristics. J. Pet. Sci. Eng. 112:359–69 [Google Scholar]
  94. Lashkarbolooki M, Hezave AZ, Rahnama Y, Ozlati R, Rajaei H, Esmaeilzadeh F. 94.  2013. Solubility of cyproheptadine in supercritical carbon dioxide; experimental and modeling approaches. J. Supercrit. Fluids 84:13–19 [Google Scholar]
  95. Lashkarbolooki M, Hezave AZ, Rahnama Y, Rajaei H, Esmaeilzadeh F. 95.  2013. Solubility of chlorpheniramine maleate in supercritical carbon dioxide. J. Supercrit. Fluids 84:29–35 [Google Scholar]
  96. Montes A, Gordillo M, Pereyra C, Martínez de la Ossa E. 96.  2013. Supercritical CO2 precipitation of poly (l-lactic acid) in a wide range of miscibility. J. Supercrit. Fluids 81:236–44 [Google Scholar]
  97. Chen W, Hu X, Hong Y, Su Y, Wang H, Li J. 97.  2013. Ibuprofen nanoparticles prepared by a PGSS™-based method. Powder Technol. 245:241–50 [Google Scholar]
  98. Böhm D, Grau T, Igl-Schmid N, Johnsen S, Kaczowka E. 98.  et al. 2013. Demonstration of NIR inline monitoring for hops extraction and micronization of benzoic acid in supercritical CO2. J. Supercrit. Fluids 79:330–36 [Google Scholar]
  99. Ovaskainen L, Rodriguez-Meizoso I, Birkin NA, Howdle SM, Gedde U. 99.  et al. 2013. Towards superhydrophobic coatings made by non-fluorinated polymers sprayed from a supercritical solution. J. Supercrit. Fluids 77:134–41 [Google Scholar]
  100. Wu X, Yi J-M, Liu Y-J, Liu Y-B, Zhang P-L. 100.  2013. Solubility and micronization of phenacetin in supercritical carbon dioxide. Chem. Papers 67:5517–25 [Google Scholar]
  101. Montes A, Bendel A, Kürti R, Gordillo M, Pereyra C, Martínez de la Ossa E. 101.  2013. Processing naproxen with supercritical CO2. J. Supercrit. Fluids 75:21–29 [Google Scholar]
  102. Baseri H, Lotfollahi MN. 102.  2013. Formation of gemfibrozil with narrow particle size distribution via rapid expansion of supercritical solution process (RESS). Powder Technol. 235:677–84 [Google Scholar]
  103. Santos DT, Meireles MAA. 103.  2013. Micronization and encapsulation of functional pigments using supercritical carbon dioxide. J. Food Process Eng. 36:136–49 [Google Scholar]
  104. Pan S, Zhou J, Li H, Quan C. 104.  2013. Particle formation by supercritical fluid extraction and expansion process. Sci. World J. 2013:538584 [Google Scholar]
  105. Hu DD, Ding ML, Zhu GW, Wang WQ, Zhao ZQ. 105.  2013. SCF preparation of drug particle using size adjustable nozzle. Key Eng. Mater. 561:441–47 [Google Scholar]
  106. Falconer JR, Wen J, Zargar-Shoshtari S, Chen JJ, Mohammed F. 106.  et al. 2012. The effects of supercritical carbon dioxide processing on progesterone dispersion systems: a multivariate study. AAPS PharmSciTech. 13:41255–65 [Google Scholar]
  107. Sabegh MA, Rajaei H, Esmaeilzadeh F, Lashkarbolooki M. 107.  2012. Solubility of ketoprofen in supercritical carbon dioxide. J. Supercrit. Fluids 72:191–97 [Google Scholar]
  108. Essel JT, Cortopassi AC, Kuo KK, Leh CG, Adair JH. 108.  2012. Formation and characterization of nano-sized RDX particles produced using the RESS-AS process. Propellants Explos. Pyrotech. 37:6699–706 [Google Scholar]
  109. Samei M, Vatanara A, Fatemi S, Rouholamini Najafabadi A. 109.  2012. Process variables in the formation of nanoparticles of megestrol acetate through rapid expansion of supercritical CO2. J. Supercrit. Fluids 70:1–7 [Google Scholar]
  110. Kwauk X, Debenedetti PG. 110.  1993. Mathematical modeling of aerosol formation by rapid expansion of supercritical solutions in a converging nozzle. J. Aerosol Sci. 24:4445–69 [Google Scholar]
  111. De la Fuente Badilla J, Peters C, de Swaan Arons J. 111.  2000. Volume expansion in relation to the gas-antisolvent process. J. Supercrit. Fluids 17:113–23 [Google Scholar]
  112. De la Fuente JC, Shariati A, Peters CJ. 112.  2004. On the selection of optimum thermodynamic conditions for the gas process. J. Supercrit. Fluids 32:155–61 [Google Scholar]
  113. Reverchon E, De Marco I, Caputo G, Della Porta G. 113.  2003. Pilot scale micronization of amoxicillin by supercritical antisolvent precipitation. J. Supercrit. Fluids 26:11–7 [Google Scholar]
  114. De Gioannis B, Gonzalez AV, Subra P. 114.  2004. Anti-solvent and co-solvent effect of CO2 on the solubility of griseofulvin in acetone and ethanol solutions. J. Supercrit. Fluids 29:149–57 [Google Scholar]
  115. Miguel F, Martín A, Mattea F, Cocero M. 115.  2008. Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chem. Eng. Process. Process Intensif. 47:91594–602 [Google Scholar]
  116. Reverchon E, Torino E, Dowy S, Braeuer A, Leipertz A. 116.  2010. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization. Chem. Eng. J. 156:2446–58 [Google Scholar]
  117. Reverchon E, De Marco I. 117.  2004. Supercritical antisolvent micronization of cefonicid: thermodynamic interpretation of results. J. Supercrit. Fluids 31:2207–15 [Google Scholar]
  118. Reverchon E, De Marco I, Torino E. 118.  2007. Nanoparticles production by supercritical antisolvent precipitation: a general interpretation. J. Supercrit. Fluids 43:1126–38 [Google Scholar]
  119. Tavares Cardoso MA, Antunes S, van Keulen F, Ferreira BS, Geraldes A. 119.  et al. 2009. Supercritical antisolvent micronization of synthetic all-trans-beta-carotene with tetrahydrofuran as solvent and carbon dioxide as antisolvent. J. Chem. Technol. Biotechnol. 84:2215–22 [Google Scholar]
  120. Tenorio A, Gordillo M, Pereyra C, de la Ossa E. 120.  2007. Controlled submicro particle formation of ampicillin by supercritical antisolvent precipitation. J. Supercrit. Fluids 40:2308–16 [Google Scholar]
  121. Weber A, Yelash L, Kraska T. 121.  2005. Effect of the phase behaviour of the solvent-antisolvent systems on the gas-antisolvent-crystallisation of paracetamol. J. Supercrit. Fluids 33:2107–13 [Google Scholar]
  122. Martín A, Cocero M. 122.  2004. Numerical modeling of jet hydrodynamics, mass transfer, and crystallization kinetics in the supercritical antisolvent (SAS) process. J. Supercrit. Fluids 32:1203–19 [Google Scholar]
  123. Sierra-Pallares J, Marchisio DL, Parra-Santos MT, García-Serna J, Castro F, Cocero MJ. 123.  2012. A computational fluid dynamics study of supercritical antisolvent precipitation: mixing effects on particle size. AIChE J. 58:2385–98 [Google Scholar]
  124. Torino E, De Marco I, Reverchon E. 124.  2010. Organic nanoparticles recovery in supercritical antisolvent precipitation. J. Supercrit. Fluids 55:1300–6 [Google Scholar]
  125. Prosapio V, Reverchon E, De Marco I. 125.  2014. Antisolvent micronization of bsa using supercritical mixtures carbon dioxide+organic solvent. J. Supercrit. Fluids 94:189–97 [Google Scholar]
  126. De Marco I, Reverchon E. 126.  2012. Supercritical carbon dioxide+ethanol mixtures for the antisolvent micronization of hydrosoluble materials. Chem. Eng. J. 187:401–9 [Google Scholar]
  127. De Marco I, Reverchon E. 127.  2011. Influence of pressure, temperature and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization. J. Supercrit. Fluids 58:2295–302 [Google Scholar]
  128. Marra F, De Marco I, Reverchon E. 128.  2012. Numerical analysis of the characteristic times controlling supercritical antisolvent micronization. Chem. Eng. Sci. 71:39–45 [Google Scholar]
  129. De Marco I, Prosapio V, Cice F, Reverchon E. 129.  2013. Use of solvent mixtures in supercritical antisolvent process to modify precipitates morphology: cellulose acetate microparticles. J. Supercrit. Fluids 83:153–60 [Google Scholar]
  130. Montes A, Kin N, Gordillo M, Pereyra C, Martínez de la Ossa E. 130.  2014. Polymer-naproxen precipitation by supercritical antisolvent (SAS) process. J. Supercrit. Fluids 89:58–67 [Google Scholar]
  131. Shen B, Zhang P. 131.  2013. An overview of heat transfer near the liquid-gas critical point under the influence of the piston effect: phenomena and theory. Int. J. Therm. Sci. 71:1–19 [Google Scholar]
  132. Vefgh N, Esmaeilzadeh F, Mowla D, Golchehreh AA. 132.  2013. Micronization of iron oxide particles using gas antisolvent process. J. Dispers. Sci. Technol. 34:1140–45 [Google Scholar]
  133. Luetge C, Bork M, Knez Z, Kreiner M. 133.  2007. Ultra high pressure dense gas extraction and fractionation. Proc. Int. Symp. High Press. Process Technol. Chem. Eng., 5th, Segovia, Spain Event 661 1–4
  134. Weidner E, Knez Ž, Novak Z. 134.  1995. Process for preparing particles or powders. Eur Patent EP 0744 992, Patent WO 9521688
  135. Fukné-Kokot K, König A, Knez Ž, Škerget M. 135.  2000. Comparison of different methods for determination of the S-L-G equilibrium curve of a solid component in the presence of a compressed gas. Fluid Phase Equilib. 173:2297–310 [Google Scholar]
  136. Fukné-Kokot K, Škerget M, König A, Knez Ž. 136.  2003. Modified freezing method for measuring the gas solubility along the solid-liquid-gas equilibrium line. Fluid Phase Equilib. 205:2233–47 [Google Scholar]
  137. Škerget M, Novak-Pintarič Z, Knez Ž, Kravanja Z. 137.  2002. Estimation of solid solubilities in supercritical carbon dioxide: Peng-Robinson adjustable binary parameters in the near critical region. Fluid Phase Equilib. 203:1111–32 [Google Scholar]
  138. De Swaan Arons J, Diepen G. 138.  1963. Thermodynamic study of melting equilibria under pressure of a supercritical gas. Recl. Trav. Chim. Pays-Bas 82:3249–56 [Google Scholar]
  139. Tuminello WH, Dee GT, McHugh MA. 139.  1995. Dissolving perfluoropolymers in supercritical carbon dioxide. Macromolecules 28:51506–10 [Google Scholar]
  140. Weidner E, Wiesmet V, Knez Ž, Škerget M. 140.  1997. Phase equilibrium (solid-liquid-gas) in polyethyleneglycol-carbon dioxide systems. J. Supercrit. Fluids 10:3139–47 [Google Scholar]
  141. O'Connell JP, Weber W, Brunner G. 141.  2002. Measurement and thermodynamics of triglyceride melting in near-critical fluids. Proc. AIChE 2002 Annu. Meet. Thermodyn. Under High Press, Indianapolis, IN [Google Scholar]
  142. Ke JH, Tan CS. 142.  2002. Solvent selection for gas antisolvent precipitation process. J. Chin. Inst. Chem. Eng. 33:5491–97 [Google Scholar]
  143. De Paz E, Martín Á, Duarte CM, Cocero MJ. 143.  2012. Formulation of β-carotene with poly-(ε-caprolactones) by PGSS process. Powder Technol. 217:77–83 [Google Scholar]
  144. Weidner E, Kilzer A, Reibe C, Knez Ž. 144.  2008. Verfahren zur Herstellung von Gelatinpulver und damit hergestelltes gelatinpulver Ger. Patent No. DE 10 2008 021 634 8 2008
  145. Martín Á, Weidner E. 145.  2010. PGSS-drying: mechanisms and modeling. J. Supercrit. Fluids 55:1271–81 [Google Scholar]
  146. Kappler P, Leiner W, Petermann M, Weidner E. 146.  2003. Size and morphology of particles generated by spraying polymer-melts with carbon dioxide. Sixth Int. Symp. Supercrit. Fluids, Versailles, France1891
  147. Strumendo M, Bertucco A, Elvassore N. 147.  2007. Modeling of particle formation processes using gas saturated solution atomization. J. Supercrit. Fluids 41:1115–25 [Google Scholar]
  148. Elvassore N, Flaibani M, Bertucco A, Caliceti P. 148.  2003. Thermodynamic analysis of micronization processes from gas-saturated solution. Ind. Eng. Chem. Res. 42:235924–30 [Google Scholar]
  149. Calderone M, Rodier E, Letourneau J-J, Fages J. 149.  2007. Solidification of precirol by the expansion of a supercritical fluid saturated melt: from the thermodynamic balance towards the crystallization aspect. J. Supercrit. Fluids 42:2189–99 [Google Scholar]
  150. Li J, Matos HA, de Azevedo EG. 150.  2004. Two-phase homogeneous model for particle formation from gas-saturated solution processes. J. Supercrit. Fluids 32:1275–86 [Google Scholar]
  151. Li J, Rodrigues M, Paiva A, Matos HA, Gomes de Azevedo E. 151.  2005. Modeling of the PGSS process by crystallization and atomization. AIChE J. 51:82343–57 [Google Scholar]
  152. Pollak S, Kareth S, Kilzer A, Petermann M. 152.  2011. Thermal analysis of the droplet solidification in the PGSS-process. J. Supercrit. Fluids 56:3299–303 [Google Scholar]
  153. Weidner E. 153.  2009. High pressure micronization for food applications. J. Supercrit. Fluids 47:3556–65 [Google Scholar]
  154. Freire TP, São Pedro A, Fialho R, Albuquerque EC, Bertucco A, Costa G. 154.  2014. Measurement and modelling of binary (solid + liquid + vapour) equilibria involving lipids and CO2. J. Chem. Thermodyn. 69:172–78 [Google Scholar]
  155. Rodríguez-Rojoa S, Lopes DD, Alexandre A, Pereira H, Nogueira I, Duarte C. 155.  2013. Encapsulation of perfluorocarbon gases into lipid-based carrier by PGSS. J. Supercrit. Fluids 82:206–12 [Google Scholar]
  156. Fraile M, Martín Á, Deodato D, Rodriguez-Rojo S, Nogueira I. 156.  et al. 2013. Production of new hybrid systems for drug delivery by PGSS (particles from gas saturated solutions) process. J. Supercrit. Fluids 81:226–35 [Google Scholar]
  157. Yun J-H, Lee H-Y, Asaduzzaman A, Chun B-S. 157.  2013. Micronization and characterization of squid lecithin/polyethylene glycol composite using particles from gas saturated solutions (PGSS) process. J. Ind. Eng. Chem. 19:2686–91 [Google Scholar]
  158. Vijayaraghavan M, Stolnik S, Howdle SM, Illum L. 158.  2013. Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: preparation of microparticles using PEG, fatty acids and physical or chemicals blends of PEG and fatty acids. Int. J. Pharm. 441:1580–88 [Google Scholar]
  159. Vijayaraghavan M, Stolnik S, Howdle SM, Illum L. 159.  2012. Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: thermodynamic behaviour of fatty acids, PEGs and PEG-fatty acids. Int. J. Pharm. 438:1225–31 [Google Scholar]
  160. Luetge C, Steinhagen V, Bork M, Knez Ž. 160.  Supercritical carbon dioxide extraction of plant materials at ultrahigh pressure. Proc. 9th Int. Symp. Supercrit. Fluids, ISSF–2009, Arcachon, France [Google Scholar]
  161. Bork M, Luetge C, Knez Ž. 145.  2006. Production plant for de-oiling of soy raw lecithin by SFE with carbon dioxide. 8th Int. Symp. Supercrit. Fluids, Kyoto, Japan

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error