As the global population grows in size and increasingly lives in cities, and with lifestyles based on greater material consumption, more attention is being given to the integrated system that supplies our energy, water, and food, the Nexus. There is also mounting concern about effects on the Nexus of climate change and damage to the natural environment that provides essential ecosystem services. Nexus analysis applies existing techniques, such as computational modelling and Life Cycle Assessment, but new frameworks and tools are needed, including those that will integrate societal and technical dimensions. Case studies show the vital role played by stakeholder involvement in clarifying issues, priorities, and values. They also demonstrate the importance of an integrated systems view of the complex interrelationships of the Nexus when planning effective remedies. Assessments conclude that transformative social and political change is needed to create new structures, markets, and governance to deal with the Nexus if we are to meet agreed-upon sustainable development goals.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. UN Dep Econ. Soc. Aff., Popul. Div; 2014. World Urbanization Prospects: 2014 Revision, Highlights (ST/ESA/SER.A/352) New York: United Nations [Google Scholar]
  2. Pachauri RK, Meyer L. 2.  2014. Climate Change 2014: Synthesis Report Geneva: IPCC [Google Scholar]
  3. 3. World Bank 2015. Overview Accessed Sept. 14, 2015. http://www.worldbank.org/en/topic/energy/overview#1 [Google Scholar]
  4. 4. UNICEF, World Health Organ 2015. 25 Years Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment. Geneva: UNICEF, World Health Organ. [Google Scholar]
  5. 5. World Food Progr. 2015. Hunger Map 2015 Accessed Sept. 14, 2015. http://www.wfp.org/content/hunger-map-2015 [Google Scholar]
  6. Amundson R, Berhe AA, Hopmans JW, Olson C, Sztien AE, Sparks DL. 6.  2015. Soil and human security in the 21st century. Science 348:6235 doi: 10.1126/science.1261071 [Google Scholar]
  7. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I. 7.  et al. 2012. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151:53–59 doi:10.1016/j.biocon.2012.01.068 [Google Scholar]
  8. 8. Food Agric. Organ. 2011. The State of the World's Land and Water Resources for Food and Agriculture: Managing Systems at Risk. Rome: Food Agric. Organ. [Google Scholar]
  9. 9. Food Agric. Organ. 2015. The State of Food Insecurity in the World 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome: Food Agric. Organ. [Google Scholar]
  10. 10. United Nations 1972. Report of the UN Conference on the Human Environment Stockholm: United Nations [Google Scholar]
  11. Brandt W. 11.  1980. North-South: A Programme for Survival: Report of the Independent Commission on International Development Issues Cambridge, MA: MIT Press [Google Scholar]
  12. Brundtland GH. 12.  1987. Our Common Future, The World Commission on Environment and Development Oxford: Oxford Univ. Press [Google Scholar]
  13. 13. Ger. Fed. Minist. Environ. 2012. Bonn2011 Conference: The Water, Energy and Food Security Nexus—Solutions for a Green Economy. Berlin: Ger. Fed. Minist. Environ. [Google Scholar]
  14. 14. Food Agric. Organ. 2014. The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture. Rome: Food Agric. Organ. [Google Scholar]
  15. 15. World Bus. Counc Sustain. Dev. 2015. Water and Energy Linkages to Food, Feed, Fiber. Accessed Sept. 14, 2015. http://www.wbcsd.org/work-program/sector-projects/water/waterenergyfood.aspx [Google Scholar]
  16. 16. World Bus. Counc Sustain. Dev. 2014. Water, Food and Energy Nexus Challenges. Accessed Sept. 14, 2015. http://www.gwp.org/Global/ToolBox/References/Water,%20Food%20and%20Energy%20Nexus%20Challenges%20(WBCSD,%202014).pdf [Google Scholar]
  17. Hoekstra AY, Wiedmann TO. 17.  2014. Humanity's unsustainable environmental footprint. Science 344:1114–17 [Google Scholar]
  18. Gerholdt J, Pandya S. 18.  Resources: The Energy, Water, Food Nexus Arlington, VA: Conserv. Int. Bus. Sustain. Counc. [Google Scholar]
  19. Hoff H. 19.  2011. Understanding the Nexus. Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus. Stockholm: Stockholm Environ. Inst. [Google Scholar]
  20. Ang BW, Choong WL, Ng TS. 20.  2015. Energy security: definitions, dimensions and indexes. Renew. Sustain. Energy Rev. 42:1077–93 [Google Scholar]
  21. 21. World Econ. Forum. 2011. Water Security: The Water-Food-Energy-Climate Nexus. Washington, DC: Island [Google Scholar]
  22. 22. World Econ. Forum. 2011. Global Risks. Geneva: World Econ. Forum [Google Scholar]
  23. 23. Food Agric. Organ. 2011. Energy-Smart Food for People and Climate. Rome: Food Agric. Organ. [Google Scholar]
  24. Bizikova L, Roy D, Swanson D, Venema HD, McCandless M. 24.  2013. The Water-Energy-Food Security Nexus: Towards a Practical Planning and Decision-Support Framework for Landscape Investment and Risk Management Winnipeg, Can.: Int. Inst. Sustain. Dev. [Google Scholar]
  25. Leck H, Conway D, Bradshaw M, Rees J. 25.  2015. Tracing the water–energy–food nexus: description, theory and practice. Geogr. Compass 9:8445–60 [Google Scholar]
  26. Stirling A. 26.  2015. Developing ‘Nexus Capabilities’: towards transdisciplinary methodologies. Draft Discuss. Pap., ESRC Nexus Netw. Workshop Univ. Sussex. http://www.thenexusnetwork.org/wp-content/uploads/2015/06/Stirling-2015-Nexus-Methods-Discussion-Paper.pdf
  27. 27. Shell Global. 2013. New Lens Scenarios Accessed Sept. 14, 2015. http://www.shell.com/global/future-energy/scenarios/new-lens-scenarios.html [Google Scholar]
  28. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J. 28.  et al. 2015. Systems integration for global sustainability. Science 347:6225 [Google Scholar]
  29. Bennett EM, Peterson GD, Gordon LJ. 29.  2009. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12:1394–404 [Google Scholar]
  30. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III. 30.  et al. 2009. A safe operating space for humanity. Nature 461:472–75 [Google Scholar]
  31. Ringler CA, Bhaduri AB, Lawford RC. 31.  2013. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency?. Curr. Opin. Environ. Sustain. 5:617–24 [Google Scholar]
  32. Hellegers P, Zilberman D, Steduto P, McCornick PG. 32.  2008. Interactions between water, energy, food and environment: evolving perspectives and policy issues. Water Policy 10:Suppl. 11–10 doi:10.2166/wp.2008.048 [Google Scholar]
  33. Howells M, Hermann S, Welsch M, Bazilian M, Segerström R. 33.  et al. 2013. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Change 3:621–26 doi: 10.1038/nclimate1789 [Google Scholar]
  34. Hurford AP, Harou JJ. 34.  2014. Balancing ecosystem services with energy and food security—assessing trade-offs from reservoir operation and irrigation investments in Kenya's Tana Basin. Hydrol. Earth Syst. Sci. 18:3259–77 doi:10.5194/hess-18–3259–2014 [Google Scholar]
  35. Biggs EM, Duncan JMA, Atkinson PM, Dash J. 35.  2013. Plenty of water, not enough strategy: how inadequate accessibility, poor governance and a volatile government can tip the balance against ensuring water security: the case of Nepal. Environ. Sci. Policy 33:388–94 [Google Scholar]
  36. 36. Millenn. Ecosyst. Assess. 2005. Ecosystems and Human Well-Being: Synthesis. Washington, DC: Island [Google Scholar]
  37. Lawford R, Bogardi J, Marx S, Jain S, Wostl CP. 37.  et al. 2013. Basin perspectives on the Water–Energy–Food Security Nexus. Curr. Opin. Environ. Sustain. 5:6607–16 doi:10.1016/j.cosust.2013.11.005 [Google Scholar]
  38. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A. 38.  et al. 2011. The representative concentration pathways: an overview. Clim. Change 109:5–31 doi:10.1007/s10584-011–0148-z [Google Scholar]
  39. Flammini A, Puri M, Pluschke L, Dubois O. 39.  2014. Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus, Food and Agriculture Organization of the United Nations Rome: Food Agric. Organ. [Google Scholar]
  40. 40. World Bank 2014. Data: Access to Electricity (% of Population) Accessed Sept. 10, 2015. http://data.worldbank.org/indicator/EG.ELC.ACCS.ZS [Google Scholar]
  41. 41. Int. Inst. Environ. Dev. 2009. Climate Change and the Urban Poor. Risk and Resilience in 15 of the World's Most Vulnerable Cities. London: Int. Inst. Environ. Dev. http://pubs.iied.org/G02597.html [Google Scholar]
  42. Voulvoulis N. 42.  2012. Water and sanitation provision in a low carbon society: the need for a systems approach. J. Renew. Sustain. Energy 4:041403 doi: 10.1063/1.3665797 [Google Scholar]
  43. King CW. 43.  2013. A Systems Approach for Investigating Water, Energy, and Food Scenarios in East-Central Maui, Energy Institute & Center for International Energy and Environmental Policy Austin: Jackson School Geosci., Univ. Tex. [Google Scholar]
  44. Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D. 44.  et al. 2013. Global flood risk under climate change. Nat. Clim. Change 3:816–21 doi:10.1038/nclimate1911 [Google Scholar]
  45. McGranahan G, Balk D, Anderson B. 45.  2007. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19:117–37 doi: 10.1177/0956247807076960 [Google Scholar]
  46. Lal R. 46.  2013. Climate-strategic agriculture and the water-soil-waste nexus. J. Plant Nutr. Soil Sci. 176:479–93 doi:10.1002/jpln.201300189 [Google Scholar]
  47. McCornick PG, Awulachew SB, Abebe M. 47.  2008. Water-food-energy-environment synergies and tradeoffs: major issues and case studies. Water Policy 10:23–26 [Google Scholar]
  48. Kattelus M, Rahaman MM, Varis O. 48.  2014. Myanmar under reform: emerging pressures on water, energy and food security. Nat. Resour. Forum 38:285–98 [Google Scholar]
  49. Hanlon P, Madel R, Olson-Sawyer K, Rabin K, Rose J. 49.  2013. Food, Water and Energy: Know the Nexus New York: Grace Commun. Found. [Google Scholar]
  50. Scott CA, Kurian M, Wescoat JL Jr. 50.  2014. The water-energy-food nexus: enhancing adaptive capacity to complex global challenges. Governing the Nexus M Kurian, R Ardakanian 15–38 Switzerland: Springer Int. [Google Scholar]
  51. 51. Intergov. Panel Clim. Change. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge Univ. Press [Google Scholar]
  52. Jeswani HK, Burkinshaw R, Azapagic A. 52.  2015. Environmental sustainability issues in the food–energy–water nexus: breakfast cereals and snacks. Sustain. Prod. Consum. 2:17–28 doi:10.1016/j.spc.2015.08.001 [Google Scholar]
  53. Irabien A, Darton RC. 53.  2015. Energy-water-food nexus in the Spanish greenhouse tomato production. Clean Technol. Environ. Policy. In press. doi:10.1007/s10098-015-1076-9 [Google Scholar]
  54. Wong KV, Pecora C. 54.  2015. Recommendations for energy-water-food nexus problems. J. Energy Resour. Technol. 137:032002 [Google Scholar]
  55. Borgia C, Evers J, Kool M, van Steenberen F. 55.  2014. Co-optimizing Solutions: Water and Energy for Food, Feed and Fiber. Geneva: World Bus. Counc. Sustain. Dev. [Google Scholar]
  56. Lundy J, Bowdish L. 56.  2014. The Energy-Water-Food Nexus: Insights for the Business Community Washington, DC: US Chamb. Commer. Found. [Google Scholar]
  57. 57. SAB Miller. 2014. The Water-Food-Energy Nexus: Insights into Resilient Development London: SAB Miller [Google Scholar]
  58. 58. US Natl. Sci. Found. 2015. New grants foster research of food, energy and water: a linked system. Press Release 15-090, Aug. 14 [Google Scholar]
  59. Bazilian M, Rogner H, Howells M, Hermann S, Arent D. 59.  et al. 2011. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39:7896–906 [Google Scholar]
  60. Ferroukhi R, Nagpal D, Lopez-Peña A, Hodges T, Mohtar RH. 60.  et al. 2015. Renewable Energy in the Water, Energy & Food Nexus. Abu Dhabi: Int. Renew. Energy Agency [Google Scholar]
  61. Grenon M, Lapillonne B. 61.  1976. The WELMN Approach to Energy Strategies and Options Laxenburg, Austria: Int. Inst. Appl. Syst. Anal. [Google Scholar]
  62. 62. Int. Inst. Appl. Syst. Anal. 2012. MESSAGE: A Modelling Framework for Medium- to Long-Term Energy System Planning, Energy Policy Analysis, and Scenario Development. Accessed Sept. 21, 2015. http://www.iiasa.ac.at/web/home/research/researchPrograms/Energy/MESSAGE.en.html [Google Scholar]
  63. Meinshausen M, Raper SCB, Wigley TML. 63.  2011. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 1. Model description and calibration. Atmos. Chem. Phys. 11:1417–56 doi:10.5194/acp-11–1417–2011 [Google Scholar]
  64. Giampietro M, Aspinall RJ, Bukkens SGF, Benalcazar JC, Diaz-Maurin F. 64.  et al. 2013. An innovative accounting framework for the food-energy-water nexus: application of the MuSIASEM approach to three case studies Environ. Nat. Resour. Manag. Work. Pap., Food Agric. Organ., Rome. http://www.fao.org/docrep/019/i3468e/i3468e.pdf [Google Scholar]
  65. Giampietro M, Mayumi K, Ramos-Martin J. 65.  2009. Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): theoretical concepts and basic rationale. Energy 34:313–22 [Google Scholar]
  66. Roberts SH, Axon CJ, Foran BD, Goddard NH, Warr BS. 66.  2013. The 4see Framework: Characterising an Economy by Its Socio-Economic and Energy Activities Hong Kong: Univ. Hong Kong [Google Scholar]
  67. 67. LIPHE 2013. What MuSIASEM is. Accessed Sept. 15, 2015. http://www.nexus-assessment.info/methodology/musiasem [Google Scholar]
  68. Yates D, Sieber J, Purkey D, Huber-Lee A. 68.  2005. WEAP21—a demand-, priority-, and preference-driven water planning model. Part 1: model characteristics. Water Int. 30:4487–500 doi:10.1080/02508060508691893 [Google Scholar]
  69. 69. Int. Inst. Appl. Syst. Anal. 2014. GAEZ: The Global Agro-Ecological Zones (GAEZ). Laxenburg, Austria: Int. Inst. Appl. Syst. Anal. [Google Scholar]
  70. Welsch M, Hermann S, Howells M, Rogner HH, Young C. 70.  et al. Adding value with CLEWS—modelling the energy system and its interdependencies for Mauritius. Appl. Energy 113:1434–45 doi:10.1016/j.apenergy.2013.08.083 [Google Scholar]
  71. Bouwman L, Kram T, Klein-Goldewijk K. 71.  2006. Integrated Modelling of Global Environmental Change: An Overview of IMAGE 2.4 Bilthoven: Neth. Environ. Assess. Agency [Google Scholar]
  72. van Vuuren DP, Kok M, Lucas PL, Prins AG, Alkemade R. 72.  et al. 2015. Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model. Technol. Forecast. Soc. Change 98:303–23 doi:10.1016/j.techfore.2015.03.005 [Google Scholar]
  73. Al-Ansari T, Korre A, Nie Z, Shah N. 73.  2014. Development of a life cycle assessment model for the analysis of the energy, water and food nexus. Comput.-Aided Chem. Eng. 33:1039–44 [Google Scholar]
  74. Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P. 74.  et al. 2011. Life cycle assessment: past, present, and future. Environ. Sci. Technol. 45:190–96 doi:10.1021/es101316v [Google Scholar]
  75. Neugebauer S, Martinez-Blanco J, Scheumann R, Finkbeiner M. 75.  2015. Enhancing the practical implementation of life cycle sustainability assessment—proposal of a Tiered approach. J. Clean. Prod. 102:165–76 [Google Scholar]
  76. Roibas L, Elbehri A, Hospido A. 76.  2015. Evaluating the sustainability of Ecuadorian bananas: carbon footprint, water usage and wealth distribution along the supply chain. Sustain. Prod. Consum. 2:3–16 doi:10.1016/j.spc.2015.07.006 [Google Scholar]
  77. Chee Tahir A, Darton RC. 77.  2010. The Process Analysis Method of selecting indicators to quantify the sustainability performance of a business operation. J. Clean. Prod. 18:1598–607 [Google Scholar]
  78. Egilmez G, Kucukvar M, Tatari O, Bhutta MKS. 78.  2014. Supply chain sustainability assessment of the U.S. food manufacturing sectors: a life cycle-based frontier approach. Resour. Conserv. Recycl. 82:8–20 doi:10.1016/j.resconrec.2013.10.008 [Google Scholar]
  79. Pacetti T, Lombardi L, Federici G. 79.  2015. Water-energy nexus: a case of biogas production from energy crops evaluated by Water Footprint and Life Cycle Assessment (LCA) methods. J. Clean. Prod. 101:278–91 [Google Scholar]
  80. Murphy CF, Allen DT. 80.  2011. Energy-water nexus for mass cultivation of algae. Environ. Sci. Technol. 45:135861–68 doi:10.1021/es200109z [Google Scholar]
  81. van Notten PWF, Rotmans J, van Asselt MBA, Rothman DS. 81.  2003. An updated scenario typology. Futures 35:5423–43 doi: 10.1016/S0016-3287(02)00090–3 [Google Scholar]
  82. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J. 82.  et al. 2000. IPCC Special Report on Emissions Scenarios Cambridge: Cambridge Univ. Press [Google Scholar]
  83. 83. Int. Inst. Appl. Syst. Anal. 2014. IPCC AR5 Scenarios Database. Accessed Sept. 15, 2015. http://www.iiasa.ac.at/web/home/research/researchPrograms/Energy/IPCC_AR5_Database.html [Google Scholar]
  84. 84. Int. Energy Agency. 2015. World Energy Outlook Special Report: Energy and Climate Change. Paris: Organ. Econ. Co-Op. Dev./Int. Energy Agency [Google Scholar]
  85. 85. Int. Energy Agency. 2011. Technology Roadmap: Biofuels for Transport. Paris: Organ. Econ. Co-Op. Dev./Int. Energy Agency [Google Scholar]
  86. Hermann S, Welsch M, Segerstrom RE, Howells MI, Young C. 86.  et al. 2012. Climate, land, energy and water (CLEW) interlinkages in Burkina Faso: an analysis of agricultural intensification and bioenergy production. Nat. Resour. Forum 36:4245–62 [Google Scholar]
  87. Thabrew L, Wiek A, Ries RR. 87.  2009. Environmental decision making in multi-stakeholder contexts: applicability of life cycle thinking in development planning and implementation. J. Clean. Prod. 17:167–76 [Google Scholar]
  88. 88. Asian Dev. Bank. 2013. Thinking Differently about Water: Managing the Water-Food-Energy Nexus. Manila, Philipp.: Asian Dev. Bank [Google Scholar]
  89. 89. UN Econ. Soc. Comm. Asia Pac. 2013. Water-food-energy nexus in Asia and the Pacific. Discuss. Pap., UN Econ. Soc. Comm. Asia Pac., Bangkok [Google Scholar]
  90. Foran T. 90.  2015. Node and regime: interdisciplinary analysis of water-energy-food nexus in the Mekong region. Water Altern. 8:1655–74 [Google Scholar]
  91. Conway D, van Garderen EA, Deryng D, Dorling S, Krueger T. 91.  et al. 2015. Climate and southern Africa's water–energy–food nexus. Nat. Clim. Change 5:837–46 doi:10.1038/nclimate2735 [Google Scholar]
  92. Granit J, Jägerskog A, Lindström A, Björklund G, Bullock A. 92.  et al. 2012. Regional options for addressing the water, energy and food nexus in Central Asia and the Aral Sea Basin. Int. J. Water Resour. Dev. 28:419–32 [Google Scholar]
  93. Keulertz M, Woertz E. 93.  2015. Financial challenges of the nexus: pathways for investment in water, energy and agriculture in the Arab world. Int. J. Water Resour. Dev. 31:3312–25 [Google Scholar]
  94. Mukuve FM, Fenner RA. 94.  2015. The influence of water, land, energy and soil-nutrient resource interactions on the food system in Uganda. Food Policy 51:24–37 [Google Scholar]
  95. 95. World Water Forum 6. 2012. Water, Food & Energy Nexus. High-Level Panel of the 6th World Water Forum. Accessed Sept. 10, 2015. http://www.wbcsd.org/Pages/Adm/Download.aspx?ID=7486&ObjectTypeId=7 [Google Scholar]
  96. Chen H-G, Zhang Y-HP. 96.  2015. New biorefineries and sustainable agriculture: increased food, biofuels, and ecosystem security. Renew. Sustain. Energy Rev. 47:117–32 [Google Scholar]
  97. Popp J, Lakner Z, Harangi-Rákos M, Fári M. 97.  2014. The effect of bioenergy expansion: food, energy and environment. Renew. Sustain. Energy Rev. 32:559–78 [Google Scholar]
  98. Zahner A. 98.  2014. Making the Case: How Agrifood Firms Are Building New Business Cases in the Water–Energy–Food Nexus. Vienna, Austria: Renew. Energy Energy Effic. Partnersh., Food Agric. Organ. [Google Scholar]
  99. Green KW Jr, Zelbst PJ, Meacham J, Bhadauria VS. 99.  2012. Green supply chain management practices: impact on performance. Supply Chain Manag. 17:3290–305 doi:10.1108/13598541211227126 [Google Scholar]
  100. Amón R, Maulhardt M, Wong T, Kazama D, Simmons CW. 100.  2015. Waste heat and water recovery opportunities in California tomato paste processing. Appl. Therm. Eng. 78:525–32 doi:10.1016/j.applthermaleng.2014.11.081 [Google Scholar]
  101. Berge ND, Li L, Flora JRV, Ro KS. 101.  2015. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes. Waste Manag. 43:203–17 [Google Scholar]
  102. Smetana S, Mathys A, Knoch A, Heinz V. 102.  2015. Meat alternatives: life cycle assessment of most known meat substitutes. Int. J. Life Cycle Assess. 20:1254–67 doi:10.1007/s11367-015-0931-6 [Google Scholar]
  103. Powell TWR, Lenton TM. 103.  2012. Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energy Environ. Sci. 5:8116–33 doi:10.1039/c2ee21592f. [Google Scholar]
  104. Springer NP, Garbach K, Guillozet K, Haden VR, Hedao P. 104.  et al. 2015. Sustainable sourcing of global agricultural raw materials: assessing gaps in key impact and vulnerability issues and indicators. PLOS ONE 10:6e0128752 doi:10.1371/journal.pone.0128752 [Google Scholar]
  105. Charnley F, Walker D, Kuzmina K. 105.  2015. Fast-Moving Circular Goods 2025: Nexus Network Think Piece Series, Paper 006 Brighton, UK: Nexus Netw. [Google Scholar]
  106. Perrone D, Hornberger GM. 106.  2014. Water, food, and energy security: Scrambling for resources or solutions?. Wiley Interdiscip. Rev. Water 1:49–68 doi: 10.1002/wat2.1004 [Google Scholar]
  107. Walker RV, Beck MB, Hall JW, Dawson RJ, Heidrich O. 107.  2014. The energy-water-food nexus: strategic analysis of technologies for transforming the urban metabolism. J. Environ. Manag. 141:104–15 [Google Scholar]
  108. Zhang Y. 108.  2013. Urban metabolism: a review of research methodologies. Environ. Pollut. 178:463–73 [Google Scholar]
  109. Vogt C, Zimmermann M, Brekke K. 109.  2014. Operationalizing the Urban NEXUS: Towards Resource-Efficient and Integrated Cities and Metropolitan Regions. Eschborn, Ger.: Dtsch. Ges. Int. Zusammenarbeit GmbH, Local Gov. Sustain. [Google Scholar]
  110. Kenway SJ, Lant PA, Priestley A, Daniels P. 110.  2011. The connection between water and energy in cities: a review. Water Sci. Technol. 63:1983–90 [Google Scholar]
  111. 111. The World Bank Crude oil (petroleum) simple average of three spot process; Dated Brent, West Texas Intermediate, and the Dubai Fateh, US dollar per barrel. Index Mundi. http://www.indexmundi.com/commodities/?commodity=crude-oil&months=300 [Google Scholar]
  112. 112. Food Agric. Organ. United Nations 2015. World Food Situation: FAO Food Price Index. Accessed Sept. 14, 2015. http://www.fao.org/worldfoodsituation/foodpricesindex/en/ [Google Scholar]
  113. 113. Food Agric. Organ. 2014. The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture. Rome: Food Agric. Organ. [Google Scholar]
  114. 114. Dep. Econ. Soc. Affairs. 2014. World Urbanization Prospects: The 2014 Revision. New York: United Nations [Google Scholar]
  115. 115. Food Agric. Organ. 2014. The State of Food Insecurity in the World 2014: Strengthening the Enabling Environment for Food Security and Nutrition. Rome: Food Agric. Organ. [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error