Liquid crystals (LCs) are widely known for their use in liquid crystal displays (LCDs). Indeed, LCDs represent one of the most successful technologies developed to date using a responsive soft material: An electric field is used to induce a change in ordering of the LC and thus a change in optical appearance. Over the past decade, however, research has revealed the fundamental underpinnings of potentially far broader and more pervasive uses of LCs for the design of responsive soft material systems. These systems involve a delicate interplay of the effects of surface-induced ordering, elastic strain of LCs, and formation of topological defects and are characterized by a chemical complexity and diversity of nano- and micrometer-scale geometry that goes well beyond that previously investigated. As a reflection of this evolution, the community investigating LC-based materials now relies heavily on concepts from colloid and interface science. In this context, this review describes recent advances in colloidal and interfacial phenomena involving LCs that are enabling the design of new classes of soft matter that respond to stimuli as broad as light, airborne pollutants, bacterial toxins in water, mechanical interactions with living cells, molecular chirality, and more. Ongoing efforts hint also that the collective properties of LCs (e.g., LC-dispersed colloids) will, over the coming decade, yield exciting new classes of driven or active soft material systems in which organization (and useful properties) emerges during the dissipation of energy.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. de Gennes PG, Prost J. 1.  1995. The Physics of Liquid Crystals New York: Oxford Univ. Press
  2. Borshch V, Kim Y-K, Xiang J, Gao M, Jakli A. 2.  et al. 2013. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat. Commun. 4:1–8 [Google Scholar]
  3. Chen D, Nakata M, Shao R, Tuchband MR, Shuai M. 3.  et al. 2014. Twist-bend heliconical chiral nematic liquid crystal phase of an achiral rigid bent-core mesogen. Phys. Rev. E 89:022506 [Google Scholar]
  4. Cestari M, Diez-Berart S, Dunmur DA, Ferrarini A, de la Fuente MR. 4.  et al. 2011. Phase behavior and properties of the liquid-crystal dimer 1′′,7′′-bis(4-cyanobiphenyl-4′-yl) heptane: a twist-bend nematic liquid crystal. Phys. Rev. E 84:031704 [Google Scholar]
  5. Hough LE, Jung HT, Kruerke D, Heberling MS, Nakata M. 5.  et al. 2009. Helical nanofilament phases. Science 325:456–60 [Google Scholar]
  6. Pintre IC, Serrano JL, Ros MB, Martínez-Perdiguero J, Alonso I. 6.  et al. 2010. Bent-core liquid crystals in a route to efficient organic nonlinear optical materials. J. Mater. Chem. 20:2965–71 [Google Scholar]
  7. Otani T, Araoka F, Ishikawa K, Takezoe H. 7.  2009. Enhanced optical activity by achiral rod-like molecules nanosegregated in the B4 structure of achiral bent-core molecules. J. Am. Chem. Soc. 131:12368–72 [Google Scholar]
  8. Kim H, Lee S, Shin TJ, Cha YJ, Korblova E. 8.  et al. 2013. Alignment of helical nanofilaments on the surfaces of various self-assembled monolayers. Soft Matter 9:6185–91 [Google Scholar]
  9. Yang D, Crooker P. 9.  1987. Chiral-racemic phase diagrams of blue-phase liquid crystals. Phys. Rev. A 35:4419–23 [Google Scholar]
  10. Meiboom S, Sethna JP, Anderson PW, Brinkman WF. 10.  1981. Theory of the blue phase of cholesteric liquid-crystals. Phys. Rev. Lett. 46:1216–19 [Google Scholar]
  11. Wright DC, Mermin ND. 11.  1989. Crystalline liquids: the blue phases. Rev. Mod. Phys. 61:385–432 [Google Scholar]
  12. Kikuchi H, Yokota M, Hisakado Y, Yang H, Kajiyama T. 12.  2002. Polymer-stabilized liquid crystal blue phases. Nat. Mater. 1:64–68 [Google Scholar]
  13. Karatairi E, Rožič B, Kutnjak Z, Tzitzios V, Nounesis G. 13.  et al. 2010. Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. Phys. Rev. E 81:041703 [Google Scholar]
  14. Lee H, Labes MM. 14.  2007. Phase diagram and thermodynamic properties of disodium cromoglycate-water lyomesophases. Mol. Cryst. Liquid Cryst. 91:53–58 [Google Scholar]
  15. Lydon J. 15.  2010. Chromonic review. J. Mater. Chem. 20:10071–99 [Google Scholar]
  16. Mushenheim PC, Trivedi RR, Tuson HH, Weibel DB, Abbott NL. 16.  2014. Dynamic self-assembly of motile bacteria in liquid crystals. Soft Matter 10:88–95 [Google Scholar]
  17. Mushenheim PC, Trivedi RR, Weibel DB, Abbott NL. 17.  2014. Using liquid crystals to reveal how mechanical anisotropy changes interfacial behaviors of motile bacteria. Biophys. J. 107:255–65 [Google Scholar]
  18. Zhou S, Sokolov A, Lavrentovich OD, Aranson IS. 18.  2014. Living liquid crystals. PNAS 111:1265–70 [Google Scholar]
  19. Sokolov A, Zhou S, Lavrentovich OD, Aranson IS. 19.  2015. Individual behavior and pairwise interactions between microswimmers in anisotropic liquid. Phys. Rev. E 91:013009 [Google Scholar]
  20. Kumar A, Galstian T, Pattanayek SK, Rainville S. 20.  2013. The motility of bacteria in an anisotropic liquid environment. Mol. Cryst. Liquid Cryst. 574:33–39 [Google Scholar]
  21. Jerome B. 21.  1991. Surface effects and anchoring in liquid crystals. Rep. Prog. Phys. 54:391–451 [Google Scholar]
  22. Gupta VK, Abbott NL. 22.  1996. Azimuthal anchoring transition of nematic liquid crystals on self-assembled monolayers formed from odd and even alkanethiols. Phys. Rev. E 54:4540–43 [Google Scholar]
  23. Lockwood NA, Gupta JK, Abbott NL. 23.  2008. Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases. Surface Sci. Rep. 63:255–93 [Google Scholar]
  24. Collings PJ, Hird M. 24.  1997. Introduction to Liquid Crystals: Chemistry and Physics London: Taylor & Francis
  25. Lavrentovich OD. 25.  1998. Topological defects in dispersed liquid crystals, or words and worlds around liquid crystal drops. Liquid Cryst. 24:117–25 [Google Scholar]
  26. Poulin P, Weitz DA. 26.  1998. Inverted and multiple nematic emulsions. Phys. Rev. E 57:626–37 [Google Scholar]
  27. Guzman O, Kim EB, Grollau S, Abbott NL, de Pablo JJ. 27.  2003. Defect structure around two colloids in a liquid crystal. Phys. Rev. Lett. 91:235509 [Google Scholar]
  28. Poulin P, Stark H, Lubensky TC, Weitz DA. 28.  1997. Novel colloidal interactions in anisotropic fluids. Science 275:1770–73 [Google Scholar]
  29. Škarabot M, Ravnik M, Žumer S, Tkalec U, Poberaj I. 29.  et al. 2008. Hierarchical self-assembly of nematic colloidal superstructures. Phys. Rev. E 77:061706 [Google Scholar]
  30. Koenig GM, de Pablo JJ, Abbott NL. 30.  2009. Characterization of the reversible interaction of pairs of nanoparticles dispersed in nematic liquid crystals. Langmuir 25:13318–21 [Google Scholar]
  31. Gu Y, Abbott NL. 31.  2000. Observation of Saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev. Lett. 85:4719–22 [Google Scholar]
  32. Loudet JC, Barois P, Poulin P. 32.  2000. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature 407:611–13 [Google Scholar]
  33. Shah RR, Abbott NL. 33.  2001. Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals. Science 293:1296–99 [Google Scholar]
  34. Hunter JT, Pal SK, Abbott NL. 34.  2010. Adsorbate-induced ordering transitions of nematic liquid crystals on surfaces decorated with aluminum perchlorate salts. ACS Appl. Mater. Interfaces 2:1857–65 [Google Scholar]
  35. Malone SM, Schwartz DK. 35.  2011. Macroscopic liquid crystal response to isolated DNA helices. Langmuir 27:11767–72 [Google Scholar]
  36. Bai Y, Abbott NL. 36.  2012. Enantiomeric interactions between liquid crystals and organized monolayers of tyrosine-containing dipeptides. J. Am. Chem. Soc. 134:548–58 [Google Scholar]
  37. Bai Y, Abbasi R, Wang X, Abbott NL. 37.  2014. Liquid crystals anchored on mixed monolayers of chiral versus achiral molecules: continuous change in orientation as a function of enantiomeric excess. Angew. Chem. 126:8217–21 [Google Scholar]
  38. Shah RR, Abbott NL. 38.  2001. Coupling of the orientations of liquid crystals to electrical double layers formed by the dissociation of surface-immobilized salts. J. Phys. Chem. B 105:4936–50 [Google Scholar]
  39. Miller DS, Carlton RJ, Mushenheim PC, Abbott NL. 39.  2013. Introduction to optical methods for characterizing liquid crystals at interfaces. Langmuir 29:3154–69 [Google Scholar]
  40. Bandara HM, Burdette SC. 40.  2012. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41:1809–25 [Google Scholar]
  41. Beharry AA, Woolley GA. 41.  2011. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40:4422–37 [Google Scholar]
  42. Seki T, Sakuragi M, Kawanishi Y, Tamaki T, Fukuda R. 42.  et al. 1993. “Command surfaces” of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers. Langmuir 9:211–18 [Google Scholar]
  43. Gibbons WM, Shannon PJ, Sun S-T, Swetlin BJ. 43.  1991. Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nature 351:49–50 [Google Scholar]
  44. Fukuhara K, Nagano S, Hara M, Seki T. 44.  2014. Free-surface molecular command systems for photoalignment of liquid crystalline materials. Nat. Commun. 5:3320 [Google Scholar]
  45. Eremin A, Hirankittiwong P, Chattham N, Nadasi H, Stannarius R. 45.  et al. 2015. Optically driven translational and rotational motions of microrod particles in a nematic liquid crystal. PNAS 112:1716–20 [Google Scholar]
  46. Sen A, Kupcho KA, Grinwald BA, Vantreeck HJ, Acharya BR. 46.  2013. Liquid crystal-based sensors for selective and quantitative detection of nitrogen dioxide. Sens. Actuators B Chem. 178:222–27 [Google Scholar]
  47. Grinwald BA, Robinson SE, Burland TG, Acharya BR. 47.  2014. Liquid Crystal Sensors for Dosimetry and Rapid Sensing of Toxic Gases. Madison, WI: Platypus Technol. http://www.platypustech.com/LC-posters/AirSensing2014.pdf
  48. Nakata M, Zanchetta G, Buscaglia M, Bellini T, Clark NA. 48.  2008. Liquid crystal alignment on a chiral surface: interfacial interaction with sheared DNA films. Langmuir 24:10390–94 [Google Scholar]
  49. Price AD, Schwartz DK. 49.  2008. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface. J. Am. Chem. Soc. 130:8188–94 [Google Scholar]
  50. Brake JM, Daschner MK, Luk YY, Abbott NL. 50.  2003. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302:2094–97 [Google Scholar]
  51. Gupta JK, Meli MV, Teren S, Abbott NL. 51.  2008. Elastic energy-driven phase separation of phospholipid monolayers at the nematic liquid-crystal-aqueous interface. Phys. Rev. Lett. 100:048301 [Google Scholar]
  52. Gupta JK, Abbott NL. 52.  2009. Principles for manipulation of the lateral organization of aqueous-soluble surface-active molecules at the liquid crystal-aqueous interface. Langmuir 25:2026–33 [Google Scholar]
  53. Lee G, Carlton RJ, Araoka F, Abbott NL, Takezoe H. 53.  2013. Amplification of the stereochemistry of biomolecular adsorbates by deracemization of chiral domains in bent-core liquid crystals. Adv. Mater. 25:245–49 [Google Scholar]
  54. Noonan PS, Mohan P, Goodwin AP, Schwartz DK. 54.  2014. DNA hybridization-mediated liposome fusion at the aqueous liquid crystal interface. Adv. Funct. Mater. 24:3206–12 [Google Scholar]
  55. Park J-S, Abbott NL. 55.  2008. Ordering transitions in thermotropic liquid crystals induced by the interfacial assembly and enzymatic processing of oligopeptide amphiphiles. Adv. Mater. 20:1185–90 [Google Scholar]
  56. Khan M, Park SY. 56.  2014. Liquid crystal-based proton sensitive glucose biosensor. Anal. Chem. 86:1493–501 [Google Scholar]
  57. Khan M, Kim Y, Lee JH, Kang I-K, Park S-Y. 57.  2014. Real-time liquid crystal-based biosensor for urea detection. Anal. Methods 6:5753–59 [Google Scholar]
  58. Zhu Q, Yang K-L. 58.  2013. Amplification of interference color by using liquid crystal for protein detection. Appl. Phys. Lett. 103:243701 [Google Scholar]
  59. Lavrentovich OD. 59.  2014. Transport of particles in liquid crystals. Soft Matter 10:1264–83 [Google Scholar]
  60. Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S. 60.  2006. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313:954–58 [Google Scholar]
  61. Tkalec U, Ravnik M, Čopar S, Žumer S, Muševič I. 61.  2011. Reconfigurable knots and links in chiral nematic colloids. Science 2011:62–65 [Google Scholar]
  62. Chandran SP, Mondiot F, Loudet JC. 62.  2011. Photonic control of surface anchoring on solid colloids dispersed in liquid crystals. Langmuir 27:15185–98 [Google Scholar]
  63. Lapointe CP, Mason TG, Smalyukh II. 63.  2009. Shape-controlled colloidal interactions in nematic liquid crystals. Science 326:1083–86 [Google Scholar]
  64. Senyuk B, Liu Q, He S, Kamien RD, Kusner RB. 64.  et al. 2013. Topological colloids. Nature 493:200–5 [Google Scholar]
  65. Liu Q, Senyuk B, Tasinkevych M, Smalyukh II. 65.  2013. Nematic liquid crystal boojums with handles on colloidal handlebodies. PNAS 110:9231–36 [Google Scholar]
  66. Tkalec U, Škarabot M, Muševič I. 66.  2008. Interactions of micro-rods in a thin layer of a nematic liquid crystal. Soft Matter 4:2402–9 [Google Scholar]
  67. Conradi M, Ravnik M, Bele M, Zorko M, Žumer S, Muševič I. 67.  2009. Janus nematic colloids. Soft Matter 5:3905–12 [Google Scholar]
  68. Loudet JC, Hanusse P, Poulin P. 68.  2004. Stokes drag on a sphere in a nematic liquid crystal. Science 306:1525 [Google Scholar]
  69. Smalyukh II, Kachynski AV, Kuzmin AN, Prasad PN. 69.  2006. Laser trapping in anisotropic fluids and polarization-controlled particle dynamics. PNAS 103:18048–53 [Google Scholar]
  70. Koenig GM, Ong R, Cortes AD, Moreno-Razo JA, de Pablo JJ, Abbott NL. 70.  2009. Single nanoparticle tracking reveals influence of chemical functionality of nanoparticles on local ordering of liquid crystals and nanoparticle diffusion coefficients. Nano Lett. 9:2794–801 [Google Scholar]
  71. Stark H, Ventzki D. 71.  2001. Stokes drag of spherical particles in a nematic environment at low Ericksen numbers. Phys. Rev. E 64:031711 [Google Scholar]
  72. Turiv T, Lazo I, Brodin A, Lev BI, Reiffenrath V. 72.  et al. 2013. Effect of collective molecular reorientations on Brownian motion of colloids in nematic liquid crystal. Science 342:1351–54 [Google Scholar]
  73. Lavrentovich OD, Lazo I, Pishnyak OP. 73.  2010. Nonlinear electrophoresis of dielectric and metal spheres in a nematic liquid crystal. Nature 467:947–50 [Google Scholar]
  74. Lazo I, Lavrentovich OD. 74.  2013. Liquid crystal-enabled electrophoresis of spheres in a nematic medium with negative dielectric anisotropy. Philos. Trans. A 371:20120255 [Google Scholar]
  75. Moreno-Razo JA, Sambriski EJ, Abbott NL, Hernández-Ortiz JP, de Pablo JJ. 75.  2012. Liquid-crystal-mediated self-assembly at nanodroplet interfaces. Nature 485:86–89 [Google Scholar]
  76. Koenig GM, Lin I, Abbott NL. 76.  2009. Chemoresponsive assemblies of microparticles at liquid crystalline interfaces. PNAS 107:3998–4003 [Google Scholar]
  77. Miller DS, Abbott NL. 77.  2013. Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets. Soft Matter 9:374–82 [Google Scholar]
  78. Miller DS, Wang X, Abbott NL. 78.  2014. Design of functional materials based on liquid crystalline droplets. Chem. Mater. 26:496–506 [Google Scholar]
  79. Gupta JK, Sivakumar S, Caruso F, Abbott NL. 79.  2009. Size-dependent ordering of liquid crystals observed in polymeric capsules with micrometer and smaller diameters. Angew. Chem. Int. Ed. 48:1652–55 [Google Scholar]
  80. Gupta JK, Zimmerman JS, de Pablo JJ, Caruso F, Abbott NL. 80.  2009. Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets. Langmuir 25:9016–24 [Google Scholar]
  81. Sivakumar S, Wark KL, Gupta JK, Abbott NL, Caruso F. 81.  2009. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv. Funct. Mater. 19:2260–65 [Google Scholar]
  82. Alino VJ, Tay KX, Khan SA, Yang KL. 82.  2012. Inkjet printing and release of monodisperse liquid crystal droplets from solid surfaces. Langmuir 28:14540–46 [Google Scholar]
  83. Alino VJ, Pang J, Yang KL. 83.  2011. Liquid crystal droplets as a hosting and sensing platform for developing immunoassays. Langmuir 27:11784–89 [Google Scholar]
  84. Alino VJ, Sim PH, Choy WT, Fraser A, Yang KL. 84.  2012. Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots. Langmuir 28:17571–77 [Google Scholar]
  85. Lin I, Miller DS, Bertics PJ, Murphy CJ, de Pablo JJ, Abbott NL. 85.  2011. Endotoxin-induced structural transformations in liquid crystalline droplets. Science 332:1297–300 [Google Scholar]
  86. Mondiot F, Wang X, de Pablo JJ, Abbott NL. 86.  2013. Liquid crystal-based emulsions for synthesis of spherical and non-spherical particles with chemical patches. J. Am. Chem. Soc. 135:9972–75 [Google Scholar]
  87. Whitmer JK, Wang X, Mondiot F, Miller DS, Abbott NL, de Pablo JJ. 87.  2013. Nematic-field-driven positioning of particles in liquid crystal droplets. Phys. Rev. Lett. 111:227801 [Google Scholar]
  88. Wang X, Miller DS, de Pablo JJ, Abbott NL. 88.  2014. Reversible switching of liquid crystalline order permits synthesis of homogeneous populations of dipolar patchy microparticles. Adv. Funct. Mater. 24:6219–26 [Google Scholar]
  89. Wang X, Miller DS, de Pablo JJ, Abbott NL. 89.  2014. Organized assemblies of colloids formed at the poles of micrometer-sized droplets of liquid crystal. Soft Matter 10:8821–28 [Google Scholar]
  90. Fleury J-B, Pires D, Galerne Y. 90.  2009. Self-connected 3D architecture of microwires. Phys. Rev. Lett. 103:267801 [Google Scholar]
  91. Pires D, Fleury J-B, Galerne Y. 91.  2007. Colloid particles in the interaction field of a disclination line in a nematic phase. Phys. Rev. Lett. 98:247801 [Google Scholar]
  92. Ravnik M, Alexander GP, Yeomans JM, Zumer S. 92.  2010. Mesoscopic modelling of colloids in chiral nematics. Faraday Discuss. 144:159–69 [Google Scholar]
  93. Repnik R, Nita VP, Kralj S. 93.  2012. Mixtures of nanoparticles and liquid crystal phases exhibiting topological defects. Mol. Cryst. Liquid Cryst. 560:115–22 [Google Scholar]
  94. Yoshida H, Tanaka Y, Kawamoto K, Kubo H, Tsuda T. 94.  et al. 2009. Nanoparticle-stabilized cholesteric blue phases. Appl. Phys. Express 2:121501 [Google Scholar]
  95. Mushenheim PC, Abbott NL. 95.  2014. Hierarchical organization in liquid crystal-in-liquid crystal emulsions. Soft Matter 10:8627–34 [Google Scholar]
  96. Agarwal A, Sidiq S, Setia S, Bukusoglu E, de Pablo JJ. 96.  et al. 2013. Colloid-in-liquid crystal gels that respond to biomolecular interactions. Small 9:2785–92 [Google Scholar]
  97. Agarwal A, Huang E, Palecek S, Abbott NL. 97.  2008. Optically responsive and mechanically tunable colloid-in-liquid crystal gels that support growth of fibroblasts. Adv. Mater. 20:4804–9 [Google Scholar]
  98. Pal SK, Agarwal A, Abbott NL. 98.  2009. Chemically responsive gels prepared from microspheres dispersed in liquid crystals. Small 5:2589–96 [Google Scholar]
  99. Vollmer D, Hinze G, Ullrich B, Poon WCK, Cates ME, Schofield AB. 99.  2005. Formation of self-supporting reversible cellular networks in suspensions of colloids and liquid crystals. Langmuir 21:4921–30 [Google Scholar]
  100. Bukusoglu E, Pal SK, de Pablo JJ, Abbott NL. 100.  2014. Colloid-in-liquid crystal gels formed via spinodal decomposition. Soft Matter 10:1602–10 [Google Scholar]
  101. Wood TA, Lintuvuori JS, Schofield AB, Marenduzzo D, Poon WCK. 101.  2011. A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science 334:79–83 [Google Scholar]
  102. Meeker SP, Poon WCK, Crain J, Terentjev EM. 102.  2000. Colloid–liquid-crystal composites: an unusual soft solid. Phys. Rev. E 61:6083–86 [Google Scholar]
  103. Vollmer D, Hinze G, Poon WCK, Cleaver J, Cates ME. 103.  2004. The origin of network formation in colloid-liquid crystal composites. J. Phys. Condens. Matter 16:227–33 [Google Scholar]
  104. Petrov PG, Terentjev EM. 104.  2001. Formation of cellular solid in liquid crystal colloids. Langmuir 17:2942–49 [Google Scholar]
  105. Diestra-Cruz H, Bukusoglu E, Abbott NL, Acevedo A. 105.  2015. Hierarchical microstructures formed by bidisperse colloidal suspensions within colloid-in-liquid crystal gels. ACS Appl. Mater. Interfaces 7:7153–62 [Google Scholar]
  106. Carlton RJ, Gupta JK, Swift CL, Abbott NL. 106.  2012. Influence of simple electrolytes on the orientational ordering of thermotropic liquid crystals at aqueous interfaces. Langmuir 28:31–36 [Google Scholar]
  107. Carlton RJ, Ma CD, Gupta JK, Abbott NL. 107.  2012. Influence of specific anions on the orientational ordering of thermotropic liquid crystals at aqueous interfaces. Langmuir 28:12796–805 [Google Scholar]
  108. Guyot-Sionnest P, Hsiung H, Shen YR. 108.  1986. Surface polar ordering in a liquid crystal observed by optical second-harmonic generation. Phys. Rev. Lett. 57:2963–66 [Google Scholar]
  109. Feller MB, Chen D, Shen YR. 109.  1991. Investigation of surface-induced alignment of liquid-crystal molecules by optical second-harmonic generation. Phys. Rev. A 43:6778–92 [Google Scholar]
  110. Daschner de Tercero M, Abbott NL. 110.  2009. Ordering transitions in liquid crystals permit imaging of spatial and temporal patterns formed by proteins penetrating into lipid-laden interfaces. Chem. Eng. Commun. 196:234–51 [Google Scholar]
  111. Wang X, Miller DS, Bukusoglu E, de Pablo JJ, Abbott NL.110.  2016. Topological defects in liquid crystals as templates for molecular self-assembly. Nat. Mater. 15:106–12 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error