The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or –models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Baerns M, Behr A, Brehm A, Gmehling J, Hinrichsen K-O. 1.  et al. 2013. Technische Chemie Weinheim, Ger: Wiley-VCH, 2nd ed.. [Google Scholar]
  2. Hildebrand JH. 2.  1949. Seven liquid phases in equilibrium. J. Phys. Chem. 53:944–47 [Google Scholar]
  3. Novak JP, Matous J, Pick J. 3.  1987. Liquid-Liquid Equilibria Amsterdam: Elsevier [Google Scholar]
  4. Gmehling J, Kolbe B, Kleiber M, Rarey J. 4.  2012. Chemical Thermodynamics for Process Simulation Weinheim, Ger: Wiley-VCH [Google Scholar]
  5. Lewis GN. 5.  1901. The law of physico-chemical change. Proc. Am. Acad. Arts Sci. 37:49–69 [Google Scholar]
  6. van der Waals JD. 6.  1873. Over de continuiteit van den gas- en vloeistoftoestand PhD Thesis, Leiden, Neth. [Google Scholar]
  7. Redlich O, Kwong JNS. 7.  1949. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44:233–44 [Google Scholar]
  8. Soave G. 8.  1972. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27:1197–203 [Google Scholar]
  9. Peng DY, Robinson DB. 9.  1976. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15:59–64 [Google Scholar]
  10. Peneloux A, Rauzy E, Freze R. 10.  1982. A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilib. 8:7–23 [Google Scholar]
  11. Huron M-J, Vidal J. 11.  1979. New mixing rules in simple equations of state for representing vapor-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilib. 3:255–71 [Google Scholar]
  12. Wilson GM. 12.  1964. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86:127–30 [Google Scholar]
  13. Renon H, Prausnitz JM. 13.  1968. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14:135–44 [Google Scholar]
  14. Abrams D, Prausnitz JM. 14.  1975. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21:116–28 [Google Scholar]
  15. Debye P, Hückel E. 15.  1923. Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Z. 24:185–206 [Google Scholar]
  16. Pitzer KS. 16.  1973. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77:268–77 [Google Scholar]
  17. Pitzer KS, Mayorga G. 17.  1973. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77:2300–8 [Google Scholar]
  18. Chen C, Britt IH, Boston FJ, Evans BL. 18.  1982. NRTL local composition model for excess Gibbs energy of electrolyte systems. AIChE J. 28:588–96 [Google Scholar]
  19. Li J, Polka HM, Gmehling J. 19.  1994. A gE model for single and mixed solvent electrolyte systems. 1. Model and results for strong electrolytes. Fluid Phase Equilib. 94:89–114 [Google Scholar]
  20. 20. Dortmund Data Bank Home Page. http://www.ddbst.com [Google Scholar]
  21. Hildebrand J, Wood SE. 21.  1933. The derivation of equations for regular solutions. J. Chem. Phys. 1:817–22 [Google Scholar]
  22. Scatchard G. 22.  1931. Equilibria in non-electrolyte solution in relation to the vapor pressures and densities of the components. Chem. Rev. 8:321–33 [Google Scholar]
  23. Prausnitz JM, Gmehling J. 23.  1980. Thermische Verfahrenstechnik—Phasengleichgewichte Mainz, Ger: Krausskopff-Verlag [Google Scholar]
  24. Wilson GM, Deal CH. 24.  1962. Activity coefficients and molecular structure. Ind. Eng. Chem. Fundam. 1:20–23 [Google Scholar]
  25. Derr EL, Deal CH. 25.  1969. Analytical solutions of groups: correlation of activity coefficients through structural group parameters. Inst. Chem. Eng. Symp. Ser. 32 3:40–51 [Google Scholar]
  26. Kojima K, Tochigi K. 26.  1979. Prediction of Vapor-Liquid Equilibria by the ASOG Method. Tokyo: Kodansha-Elsevier [Google Scholar]
  27. Fredenslund Å, Jones RL, Prausnitz JM. 27.  1975. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21:1086–99 [Google Scholar]
  28. Staverman AJ. 28.  1950. The entropy of high polymer solutions. Generalization of formulae. Recl. Trav. Chim. Pays-Bas 69:163–74 [Google Scholar]
  29. Abrams DS, Prausnitz JM. 29.  1975. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21:116–28 [Google Scholar]
  30. Fredenslund Å, Gmehling J, Rasmussen P. 30.  1977. Vapor-Liquid Equilibria Using UNIFAC Amsterdam: Elsevier [Google Scholar]
  31. Bondi A. 31.  1967. A correlation of the entropy of fusion of molecular crystals with molecular structure. Chem. Rev. 67:565–80 [Google Scholar]
  32. Gmehling J, Rasmussen P, Fredenslund Å. 32.  1982. Vapor-liquid equilibria by UNIFAC group contribution, revision and extension II. Ind. Eng. Chem. Process Des. Dev. 21:118–27 [Google Scholar]
  33. Hansen HK, Schiller M, Gmehling J, Rasmussen P. 33.  1991. Vapor-liquid equilibria by UNIFAC group-contribution. 5. Revision and extension. Ind. Eng. Chem. Res. 30:2352–55 [Google Scholar]
  34. Magnussen T, Rasmussen P, Fredenslund Å. 34.  1981. UNIFAC parameter table for prediction of liquid-liquid equilibria. Ind. Eng. Chem. Process Des. Dev. 20:331–39 [Google Scholar]
  35. Bastos JC, Soares ME, Medina AG. 35.  1988. Infinite dilution activity coefficients predicted by UNIFAC group contribution. Ind. Eng. Chem. Res. 27:1269–77 [Google Scholar]
  36. Weidlich U. 36.  1985. Experimentelle und theoretische Untersuchungen zur Erweiterung der Gruppenbeitragsme-thode UNIFAC PhD Thesis, Univ. Dortmund, Ger. [Google Scholar]
  37. Weidlich U, Gmehling J. 37.  1987. A modified UNIFAC model. 1. Prediction of VLE, hE, and γ. Ind. Eng. Chem. Res. 26:1372–81 [Google Scholar]
  38. Larsen BL. 38.  1986. Predictions of phase equilibria and heat effects of mixing with a modified UNIFAC model PhD Thesis, Inst. Kemiteknik, Techn. Univ. Denmark [Google Scholar]
  39. Larsen BL, Rasmussen P, Fredenslund Å. 39.  1987. A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res. 26:2274–86 [Google Scholar]
  40. Kikic I, Alessi P, Rasmussen P, Fredenslund Å. 40.  1980. On the combinatorial part of the UNIFAC and UNIQUAC models. Can. J. Chem. Eng. 58:253–58 [Google Scholar]
  41. Thomas ER, Eckert CA. 41.  1984. Prediction of limiting activity coefficients by a modified separation of cohesive energy model and UNIFAC. Ind. Eng. Chem. Process Des. Dev. 23:194–209 [Google Scholar]
  42. Gmehling J, Li J, Schiller M. 42.  1993. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res. 32:178–93 [Google Scholar]
  43. Nelder JA, Mead R. 43.  1965. A simplex method for function minimization. Comp. J. 7:308–13 [Google Scholar]
  44. Marquardt DW. 44.  1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11:431–41 [Google Scholar]
  45. 45. UNIFAC consortium Home Page. http://www.unifac.org [Google Scholar]
  46. Nebig S, Gmehling J. 46.  2011. Prediction of phase equilibria and excess properties for systems with ionic liquids using modified UNIFAC: typical results and present status of the modified UNIFAC matrix for ionic liquids. Fluid Phase Equilib. 302:220–25 [Google Scholar]
  47. Hector T, Gmehling J. 47.  2014. Present status of the modified UNIFAC model for the prediction of phase equilibria and excess enthalpies for systems with ionic liquids. Fluid Phase Equilib. 371:82–92 [Google Scholar]
  48. Paduszynski K, Domanska U. 48.  2013. Extension of modified UNIFAC (Dortmund) matrix to piperidinium ionic liquids. Fluid Phase Equilib. 353:115–20 [Google Scholar]
  49. Heidemann RA, Kokal SL. 49.  1990. Combined excess free energy models and equations of state. Fluid Phase Equilib. 56:17–37 [Google Scholar]
  50. Michelsen ML. 50.  1990. A method for incorporating excess Gibbs energy models in equations of state. Fluid Phase Equilib. 60:47–58 [Google Scholar]
  51. Michelsen ML. 51.  1990. A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilib. 60:213–19 [Google Scholar]
  52. Holderbaum T. 52.  1990. Die Vorausberechnung von Dampf-Flüssig-Gleichgewichten mit einer Gruppenbeitragszustandsgleichung PhD Thesis, Univ. Dortmund, Ger. [Google Scholar]
  53. Holderbaum T, Gmehling J. 53.  1991. PSRK: a group-contribution equation of state based on UNIFAC. Fluid Phase Equilib. 70:251–65 [Google Scholar]
  54. Horstmann S, Fischer K, Gmehling J. 54.  2000. PSRK group contribution equation of state: revision and extension III. Fluid Phase Equilib. 167:173–86 [Google Scholar]
  55. Ahlers J, Gmehling J. 55.  2001. Development of an universal group contribution equation of state. I. Prediction of liquid densities for pure compounds with a volume translated Peng-Robinson equation of state. Fluid Phase Equilib. 191:177–88 [Google Scholar]
  56. Ahlers J, Gmehling J. 56.  2002. Development of a universal group contribution equation of state. 2. Prediction of vapor-liquid equilibria for asymmetric systems. Ind. Eng. Chem. Res. 41:3489–98 [Google Scholar]
  57. Ahlers J, Gmehling J. 57.  2002. Development of a universal group contribution equation of state. III. Prediction of vapor-liquid equilibria, excess enthalpies, and activity coefficients at infinite dilution with the VTPR model. Ind. Eng. Chem. Res. 41:5890–99 [Google Scholar]
  58. Schmid B, Gmehling J. 58.  2011. The universal group contribution equation of state VTPR: present status and potential for process development. Fluid Phase Equilib. 302:213–19 [Google Scholar]
  59. Schmid B, Schedemann A, Gmehling J. 59.  2014. Extension of the VTPR group contribution equation of state: group interaction parameters for 192 group combinations and typical results. Ind. Eng. Chem. Res. 53:3393–405 [Google Scholar]
  60. Mathias PM, Copeman TW. 60.  1983. Extension of the Peng-Robinson equation of state to complex mixtures: evaluation of the various forms of the local composition concept. Fluid Phase Equilib. 13:91–108 [Google Scholar]
  61. Twu CH, Bluck D, Cunningham JR, Coon JE. 61.  1991. A cubic equation of state with a new alpha function and a new mixing rule. Fluid Phase Equilib. 69:33–50 [Google Scholar]
  62. Chen J, Fischer K, Gmehling J. 62.  2002. Modification of PSRK mixing rules and results for vapor-liquid equilibria, enthalpy of mixing and activity coefficients at infinite dilution. Fluid Phase Equilib. 200:411–29 [Google Scholar]
  63. Yan WD, Topphoff M, Rose C, Gmehling J. 63.  1997. Prediction of vapor-liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept. Fluid Phase Equilib. 162:97–113 [Google Scholar]
  64. Kiepe J, Horstmann S, Fischer K, Gmehling J. 64.  2004. Application of the PSRK model for systems containing strong electrolytes. Ind. Eng. Chem. Res. 43:6607–15 [Google Scholar]
  65. Collinet E, Gmehling J. 65.  2006. Prediction of phase equilibria with strong electrolytes with the help of the group contribution equation of state VTPR. Fluid Phase Equilib. 246:111–18 [Google Scholar]
  66. Krotov D. 66.  2014. Weiterentwicklung der Gruppenbeitragszustandsgleichung VTPR zur Beschreibung von Elektrolyt- und Polymersystemen PhD Thesis, Carl von Ossietzky Univ. Oldenburg, Ger. [Google Scholar]
  67. Yarborough L. 67.  1972. Vapor-liquid equilibrium data for multicomponent mixtures containing hydrocarbons and nonhydrocarbon components. J. Chem. Eng. Data 17:129–33 [Google Scholar]
  68. Gmehling J, Menke J, Krafczyk J, Fischer K. 68.  2004. Azeotropic Data Weinheim, Ger: Wiley-VCH. 3 parts [Google Scholar]
  69. Gmehling J, Möllmann C. 69.  1998. Synthesis of distillation processes using thermodynamic models and the Dortmund Data Bank. Ind. Eng. Chem. Res. 37:3112–23 [Google Scholar]
  70. Schedemann A, Gmehling J. 70.  2014. Selection of solvents or solvent mixtures for liquid-liquid extraction using predictive thermodynamic models or access to the Dortmund Data Bank. Ind. Eng. Chem. Res. 53:17794–805 [Google Scholar]
  71. Gmehling J, Rasmussen P. 71.  1982. Flash points of flammable liquid mixtures using UNIFAC. Ind. Eng. Chem. Fundam. 21:186–88 [Google Scholar]
  72. Diedrichs A, Gmehling J. 72.  2011. Solubility prediction of active pharmaceutical ingredients in pure solvents (alkanes, alcohols, water) with various activity coefficient models. Ind. Eng. Chem. Res. 50:1757–69 [Google Scholar]
  73. Wienke G, Gmehling J. 73.  1998. Prediction of octanol-water partition coefficients, Henry-coefficients and water solubilities using UNIFAC. Toxicol. Environ. Chem. 65:57–86 67:275 [Google Scholar]
  74. Banerjee S. 74.  1985. Calculation of water solubility of organic compounds with UNIFAC-derived parameters. Environ. Sci. Technol. 19:369–70 [Google Scholar]
  75. Abildskov J, Gani R, Rasmussen P, O'Connell JP. 75.  1999. Beyond basic UNIFAC. Fluid Phase Equilib. 158–60:349–56 [Google Scholar]
  76. Kang JW, Abildskov J, Gani R, Cobas J. 76.  2002. Estimation of mixture properties from first- and second-order group contributions with the UNIFAC model. Ind. Eng. Chem. Res. 41:3260–73 [Google Scholar]
  77. Gmehling J. 77.  2009. Present status and potential of group contribution methods for process development. J. Chem. Thermodyn. 41:731–47 [Google Scholar]
  78. Muzenda E. 78.  2013. From UNIQUAC to modified UNIFAC Dortmund: a discussion. Proc. 3rd Int. Conf. Med. Sci. Chem. Eng.32–41 ISBN: 978–93-82242-61-1 [Google Scholar]
  79. Voutsas E, Magoulas K, Tassios D. 79.  2004. Universal mixing rule for cubic equations of state applicable to symmetric and asymmetric systems: results with the Peng-Robinson equation of state. Ind. Eng. Chem. Res. 43:6238–46 [Google Scholar]
  80. Gmehling J, Onken U, Arlt W, Grenzheuser P, Weidlich U. 80.  et al.1977–2014 DECHEMA Chemistry Data Series, Volume I: Vapor-Liquid Equilibrium Data Collection Frankfurt am Main, Ger: DECHEMA 37 parts [Google Scholar]
  81. Sørensen JM, Arlt W, Macedo E, Rasmussen P. 81. 1979–1987 DECHEMA Chemistry Data Series, Volume V: Liquid-Liquid Equilibrium Data Collection. Frankfurt am Main, Ger: DECHEMA 4 parts [Google Scholar]
  82. Gmehling J, Holderbaum T, Weidlich U, Christensen C, Rasmussen P. 82. 1984–1991 DECHEMA Chemistry Data Series, Volume III: Heats of Mixing Data Collection. Frankfurt am Main, Ger: DECHEMA 4 parts [Google Scholar]
  83. Gmehling J, Menke J, Tiegs D, Medina A, Soares M. 83.  et al.1986–2008 DECHEMA Chemistry Data Series, Volume IX: Activity Coefficients at Infinite Dilution. Frankfurt am Main, Ger: DECHEMA 6 parts [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error