Chemical vapor deposition (CVD) polymerization uses vapor phase monomeric reactants to synthesize organic thin films directly on substrates. These thin films are desirable as conformal surface engineering materials and functional layers. The facile tunability of the films and their surface properties allow successful integration of CVD thin films into prototypes for applications in surface modification, device fabrication, and protective films. CVD polymers also bridge microfabrication technology with chemical and biological systems. Robust coatings can be achieved via CVD methods as antifouling, anti-icing, and antihydrate surfaces, as well as stimuli-responsive or biocompatible polymers and novel nanostructures. Use of low-energy input, modest vacuum, and room-temperature substrates renders CVD polymerization compatible with thermally sensitive substrates and devices. Compared with solution-based methods, CVD is particularly useful for insoluble materials, such as electrically conductive polymers and controllably crosslinked networks, and has the potential to reduce environmental, health, and safety impacts associated with solvents. This review discusses the relevant background and selected applications of recent advances by two methods that display and use the high retention of the organic functional groups from their respective monomers, initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H. 1.  et al. 2010. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 22:1993–2027 [Google Scholar]
  2. Coclite AM, Howden RM, Borrelli DC, Petruczok CD, Yang R. 2.  et al. 2013. 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv. Mater. 25:5392–423 [Google Scholar]
  3. Reeja-Jayan B, Kovacik P, Yang R, Sojoudi H, Ugur A. 3.  et al. 2014. A route towards sustainability through engineered polymeric interfaces. Adv. Mater. Interfaces 1:1400117 [Google Scholar]
  4. Gupta M, Gleason KK. 4.  2006. Large-scale initiated chemical vapor deposition of poly(glycidyl methacrylate) thin films. Thin Solid Films 515:1579–84 [Google Scholar]
  5. Baxamusa SH, Gleason KK. 5.  2008. Thin polymer films with high step coverage in microtrenches by initiated CVD. Chem. Vap. Depos. 14:313–18 [Google Scholar]
  6. Yoo G, Yoo Y, Kwon J-H, Darpito C, Mishra SK. 6.  et al. 2013. An effective, cost-efficient extraction method of biomass from wet microalgae with a functional polymeric membrane. Green Chem. 16:312–19 [Google Scholar]
  7. Lewis HGP, Bansal NP, White AJ, Handy ES. 7.  2009. HWCVD of polymers: commercialization and scale-up. Thin Solid Films 517:3551–54 [Google Scholar]
  8. Kovacik P, del Hierro G, Livernois W, Gleason KK. 8.  2015. Scale-up of oCVD: large-area conductive polymer thin films for next-generation electronics. Mater. Horiz. 2:221–27 [Google Scholar]
  9. Moon H, Seong H, Shin WC, Park W-T, Kim M. 9.  et al. 2015. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 14:628–35 [Google Scholar]
  10. Coclite AM, Gleason KK. 10.  2012. Initiated PECVD of organosilicon coatings: a new strategy to enhance monomer structure retention. Plasma Process. Polym. 9:425–34 [Google Scholar]
  11. Pfluger CA, Carrier RL, Sun B, Ziemer KS, Burkey DD. 11.  2009. Cross-linking and degradation properties of plasma enhanced chemical vapor deposited poly(2-hydroxyethyl methacrylate). Macromol. Rapid Commun. 30:126–32 [Google Scholar]
  12. Chang Y-C, Frank CW. 12.  1998. Vapor deposition–polymerization of α-amino acid N-carboxy anhydride on the silicon (100) native oxide surface. Langmuir 14:326–34 [Google Scholar]
  13. Lock JP, Im SG, Gleason KK. 13.  2006. Oxidative chemical vapor deposition of electrically conducting poly(3,4-ethylenedioxythiophene) films. Macromolecules 39:5326–29 [Google Scholar]
  14. Winther-Jensen B, West K. 14.  2004. Vapor-phase polymerization of 3,4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules 37:4538–43 [Google Scholar]
  15. George SM, Yoon B, Hall RA, Abdulagatov AI, Gibbs ZM. 15.  et al. 2011. Molecular layer deposition of hybrid organic–inorganic films. Atomic Layer Deposition of Nanostructured Materials N Pinna, M Knez 83–107 Weinheim, Ger: Wiley-VCH Verlag GmbH & Co. KGaA [Google Scholar]
  16. Zhou H, Bent SF. 16.  2013. Fabrication of organic interfacial layers by molecular layer deposition: present status and future opportunities. J. Vac. Sci. Technol. A 31:040801 [Google Scholar]
  17. Atanasov SE, Losego MD, Gong B, Sachet E, Maria J-P. 17.  et al. 2014. Highly conductive and conformal poly(3,4-ethylenedioxythiophene) (PEDOT) thin films via oxidative molecular layer deposition. Chem. Mater. 26:3471–78 [Google Scholar]
  18. Zhou Y, Xu H, Lachman N, Ghaffari M, Wu S. 18.  et al. 2014. Advanced asymmetric supercapacitor based on conducting polymer and aligned carbon nanotubes with controlled nanomorphology. Nano Energy 9:176–85 [Google Scholar]
  19. Ozaydin-Ince G, Coclite AM, Gleason KK. 19.  2012. CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Rep. Prog. Phys. 75:016501 [Google Scholar]
  20. Seong H, Baek J, Pak K, Im SG. 20.  2015. A surface tailoring method of ultrathin polymer gate dielectrics for organic transistors: improved device performance and the thermal stability thereof. Adv. Funct. Mater. 25:4462–69 [Google Scholar]
  21. Borrelli DC, Lee S, Gleason KK. 21.  2014. Optoelectronic properties of polythiophene thin films and organic TFTs fabricated by oxidative chemical vapor deposition. J. Mater. Chem. C 2:7223–31 [Google Scholar]
  22. Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S. 22.  et al. 2015. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat. Commun. 6:6305 [Google Scholar]
  23. Jean J, Brown PR, Jaffe RL, Buonassisi T, Bulovic V. 23.  2015. Pathways for solar photovoltaics. Energy Environ. Sci. 8:1200–19 [Google Scholar]
  24. Chen N, Reeja-Jayan B, Lau J, Moni P, Liu AD. 24.  et al. 2015. Nanoscale, conformal polysiloxane thin film electrolytes for three-dimensional battery architectures. Mater. Horiz. 2:309–14 [Google Scholar]
  25. Zamfir MR, Hung Tran N, Moyen E, Lee YH, Pribat D. 25.  2013. Silicon nanowires for Li-based battery anodes: a review. J. Mater. Chem. A 1:9566–86 [Google Scholar]
  26. Banerjee I, Pangule RC, Kane RS. 26.  2011. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23:690–718 [Google Scholar]
  27. Elimelech M, Phillip WA. 27.  2011. The future of seawater desalination: energy, technology, and the environment. Science 333:712–17 [Google Scholar]
  28. Tsai MY, Chen YC, Lin TJ, Hsu YC, Lin CY. 28.  et al. 2014. Vapor-based multicomponent coatings for antifouling and biofunctional synergic modifications. Adv. Funct. Mater. 24:2281–87 [Google Scholar]
  29. Bose RK, Nejati S, Stufflet DR, Lau KKS. 29.  2012. Graft polymerization of anti-fouling PEO surfaces by liquid-free initiated chemical vapor deposition. Macromolecules 45:6915–22 [Google Scholar]
  30. Amadei CA, Yang R, Chiesa M, Gleason KK, Santos S. 30.  2014. Revealing amphiphilic nanodomains of anti-biofouling polymer coatings. ACS Appl. Mater. Interfaces 6:4705–12 [Google Scholar]
  31. Baxamusa SH, Gleason KK. 31.  2009. Random copolymer films with molecular-scale compositional heterogeneities that interfere with protein adsorption. Adv. Funct. Mater. 19:3489–96 [Google Scholar]
  32. Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. 32.  2007. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials 28:909–15 [Google Scholar]
  33. Yang R, Jang H, Stocker R, Gleason KK. 33.  2014. Synergistic prevention of biofouling in seawater desalination by zwitterionic surfaces and low-level chlorination. Adv. Mater. 26:1711–18 [Google Scholar]
  34. Yang R, Gleason KK. 34.  2012. Ultrathin antifouling coatings with stable surface zwitterionic functionality by initiated chemical vapor deposition (iCVD). Langmuir 28:12266–74 [Google Scholar]
  35. Yang R, Xu J, Ozaydin-Ince G, Wong SY, Gleason KK. 35.  2011. Surface-tethered zwitterionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition. Chem. Mater. 23:1263–72 [Google Scholar]
  36. Jiang S, Cao Z. 36.  2010. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22:920–32 [Google Scholar]
  37. Baxamusa SH, Im SG, Gleason KK. 37.  2009. Initiated and oxidative chemical vapor deposition: a scalable method for conformal and functional polymer films on real substrates. Phys. Chem. Chem. Phys. 11:5227–40 [Google Scholar]
  38. Shafi HZ, Khan Z, Yang R, Gleason KK. 38.  2015. Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling. Desalination 362:93–103 [Google Scholar]
  39. Quintana R, Gosa M, Jańczewski D, Kutnyanszky E, Vancso GJ. 39.  2013. Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture. Langmuir 29:10859–67 [Google Scholar]
  40. Petruczok CD, Yang R, Gleason KK. 40.  2013. Controllable cross-linking of vapor-deposited polymer thin films and impact on material properties. Macromolecules 46:1832–40 [Google Scholar]
  41. Yang R, Goktekin E, Wang MH, Gleason KK. 41.  2014. Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films. J. Biomater. Sci. Polym. Ed. 25:1687–702 [Google Scholar]
  42. Yang R, Moni P, Gleason KK. 42.  2015. Ultrathin zwitterionic coatings for roughness-independent underwater superoleophobicity and gravity-driven oil-water separation. Adv. Mater. Interfaces 2:1400489 [Google Scholar]
  43. Ye Y, Song Q, Mao Y. 43.  2011. Single-step fabrication of non-leaching antibacterial surfaces using vapor crosslinking. J. Mater. Chem. 21:257–62 [Google Scholar]
  44. Alizadeh A, Bahadur V, Kulkarni A, Yamada M, Ruud JA. 44.  2013. Hydrophobic surfaces for control and enhancement of water phase transitions. MRS Bull. 38:407–11 [Google Scholar]
  45. Kim P, Wong T-S, Alvarenga J, Kreder MJ, Adorno-Martinez WE, Aizenberg J. 45.  2012. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6:6569–77 [Google Scholar]
  46. Liu Z, Gou Y, Wang J, Cheng S. 46.  2008. Frost formation on a super-hydrophobic surface under natural convection conditions. Int. J. Heat Mass Transf. 51:5975–82 [Google Scholar]
  47. Andrews RW, Pollard A, Pearce JM. 47.  2013. A new method to determine the effects of hydrodynamic surface coatings on the snow shedding effectiveness of solar photovoltaic modules. Sol. Energy Mater. Sol. Cells 113:71–78 [Google Scholar]
  48. Dalili N, Edrisy A, Carriveau R. 48.  2009. A review of surface engineering issues critical to wind turbine performance. Renew. Sustain. Energy Rev. 13:428–38 [Google Scholar]
  49. Menini R, Ghalmi Z, Farzaneh M. 49.  2011. Highly resistant icephobic coatings on aluminum alloys. Cold Reg. Sci. Technol. 65:65–69 [Google Scholar]
  50. Parent O, Ilinca A. 50.  2011. Anti-icing and de-icing techniques for wind turbines: critical review. Cold Reg. Sci. Technol. 65:88–96 [Google Scholar]
  51. Lai JX, Liu C, Gong CB. 51.  2011. Research situation and prospect for highway snowmelt deicing technology with electric heat tracing. Frontiers of Green Building, Materials and Civil Engineering, Parts 1–8 D Sun, WP Sung, R Chen 1865–69 Stäfa-Zurich: Trans Tech Publ. Ltd. [Google Scholar]
  52. Laforte JL, Allaire MA, Laflamme J. 52.  1998. State-of-the-art on power line de-icing. Atmos. Res. 46:143–58 [Google Scholar]
  53. Frankenstein S, Tuthill AM. 53.  2002. Ice adhesion to locks and dams: past work; future directions?. J. Cold Reg. Eng. 16:83–96 [Google Scholar]
  54. Alizadeh A, Yamada M, Li R, Shang W, Otta S. 54.  et al. 2012. Dynamics of ice nucleation on water repellent surfaces. Langmuir 28:3180–86 [Google Scholar]
  55. Sojoudi H, McKinley GH, Gleason KK. 55.  2015. Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion. Mater. Horiz. 2:91–99 [Google Scholar]
  56. Paxson AT, Yaguee JL, Gleason KK, Varanasi KK. 56.  2014. Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films. Adv. Mater. 26:418–23 [Google Scholar]
  57. Yang R, Buonassisi T, Gleason KK. 57.  2013. Organic vapor passivation of silicon at room temperature. Adv. Mater. 25:2078–83 [Google Scholar]
  58. Coclite AM, Shi YJ, Gleason KK. 58.  2012. Grafted crystalline poly-perfluoroacrylate structures for superhydrophobic and oleophobic functional coatings. Adv. Mater. 24:4534–39 [Google Scholar]
  59. Liu A, Goktekin E, Gleason KK. 59.  2014. Cross-linking and ultrathin grafted gradation of fluorinated polymers synthesized via initiated chemical vapor deposition to prevent surface reconstruction. Langmuir 30:14189–94 [Google Scholar]
  60. Sojoudi H, Walsh MR, Gleason KK, McKinley GH. 60.  2015. Investigation into the formation and adhesion of cyclopentane hydrates on mechanically robust vapor-deposited polymeric coatings. Langmuir ACS J. Surf. Colloids 31:6186–96 [Google Scholar]
  61. Lee B, Jiao A, Yu S, You JB, Kim D-H, Im SG. 61.  2013. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering. Acta Biomaterialia 9:7691–98 [Google Scholar]
  62. Kwong P, Seidel S, Gupta M. 62.  2013. Solventless fabrication of porous-on-porous materials. ACS Appl. Mater. Interfaces 5:9714–18 [Google Scholar]
  63. Sojoudi H, Walsh MR, Gleason KK, McKinley GH. 63.  2015. Designing durable vapor-deposited surfaces for reduced hydrate adhesion. Adv. Mater. Interfaces 2:1500003 [Google Scholar]
  64. Zhang Q, He M, Zeng X, Li K, Cui D. 64.  et al. 2012. Condensation mode determines the freezing of condensed water on solid surfaces. Soft Matter 8:8285–88 [Google Scholar]
  65. Dorrer C, Ruehe J. 65.  2007. Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23:3820–24 [Google Scholar]
  66. Wier KA, McCarthy TJ. 66.  2006. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant. Langmuir 22:2433–36 [Google Scholar]
  67. Armagan E, Qureshi P, Ince GO. 67.  2015. Functional nanotubes for triggered release of molecules. Nanosci. Nanotechnol. Lett. 7:79–83 [Google Scholar]
  68. Petruczok CD, Armagan E, Ince GO, Gleason KK. 68.  2014. Initiated chemical vapor deposition and light-responsive cross-linking of poly(vinyl cinnamate) thin films. Macromol. Rapid Commun. 35:1345–50 [Google Scholar]
  69. Demiryürek R, Ali MK, Ince GO. 69.  2014. A facile method for fabrication of responsive micropatterned surfaces. Smart Mater. Struct. 23:095020 [Google Scholar]
  70. Seidel S, Kwong P, Gupta M. 70.  2013. Simultaneous polymerization and solid monomer deposition for the fabrication of polymer membranes with dual-scale porosity. Macromolecules 46:2976–83 [Google Scholar]
  71. Ye Y, Mao Y, Wang H, Ren Z. 71.  2012. Hybrid structure of pH-responsive hydrogel and carbon nanotube array with superwettability. J. Mater. Chem. 22:2449–55 [Google Scholar]
  72. Bally F, Cheng K, Nandivada H, Deng X, Ross AM. 72.  et al. 2013. Co-immobilization of biomolecules on ultrathin reactive chemical vapor deposition coatings using multiple click chemistry strategies. ACS Appl. Mater. Interfaces 5:9262–68 [Google Scholar]
  73. Ince GO, Armagan E, Erdogan H, Buyukserin F, Uzun L, Demirel G. 73.  2013. One-dimensional surface-imprinted polymeric nanotubes for specific biorecognition by initiated chemical vapor deposition (iCVD). ACS Appl. Mater. Interfaces 5:6447–52 [Google Scholar]
  74. Seidel S, Cheong CC, Kwong P, Gupta M. 74.  2015. All-dry fabrication of poly(methacrylic acid)-based membranes with controlled dissolution behavior. Macromol. Mater. Eng. 300:1079–84 [Google Scholar]
  75. Tao R, Anthamatten M. 75.  2013. Porous polymers by controlling phase separation during vapor deposition polymerization. Macromol. Rapid Commun. 34:1755–60 [Google Scholar]
  76. Tao R, Anthamatten M. 76.  2012. Condensation and polymerization of supersaturated monomer vapor. Langmuir 28:16580–87 [Google Scholar]
  77. Haller PD, Gupta M. 77.  2014. Synthesis of polymer nanoparticles via vapor phase deposition onto liquid substrates. Macromol. Rapid Commun. 35:2000–4 [Google Scholar]
  78. Petruczok CD, Chen N, Gleason KK. 78.  2014. Closed batch initiated chemical vapor deposition of ultrathin, functional, and conformal polymer films. Langmuir 30:4830–37 [Google Scholar]
  79. Kim DH, Atanasov SE, Lemaire P, Lee K, Parsons GN. 79.  2015. Platinum-free cathode for dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) (PEDOT) formed via oxidative molecular layer deposition. ACS Appl. Mater. Interfaces 7:3866–70 [Google Scholar]
  80. Nejati S, Patel A, Wallowitch GR, Lau KKS. 80.  2015. Electrical conductivity and stability of oxidative chemical vapor deposition copolymer thin films of thiophene and pyrrole. Nanosci. Nanotechnol. Lett. 7:50–55 [Google Scholar]
  81. Bharamaiah Jeevendrakumar VJ, Altemus BA, Gildea AJ, Bergkvist M. 81.  2013. Thermal properties of poly(neopentylmethacrylate) thin films deposited via solventless, radical initiated chemical vapor deposition. Thin Solid Films 542:81–86 [Google Scholar]
  82. Jeevendrakumar VJB, Pascual DN, Bergkvist M. 82.  2015. Wafer scale solventless adhesive bonding with iCVD polyglycidylmethacrylate: effects of bonding parameters on adhesion energies. Adv. Mater. Interfaces 2:1500076 [Google Scholar]
  83. Kwak MJ, Oh MS, Yoo Y, You JB, Kim J. 83.  et al. 2015. Series of liquid separation system made of homogeneous copolymer films with controlled surface wettability. Chem. Mater. 27:3441–49 [Google Scholar]
  84. Kim J, Oh MS, Choi C-H, Kang S-M, Kwak MJ. 84.  et al. 2015. Three-dimensional clustering of Janus cylinders by convex curvature and hydrophobic interactions. Soft Matter 11:4952–61 [Google Scholar]
  85. Kwong P, Seidel S, Gupta M. 85.  2015. Effect of transition metal salts on the initiated chemical vapor deposition of polymer thin films. J. Vac. Sci. Technol. A 33:031504 [Google Scholar]
  86. Cicoira F, Santato C. 86.  2013. Organic Electronics: Emerging Concepts and Technologies Hoboken, NJ: John Wiley & Sons [Google Scholar]
  87. So F. 87.  2009. Organic Electronics: Materials, Processing, Devices and Applications Boca Raton, FL: CRC Press [Google Scholar]
  88. Elschner A, Kirchmeyer S, Lovenich W, Merker U, Reuter K. 88.  2010. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer Boca Raton, FL: CRC Press [Google Scholar]
  89. Bhattacharyya D, Howden RM, Borrelli DC, Gleason KK. 89.  2012. Vapor phase oxidative synthesis of conjugated polymers and applications. J. Polym. Sci. B Polym. Phys. 50:1329–51 [Google Scholar]
  90. Ugur A, Katmis F, Li M, Wu L, Zhu Y. 90.  et al. 2015. Low-dimensional conduction mechanisms in highly conductive and transparent conjugated polymers. Adv. Mater. 27:4604–10 [Google Scholar]
  91. Lee S, Paine DC, Gleason KK. 91.  2014. Heavily doped poly(3,4-ethylenedioxythiophene) thin films with high carrier mobility deposited using oxidative CVD: conductivity stability and carrier transport. Adv. Funct. Mater. 24:7187–96 [Google Scholar]
  92. Howden RM, McVay ED, Gleason KK. 91.  2013. oCVD poly(3,4-ethylenedioxythiophene) conductivity and lifetime enhancement via acid rinse dopant exchange. J. Mater. Chem. A 1:1334–40 [Google Scholar]
  93. Goktas H, Wang X, Ugur A, Gleason KK. 92.  2015. Water-assisted vapor deposition of PEDOT thin film. Macromol. Rapid Commun. 36:1283–89 [Google Scholar]
  94. Ellmer K. 93.  2012. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6:808–16 [Google Scholar]
  95. Barr MC, Rowehl JA, Lunt RR, Xu JJ, Wang AN. 94.  et al. 2011. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater. 23:3500–5 [Google Scholar]
  96. Borrelli DC, Barr MC, Bulovic V, Gleason KK. 95.  2012. Bilayer heterojunction polymer solar cells using unsubstituted polythiophene via oxidative chemical vapor deposition. Sol. Energy Mater. Sol. Cells 99:190–96 [Google Scholar]
  97. Jo WJ, Borrelli DC, Gleason KK. 96.  2015. Photovoltaic effect by vapor-printed polyselenophene. Org. Electron. 26:55–60 [Google Scholar]
  98. Nejati S, Lau KKS. 97.  2011. Chemical vapor deposition synthesis of tunable unsubstituted polythiophene. Langmuir 27:15223–29 [Google Scholar]
  99. Zaumseil J. 98.  2014. P3HT and other polythiophene field-effect transistors. P3HT Revisited—From Molecular Scale to Solar Cell Devices S Ludwigs 107–37 Berlin: Springer-Verlag [Google Scholar]
  100. Trujillo NJ, Wu QG, Gleason KK. 99.  2010. Ultralow dielectric constant tetravinyltetramethylcyclotetrasiloxane films deposited by initiated chemical vapor deposition (iCVD). Adv. Funct. Mater. 20:607–16 [Google Scholar]
  101. Vaddiraju S, Gleason KK. 100.  2010. Selective sensing of volatile organic compounds using novel conducting polymer-metal nanoparticle hybrids. Nanotechnology 21:125503 [Google Scholar]
  102. Petruczok CD, Choi HJ, Yang SY, Asatekin A, Gleason KK, Barbastathis G. 101.  2013. Fabrication of a microscale device for detection of nitroaromatic compounds. J. Microelectromech. Syst. 22:54–61 [Google Scholar]
  103. Mehrabani S, Kwong P, Gupta M, Armani AM. 102.  2013. Hybrid microcavity humidity sensor. Appl. Phys. Lett. 102:241101 [Google Scholar]
  104. Yang PH, Mai WJ. 103.  2014. Flexible solid-state electrochemical supercapacitors. Nano Energy 8:274–90 [Google Scholar]
  105. Lachman N, Xu H, Zhou Y, Ghaffari M, Lin M. 103a.  et al. 2014. Tailoring thickness of conformal conducting polymer decorated aligned carbon nanotube electrodes for energy storage. Adv. Mater. Interfaces 1:1400076 [Google Scholar]
  106. Zhou Y, Xu HP, Lachman N, Ghaffari M, Wu S. 104.  et al. 2014. Advanced asymmetric supercapacitor based on conducting polymer and aligned carbon nanotubes with controlled nanomorphology. Nano Energy 9:176–85 [Google Scholar]
  107. Zhou Y, Lachman N, Ghaffari M, Xu HP, Bhattacharya D. 105.  et al. 2014. A high performance hybrid asymmetric supercapacitor via nano-scale morphology control of graphene, conducting polymer, and carbon nanotube electrodes. J. Mater. Chem. A 2:9964–69 [Google Scholar]
  108. Nejati S, Minford TE, Smolin YY, Lau KKS. 106.  2014. Enhanced charge storage of ultrathin polythiophene films within porous nanostructures. ACS Nano 8:5413–22 [Google Scholar]
  109. Chen N, Kovacik P, Howden RM, Wang X, Lee S, Gleason KK. 107.  2015. Low substrate temperature encapsulation for flexible electrodes and organic photovoltaics. Adv. Energy Mater. 5:1401442 [Google Scholar]
  110. Qi L, Zhang C, Chen Q. 108.  2014. Performance improvement of inverted organic solar cells by adding ultrathin Al2O3 as an electron selective layer and a plasma enhanced chemical vapor deposition of SiOx encapsulating layer. Thin Solid Films 567:1–7 [Google Scholar]
  111. Chen N, Wang X, Gleason KK. 109.  2014. Conformal single-layer encapsulation of PEDOT at low substrate temperature. Appl. Surface Sci. 323:2–6 [Google Scholar]
  112. Kim BJ, Kim DH, Kang SY, Ahn SD, Im SG. 110.  2014. A thin film encapsulation layer fabricated via initiated chemical vapor deposition and atomic layer deposition. J. Appl. Polym. Sci. 131:40974 [Google Scholar]
  113. Lee B-H, Bae H, Seong H, Lee D-I, Park H. 111.  et al. 2015. Direct observation of a carbon filament in water-resistant organic memory. ACS Nano 9:7306–13 [Google Scholar]
  114. Chu Y-H, Lee C-C, Chang T-H, Chang S-Y, Chang J-Y. 112.  et al. 2014. Investigation of hydrogenated amorphous silicon as passivation layer by high density plasma. Thin Solid Films 570:B591–94 [Google Scholar]
  115. Bonilla RS, Reichel C, Hermle M, Wilshaw PR. 113.  2014. On the location and stability of charge in SiO2/SiNx dielectric double layers used for silicon surface passivation. J. Appl. Phys. 115:144105 [Google Scholar]
  116. Soppe W, Rieffe H, Weeber A. 114.  2005. Bulk and surface passivation of silicon solar cells accomplished by silicon nitride deposited on industrial scale by microwave PECVD. Prog. Photovolt. 13:551–69 [Google Scholar]
  117. Spee DA, Rath JK, Schropp REI. 115.  2015. Using hot wire and initiated chemical vapor deposition for gas barrier thin film encapsulation. Thin Solid Films 575:67–71 [Google Scholar]
  118. Spee DA, Rath JK, Schropp REI. 116.  2013. Polymer layers by initiated CVD for thin film gas barrier encapsulation. Encapsulation Nanotechnologies V Mittal 255–89 Hoboken, NJ: John Wiley & Sons [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error