Concerns over the economics, supply chain, and emissions of greenhouse gases associated with the wide use of fossil fuels have led to increasing interest in developing alternative and renewable fuels for stationary power generation and transportation systems. Although there is considerable uncertainty regarding the economic and environmental impacts of alternative and renewable fuels, there is a great need for assessment of potential and emerging fuels to guide research priorities and infrastructure investment. Likewise, there is a great need to identify potential unintended adverse impacts of new fuels and related power systems before they are widely adopted. Historically, the environmental impacts of emerging fuels and power systems have largely focused on carbon dioxide emissions, often called the carbon footprint, which is used to assess impacts on climate change. Such assessments largely ignore the large impacts of emissions of other air pollutants. Given the potential changes in emissions of air pollutants associated with the large-scale use of new and emerging fuels and power systems, there is a great need to better guide efforts to develop new fuels and power systems that can avoid unexpected adverse impacts on the environment and human health. This review covers the nature of emissions, including the key components and impacts from the use of fuels, and the design criteria for future fuels and associated power systems to assure that the non-CO adverse impacts of stationary power generation and transportation are minimized.

Keyword(s): air qualitybiofuelscoaldieselgasoline

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Demirbas A. 1.  2009. Political, economic and environmental impacts of biofuels: a review. Appl. Energy 86:S108–17 [Google Scholar]
  2. Jacobson MZ. 2.  2009. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2:2148–73 [Google Scholar]
  3. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J. 3.  et al. 2006. The path forward for biofuels and biomaterials. Science 311:5760484–89 [Google Scholar]
  4. Martinot E, Dienst C, Weiliang L, Qimin C. 4.  2007. Renewable energy futures: targets, scenarios, and pathways. Annu. Rev. Environ. Resour. 32:205–39 [Google Scholar]
  5. Arent DJ, Wise A, Gelman R. 5.  2011. The status and prospects of renewable energy for combating global warming. Energy Econ. 33:4584–93 [Google Scholar]
  6. Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S. 6.  2011. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 15:52262–89 [Google Scholar]
  7. Agarwal AK. 7.  2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 33:3233–71 [Google Scholar]
  8. von Blottnitz H, Curran MA. 8.  2007. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J. Clean. Prod. 15:7607–19 [Google Scholar]
  9. Hoefnagels R, Smeets E, Faaij A. 9.  2010. Greenhouse gas footprints of different biofuel production systems. Renew. Sustain. Energy Rev. 14:71661–94 [Google Scholar]
  10. Cherubini F, Stromman AH. 10.  2011. Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour. Technol. 102:2437–51 [Google Scholar]
  11. Cohen AJ, Anderson HR, Ostro B, Pandey KD, Krzyzanowski M. 11.  et al. 2005. The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health A Curr. Issues 68:13–141301–7 [Google Scholar]
  12. Rabl A, Spadaro JV. 12.  2000. Public health impact of air pollution and implications for the energy system. Annu. Rev. Energy Environ. 25:601–27 [Google Scholar]
  13. Finch CE, Beltrán-Sánchez H, Crimmins EM. 13.  2014. Uneven futures of human lifespans: reckonings from Gompertz mortality rates, climate change, and air pollution. Gerontology 60:2183–88 [Google Scholar]
  14. Galea S, Freudenberg N, Vlahov D. 14.  2005. Cities and population health. Soc. Sci. Med. 60:51017–33 [Google Scholar]
  15. Lewtas J. 15.  2007. Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. 636:1–395–133 [Google Scholar]
  16. Laden F, Neas LM, Dockery DW, Schwartz J. 16.  2000. Association of fine particulate matter from different sources with daily mortality in six US cities. Environ. Health Perspect. 108:10941–47 [Google Scholar]
  17. Janssen NAH, Hoek G, Simic-Lawson M, Fischer P, van Bree L. 17.  et al. 2011. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with pm10 and pm2.5. Environ. Health Perspect. 119:121691–99 [Google Scholar]
  18. Bell ML, Ebisu K, Leaderer BP, Gent JF, Lee HJ. 18.  et al. 2014. Associations of PM2.5 constituents and sources with hospital admissions: analysis of four counties in Connecticut and Massachusetts (USA) for persons ≥ 65 years of age. Environ. Health Perspect. 122:2138–44 [Google Scholar]
  19. Yi HH, Hao JM, Tang XL. 19.  2007. Atmospheric environmental protection in China: current status, developmental trend and research emphasis. Energy Policy 35:2907–15 [Google Scholar]
  20. Balakrishnan K, Cohen A, Smith KR. 20.  2014. Addressing the burden of disease attributable to air pollution in India: the need to integrate across household and ambient air pollution exposures. Environ. Health Perspect. 122:1A6–A7 [Google Scholar]
  21. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K. 21.  et al. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:98592224–60 [Google Scholar]
  22. Burns VR, Benson JD, Hochhauer AM, Koehl WJ, Reuter RM. 22.  1991. Description of auto/oil air quality improvement research program Presented at Soc. Automot. Eng. Int. Fuels Lubr. Meet. Exhib., Detroit
  23. Kirchstetter TW, Singer BC, Harley RA, Kendall GR, Hesson JM. 23.  1999. Impact of California reformulated gasoline on motor vehicle emissions. 2. Volatile organic compound speciation and reactivity. Environ. Sci. Technol. 33:2329–36 [Google Scholar]
  24. Kirchstetter TW, Singer BC, Harley RA, Kendall GR, Traverse M. 24.  1999. Impact of California reformulated gasoline on motor vehicle emissions. I. Mass emission rates. Environ. Sci. Technol. 33:2318–28 [Google Scholar]
  25. Franklin PM, Koshland CP, Lucas D, Sawyer RF. 25.  2000. Clearing the air: using scientific information to regulate reformulated fuels. Environ. Sci. Technol. 34:183857–63 [Google Scholar]
  26. Delucchi MA, Jacobson MZ. 26.  2013. Meeting the world's energy needs entirely with wind, water, and solar power. Bull. At. Sci. 69:430–40 [Google Scholar]
  27. Pronk A, Coble J, Stewart PA. 27.  2009. Occupational exposure to diesel engine exhaust: a literature review. J. Expo. Sci. Environ. Epidemiol. 19:5443–57 [Google Scholar]
  28. Capleton AC, Levy LS. 28.  2005. An overview of occupational benzene exposures and occupational exposure limits in Europe and North America. Chem.-Biol. Interact. 153:43–53 [Google Scholar]
  29. Fiscor S. 29.  2008. More US underground mines turn to biodiesel to meet new MSHA standard. Eng. Min. J. 209:7102 [Google Scholar]
  30. Thomas VM. 30.  1995. The elimination of lead in gasoline. Annu. Rev. Energy Environ. 20:301–24 [Google Scholar]
  31. Schroeder WH, Munthe J. 31.  1998. Atmospheric mercury—an overview. Atmos. Environ. 32:5809–22 [Google Scholar]
  32. Mastral AM, Callén MS. 32.  2000. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ. Sci. Technol. 34:153051–57 [Google Scholar]
  33. Bender J, Weigel HJ. 33.  2011. Changes in atmospheric chemistry and crop health: a review. Agron. Sustain. Dev. 31:181–89 [Google Scholar]
  34. Fisher DC, Oppenheimer M. 34.  1991. Atmospheric nitrogen deposition and the Chesapeake Bay estuary. Ambio 20:3–4102–8 [Google Scholar]
  35. Watmough SA, Aherne J, Alewell C, Arp P, Bailey S. 35.  et al. 2005. Sulphate, nitrogen and base cation budgets at 21 forested catchments in Canada, the United States and Europe. Environ. Monit. Assess. 109:1–31–36 [Google Scholar]
  36. Watson JG. 36.  2002. Visibility: science and regulation. J. Air Waste Manag. Assoc. 52:6628–713 [Google Scholar]
  37. Crowley TJ. 37.  2000. Causes of climate change over the past 1000 years. Science 289:5477270–77 [Google Scholar]
  38. Solomon S, Plattner GK, Knutti R, Friedlingstein P. 38.  2009. Irreversible climate change due to carbon dioxide emissions. PNAS 106:61704–9 [Google Scholar]
  39. Hansen J, Sato M, Kharecha P, Russell G, Lea DW, Siddall M. 39.  2007. Climate change and trace gases. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365:18561925–54 [Google Scholar]
  40. Solomon S. 40.  1999. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37:3275–316 [Google Scholar]
  41. Wallington TJ, Wiesen P. 41.  2014. N2O emissions from global transportation. Atmos. Environ. 94:258–63 [Google Scholar]
  42. Hayhurst AN, Lawrence AD. 42.  1992. Emissions of nitrous-oxide from combustion sources. Prog. Energy Combust. Sci. 18:6529–52 [Google Scholar]
  43. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW. 43.  et al. 2003. The nitrogen cascade. Bioscience 53:4341–56 [Google Scholar]
  44. Rowe RL, Street NR, Taylor G. 44.  2009. Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew. Sustain. Energy Rev. 13:1271–90 [Google Scholar]
  45. Creutzig F, Popp A, Plevin R, Luderer G, Minx J, Edenhofer O. 45.  2012. Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nat. Climate Change 2:5320–27 [Google Scholar]
  46. Elgowainy A, Han J, Cai H, Wang M, Forman GS, DiVita VB. 46.  2014. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries. Environ. Sci. Technol. 48:137612–24 [Google Scholar]
  47. Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gartner CA, Dumesic JA. 47.  2008. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322:5900417–21 [Google Scholar]
  48. Gallezot P. 48.  2012. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 41:41538–58 [Google Scholar]
  49. Alonso DM, Bond JQ, Dumesic JA. 49.  2010. Catalytic conversion of biomass to biofuels. Green Chem. 12:91493–513 [Google Scholar]
  50. Allen DT. 50.  2014. Atmospheric emissions and air quality impacts from natural gas production and use. Annu. Rev. Chem. Biomol. Eng. 5:55–75 [Google Scholar]
  51. Jeong S, Millstein D, Fischer ML. 51.  2014. Spatially explicit methane emissions from petroleum production and the natural gas system in California. Environ. Sci. Technol. 48:105982–90 [Google Scholar]
  52. Pang YB, Fuentes M, Rieger P. 52.  2014. Trends in the emissions of Volatile Organic Compounds (VOCs) from light-duty gasoline vehicles tested on chassis dynamometers in Southern California. Atmos. Environ. 83:127–35 [Google Scholar]
  53. Harley RA, Hannigan MP, Cass GR. 53.  1992. Respeciation of organic gas emissions and the detection of excess unburned gasoline in the atmosphere. Environ. Sci. Technol. 26:122395–408 [Google Scholar]
  54. Schauer JJ, Fraser MP, Cass GR, Simoneit BRT. 54.  2002. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode. Environ. Sci. Technol. 36:173806–14 [Google Scholar]
  55. Cong XC, Cao SQ, Chen ZL, Peng ST, Yang SL. 55.  2011. Impact of the installation scenario of porous fences on wind-blown particle emission in open coal yards. Atmos. Environ. 45:305247–53 [Google Scholar]
  56. Huang WQ, Shi L. 56.  2013. Methods for the control of oil vapour emissions. Int. J. Oil Gas Coal Technol. 6:3271–87 [Google Scholar]
  57. Lechtenböhmer S, Dienst C, Fischedick M, Hanke T, Fernandez R. 57.  et al. 2007. Tapping the leakages: methane losses, mitigation options and policy issues for Russian long distance gas transmission pipelines. Int. J. Greenh. Gas Control 1:4387–95 [Google Scholar]
  58. Pumphrey JA, Brand JI, Scheller WA. 58.  2000. Vapour pressure measurements and predictions for alcohol-gasoline blends. Fuel 79:111405–11 [Google Scholar]
  59. Christensen E, Yanowitz J, Ratcliff M, McCormick RL. 59.  2011. Renewable oxygenate blending effects on gasoline properties. Energy Fuels 25:104723–33 [Google Scholar]
  60. Rittenhouse RC. 60.  1992. Action builds on 1990 Clean-Air Act compliance. Power Eng. 96:521–27 [Google Scholar]
  61. Dios M, Souto JA, Casares JJ. 61.  2013. Experimental development of CO2, SO2 and NOX emission factors for mixed lignite and subbituminous coal-fired power plant. Energy 53:40–51 [Google Scholar]
  62. Cao Y, Duan YF, Kellie S, Li LC, Xu WB. 62.  et al. 2005. Impact of coal chlorine on mercury speciation and emission from a 100-mw utility boiler with cold-side electrostatic precipitators and low-NOX burners. Energy Fuels 19:3842–54 [Google Scholar]
  63. Abdel-Aziz A, Frey HC. 63.  2003. Quantification of hourly variability in NOX emissions for baseload coal-fired power plants. J. Air Waste Manag. Assoc. 53:111401–11 [Google Scholar]
  64. Barone S. 64.  2006. Statistics-driven development of OBD systems: an overview. Qual. Reliab. Eng. Int. 22:6615–28 [Google Scholar]
  65. Dardiotis C, Martini G, Marotta A, Manfredi U. 65.  2013. Low-temperature cold-start gaseous emissions of late technology passenger cars. Appl. Energy 111:468–78 [Google Scholar]
  66. Roberts A, Brooks R, Shipway P. 66.  2014. Internal combustion engine cold-start efficiency: a review of the problem, causes and potential solutions. Energy Convers. Manag. 82:327–50 [Google Scholar]
  67. Filipi Z, Hagena J, Fathy H. 67.  2008. Investigating the impact of in-vehicle transients on diesel soot emissions. Thermal Sci. 12:153–72 [Google Scholar]
  68. Maricq MM, Podsiadlik DH, Chase RE. 68.  1999. Examination of the size-resolved and transient nature of motor vehicle particle emissions. Environ. Sci. Technol. 33:101618–26 [Google Scholar]
  69. Nuesch T, Wang M, Isenegger P, Onder CH, Steiner R. 69.  et al. 2014. Optimal energy management for a diesel hybrid electric vehicle considering transient PM and quasi-static NOX emissions. Control Eng. Pract. 29:266–76 [Google Scholar]
  70. Park S, Rakha H. 70.  2009. Environmental impacts of high-emitting vehicles. Transport. Res. Rec. 2123:97–108 [Google Scholar]
  71. Park SS, Kozawa K, Fruin S, Mara S, Hsu YK. 71.  et al. 2011. Emission factors for high-emitting vehicles based on on-road measurements of individual vehicle exhaust with a mobile measurement platform. J. Air Waste Manag. Assoc. 61:101046–56 [Google Scholar]
  72. Huo H, Yao ZL, Zhang YZ, Shen XB, Zhang Q. 72.  et al. 2012. On-board measurements of emissions from light-duty gasoline vehicles in three mega-cities of China. Atmos. Environ. 49:371–77 [Google Scholar]
  73. Zhang Y, Stedman DH, Bishop GA, Guenther PL, Beaton SP. 73.  1995. Worldwide on-road vehicle exhaust emissions study by remote-sensing. Environ. Sci. Technol. 29:92286–94 [Google Scholar]
  74. Schifter I, Díaz L, González U. 74.  2013. Impact of reformulated ethanol-gasoline blends on high-emitting vehicles. Environ. Technol. 34:7911–22 [Google Scholar]
  75. Karavalakis G, Durbin TD, Shrivastava M, Zheng ZQ, Villela M, Jung HJ. 75.  2012. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles. Fuel 93:1549–58 [Google Scholar]
  76. Kumar P, Pirjola L, Ketzel M, Harrison RM. 76.  2013. Nanoparticle emissions from 11 non-vehicle exhaust sources—a review. Atmos. Environ. 67:252–77 [Google Scholar]
  77. Knibbs LD, Cole-Hunter T, Morawska L. 77.  2011. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 45:162611–22 [Google Scholar]
  78. Myung CL, Park S. 78.  2012. Exhaust nanoparticle emissions from internal combustion engines: a review. Int. J. Automot. Technol. 13:19–22 [Google Scholar]
  79. Zhu YF, Hinds WC, Kim S, Sioutas C. 79.  2002. Concentration and size distribution of ultrafine particles near a major highway. J. Air Waste Manag. Assoc. 52:91032–42 [Google Scholar]
  80. Magara-Gomez KT, Olson MR, McGinnis JE, Zhang M, Schauer JJ. 80.  2014. Effect of ambient temperature and fuel on particle number emissions on light-duty spark-ignition vehicles. Aerosol Air Qual. Res. 14:51360–71 [Google Scholar]
  81. Rahman MM, Pourkhesalian AM, Jahirul MI, Stevanovic S, Pham PX. 81.  et al. 2014. Particle emissions from biodiesels with different physical properties and chemical composition. Fuel 134:201–8 [Google Scholar]
  82. Poschl U. 82.  2005. Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44:467520–40 [Google Scholar]
  83. Heintzenberg J. 83.  1989. Fine particles in the global troposphere: a review. Tellus B Chem. Phys. Meteorol. 41:2149–60 [Google Scholar]
  84. Querol X, Alastuey A, Lopez-Soler A, Mantilla E, Plana F. 84.  1996. Mineral composition of atmospheric particulates around a large coal-fired power station. Atmos. Environ. 30:213557–72 [Google Scholar]
  85. Sonntag DB, Bailey CR, Fulper CR, Baldauf RW. 85.  2012. Contribution of lubricating oil to particulate matter emissions from light-duty gasoline vehicles in Kansas City. Environ. Sci. Technol. 46:74191–99 [Google Scholar]
  86. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT. 86.  1999. Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environ. Sci. Technol. 33:101578–87 [Google Scholar]
  87. Holtham PN. 87.  2006. Dense medium cyclones for coal washing—a review. Trans. Indian Inst. Metals 59:5521–33 [Google Scholar]
  88. Badr O, Probert SD. 88.  1994. Atmospheric sulfur: trends, sources, sinks and environmental impacts. Appl. Energy 47:11–67 [Google Scholar]
  89. Miller JA, Bowman CT. 89.  1989. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15:4287–338 [Google Scholar]
  90. Roy S, Hegde MS, Madras G. 90.  2009. Catalysis for NOx abatement. Appl. Energy 86:112283–97 [Google Scholar]
  91. Brijesh P, Sreedhara S. 91.  2013. Exhaust emissions and its control methods in compression ignition engines: a review. Int. J. Automot. Technol. 14:2195–206 [Google Scholar]
  92. Lu XC, Han D, Huang Z. 92.  2011. Fuel design and management for the control of advanced compression-ignition combustion modes. Prog. Energy Combust. Sci. 37:6741–83 [Google Scholar]
  93. Kroll JH, Seinfeld JH. 93.  2008. Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42:163593–624 [Google Scholar]
  94. Kleeman MJ, Ying Q, Lu J, Mysliwiec MJ, Griffin RJ. 94.  et al. 2007. Source apportionment of secondary organic aerosol during a severe photochemical smog episode. Atmos. Environ. 41:3576–91 [Google Scholar]
  95. Odum JR, Jungkamp TPW, Griffin RJ, Flagan RC, Seinfeld JH. 95.  1997. The atmospheric aerosol-forming potential of whole gasoline vapor. Science 276:530996–99 [Google Scholar]
  96. Atkinson R. 96.  2000. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34:12–142063–101 [Google Scholar]
  97. Jenkin ME, Clemitshaw KC. 97.  2000. Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmos. Environ. 34:162499–527 [Google Scholar]
  98. Carter WPL. 98.  1994. Development of ozone reactivity scales for volatile organic-compounds. J. Air Waste Manag. Assoc. 44:7881–99 [Google Scholar]
  99. Berglund M, Bostrom CE, Bylin G, Ewetz L, Gustafsson L. 99.  et al. 1993. Health risk evaluation of nitrogen oxides. Scand. J. Work Environ. Health 19:1–72 [Google Scholar]
  100. Myers I, Maynard RL. 100.  2005. Polluted air—outdoors and indoors. Occup. Med. 55:6432–38 [Google Scholar]
  101. Levesque B, Allaire S, Gauvin D, Koutrakis P, Gingras S. 101.  et al. 2001. Wood-burning appliances and indoor air quality. Sci. Total Environ. 281:1–347–62 [Google Scholar]
  102. Kessler R. 102.  2013. Sunset for leaded aviation gasoline?. Environ. Health Perspect. 121:2A54–A57 [Google Scholar]
  103. Logue JM, Small MJ, Robinson AL. 103.  2011. Evaluating the national air toxics assessment (NATA): comparison of predicted and measured air toxics concentrations, risks, and sources in Pittsburgh, Pennsylvania. Atmos. Environ. 45:2476–84 [Google Scholar]
  104. 104. US Environ. Prot. Agency 2005. National Air Toxics Assessment 2005. Washington, DC: US Environ. Prot. Agency http://www.Epa.Gov/ttn/atw/nata2005/
  105. McCarthy MC, O'Brien TE, Charrier JG, Hather HR. 105.  2009. Characterization of the chronic risk and hazard of hazardous air pollutants in the united states using ambient monitoring data. Environ. Health Perspect. 117:5790–96 [Google Scholar]
  106. Unger N, Bond TC, Wang JS, Koch DM, Menon S. 106.  et al. 2010. Attribution of climate forcing to economic sectors. PNAS 107:83382–87 [Google Scholar]
  107. Molina M, Zaelke D, Sarma KM, Andersen SO, Ramanathan V, Kaniaru D. 107.  2009. Reducing abrupt climate change risk using the Montreal protocol and other regulatory actions to complement cuts in CO2 emissions. PNAS 106:4920616–21 [Google Scholar]
  108. Myhre G, Fuglestvedt JS, Berntsen TK, Lund MT. 108.  2011. Mitigation of short-lived heating components may lead to unwanted long-term consequences. Atmos. Environ. 45:336103–6 [Google Scholar]
  109. Fiore AM, Naik V, Spracklen DV, Steiner A, Unger N. 109.  et al. 2012. Global air quality and climate. Chem. Soc. Rev. 41:196663–83 [Google Scholar]
  110. Rasch PJ, Tilmes S, Turco RP, Robock A, Oman L. 110.  et al. 2008. An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366:18824007–37 [Google Scholar]
  111. Constant P, Poissant L, Villemur R. 111.  2009. Tropospheric H2 budget and the response of its soil uptake under the changing environment. Sci. Total Environ. 407:61809–23 [Google Scholar]
  112. Yashiro H, Sudo K, Yonemura S, Takigawa M. 112.  2011. The impact of soil uptake on the global distribution of molecular hydrogen: chemical transport model simulation. Atmos. Chem. Phys. 11:136701–19 [Google Scholar]
  113. Ehhalt DH, Rohrer F. 113.  2009. The tropospheric cycle of H2: a critical review. Tellus B Chem. Phys. Meteorol. 61:3500–35 [Google Scholar]
  114. Wall TF. 114.  2007. Combustion processes for carbon capture. Proc. Combust. Inst. 31:31–47 [Google Scholar]
  115. Imtenan S, Varman M, Masjuki HH, Kalam MA, Sajjad H. 115.  et al. 2014. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: a review. Energy Convers. Manag. 80:329–56 [Google Scholar]
  116. Hanna J, Lee WY, Shi Y, Ghoniem AF. 116.  2014. Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Prog. Energy Combust. Sci. 40:74–111 [Google Scholar]
  117. Eisinger DS, Wathern P. 117.  2008. Policy evolution and clean air: the case of US motor vehicle inspection and maintenance. Transp. Res. D Transp. Environ. 13:6359–68 [Google Scholar]
  118. Kleinstreuer NC, Yang J, Berg EL, Knudsen TB, Richard AM. 118.  et al. 2014. Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 32:6583–91 [Google Scholar]
  119. Bu QW, Wang DH, Wang ZJ. 119.  2013. Review of screening systems for prioritizing chemical substances. Crit. Rev. Environ. Sci. Technol. 43:101011–41 [Google Scholar]
  120. Okey RW, Stensel HD. 120.  1996. A QSAR-based biodegradability model—a QSBR. Water Res. 30:92206–14 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error