This article first reviews recent developments in process synthesis and discusses some of the major challenges in the theory and practice in this area. Next, the article reviews key concepts in optimization-based conceptual design, namely superstructure representations, multilevel models, optimization methods, and modeling environments. A brief review of the synthesis of major subsystems and flowsheets is presented. Finally, the article closes with a critical assessment and future research challenges for the process synthesis area.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Westerberg AW. 1.  2004. A retrospective on design and process synthesis. Comput. Chem. Eng. 28:4447–58 [Google Scholar]
  2. Li X, Kraslawski A. 2.  2004. Conceptual process synthesis: past and current trends. Chem. Eng. Process. Process Intensif. 43:5589–600 [Google Scholar]
  3. Barnicki SD, Siirola JJ. 3.  2004. Process synthesis prospective. Comput. Chem. Eng. 28:4441–46 [Google Scholar]
  4. Cremaschi S. 4.  2015. A perspective on process synthesis: challenges and prospects. Comput. Chem. Eng. 81:130–37 [Google Scholar]
  5. Grossmann IE, Caballero JA, Yeomans H. 5.  2000. Advances in mathematical programming for the synthesis of process systems. Lat. Am. Appl. Res. 30:4263–84 [Google Scholar]
  6. Shah N. 6.  1998. Single and multisite planning and scheduling: current status and future challenges. Proceedings of the Conference in Foundations of Computer Aided Process Operations J Pekny, G Blau, AIChE Symposium Series, No. 320 CACH Publications [Google Scholar]
  7. Méndez CA, Cerdá J, Grossmann IE, Harjunkoski I, Fahl M. 7.  2006. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Comput. Chem. Eng. 30:6–7913–46 [Google Scholar]
  8. Harjunkoski I, Maravelias CT, Bongers P, Castro PM, Engell S. 8.  et al. 2014. Scope for industrial applications of production scheduling models and solution methods. Comput. Chem. Eng. 62:161–93 [Google Scholar]
  9. Westerberg AW, Stephanopoulos G. 9.  1975. Studies in process synthesis. I: Branch and bound strategy with list techniques for the synthesis of separation schemes. Chem. Eng. Sci. 30:8963–72 [Google Scholar]
  10. Douglas JM. 10.  1985. A hierarchical decision procedure for process synthesis. AIChE J 31:3353–62 [Google Scholar]
  11. Siirola JJ, Rudd DF. 11.  1971. Computer-aided synthesis of chemical process designs: from reaction path data to the process task network. Ind. Eng. Chem. Fundam. 10:3353–62 [Google Scholar]
  12. Sargent RWH. 12.  1967. Integrated design and optimization of processes. Chem. Eng. Prog. 3:71–78 [Google Scholar]
  13. Sargent RWH, Gaminibandara K. 13.  1976. Optimum design of plate distillation columns. Optimization in Action LCW Dixon 267–314 London: Academic [Google Scholar]
  14. Umeda T, Hirai A, Ichikawa A. 14.  1972. Synthesis of optimal processing system by an integrated approach. Chem. Eng. Sci. 27:4795–804 [Google Scholar]
  15. Daichendt MM, Grossmann IE. 15.  1998. Integration of hierarchical decomposition and mathematical programming for the synthesis of process flowsheets. Comput. Chem. Eng. 22:1147–75 [Google Scholar]
  16. Cohon JL. 16.  1978. Multiobjective Programming and Planning New York: Academic [Google Scholar]
  17. Grossmann IE, Santibanez J. 17.  1980. Applications of mixed-integer linear programming in process synthesis. Comput. Chem. Eng. 4:4205–14 [Google Scholar]
  18. Yee TF, Grossmann IE. 18.  1990. Simultaneous optimization models for heat integration. II: Heat exchanger network synthesis. Comput. Chem. Eng. 14:101165–84 [Google Scholar]
  19. El-Halwagi MM, Manousiouthakis V. 19.  1989. Synthesis of mass exchange networks. AIChE J 35:81233–44 [Google Scholar]
  20. 20. U.S. Energy Information Administration. 2015. Annual energy outlook 2015 with projections to 2040 Washington, DC: US Energy Inf. Admin., US Dep. Energy http://www.eia.gov/outlooks/aeo/pdf/0383(2015).pdf [Google Scholar]
  21. Siirola J. 21.  2014. The impact of shale gas in the chemical industry. AIChE J 60:3810–19 [Google Scholar]
  22. Martin-Moe S, Lim FJ, Wong RL, Sreedhara A, Sundaram J, Sane SU. 22.  2011. A new roadmap for biopharmaceutical drug product development: integrating development, validation, and Quality by Design. J. Pharm. Sci. 100:83031–43 [Google Scholar]
  23. Juran JM. 23.  1992. Juran on Quality by Design: The New Steps for Planning Quality into Goods and Services New York: Maxwell Macmillan International [Google Scholar]
  24. Plumb K. 24.  2005. Continuous processing in the pharmaceutical industry. Chem. Eng. Res. Des. 83:6730–38 [Google Scholar]
  25. Grossmann IE, Guillén-Gosálbez G. 25.  2010. Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes. Comput. Chem. Eng. 34:91365–76 [Google Scholar]
  26. Gellrich T. 26.  2012. Shale gas: reshaping the US chemicals industry New York: PricewaterhouseCoopers http://www.pwc.com/us/en/industrial-products/publications/assets/pwc-shale-gas-chemicals-industry-potential.pdf [Google Scholar]
  27. Olujic Z, Kaibel B, Jansen H, Rietfort T, Zich E, Frey G. 27.  2003. Distillation column internals/configurations for process intensification. Chem. Biochem. Eng. Q. 17:4301–9 [Google Scholar]
  28. Stankiewicz A. 28.  2003. Reactive separations for process intensification: an industrial perspective. Chem. Eng. Process. 42:3137–44 [Google Scholar]
  29. Guillén-Gosálbez G, Caballero JA, Jiménez L. 29.  2008. Application of life cycle assessment to the structural optimization of process flowsheets. Ind. Eng. Chem. Res. 47:3777–89 [Google Scholar]
  30. Azapagic A. 30.  1999. Life cycle assessment and its application to process selection, design and optimisation. Chem. Eng. J. 73:11–21 [Google Scholar]
  31. Stankiewicz AI, Moulijn JA. 31.  2000. Process intensification: transforming chemical engineering. Chem. Eng. Prog. 96:222–33 [Google Scholar]
  32. Siirola JJ. 32.  2016. Intensification in process design for improved economics, environmental impact, and sustainability Presented at the American-Russian Chemical Engineering Scientific School, May 25, Kazan, Republic of Tatarstan Russia: [Google Scholar]
  33. Moulijn JA, Stankiewicz A, Grievink J, Górak A. 33.  2008. Process intensification and process systems engineering: a friendly symbiosis. Comput. Chem. Eng. 32:1–23–11 [Google Scholar]
  34. Lutze P, Gani R, Woodley JM. 34.  2010. Process intensification: a perspective on process synthesis. Chem. Eng. Process. Process Intensif. 49:6547–58 [Google Scholar]
  35. Cardona CA, Sánchez ÓJ. 35.  2007. Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98:122415–57 [Google Scholar]
  36. Lutze P, Babi DK, Woodley JM, Gani R. 36.  2013. Phenomena based methodology for process synthesis incorporating process intensification. Ind. Eng. Chem. Res. 52:227127–44 [Google Scholar]
  37. Babi DK, Holtbruegge J, Lutze P, Gorak A, Woodley JM, Gani R. 37.  2015. Sustainable process synthesis-intensification. Comput. Chem. Eng. 81:218–44 [Google Scholar]
  38. Wang M, Joel AS, Ramshaw C, Eimer D, Musa NM. 38.  2015. Process intensification for post-combustion CO2 capture with chemical absorption: a critical review. Appl. Energy 158:275–91 [Google Scholar]
  39. Toumi A, Engell S. 39.  2004. Optimization-based control of a reactive simulated moving bed process for glucose isomerization. Chem. Eng. Sci. 59:183777–92 [Google Scholar]
  40. Bixby R, Rothberg E. 40.  2007. Progress in computational mixed integer programming—a look back from the other side of the tipping point. Ann. Oper. Res. 149:137–41 [Google Scholar]
  41. Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A. 41.  2013. Mixed-integer nonlinear optimization. Acta Numer 22:1–131 [Google Scholar]
  42. Trespalacios F, Grossmann IE. 42.  2014. Review of mixed-integer nonlinear and generalized disjunctive programming methods. Chem. Ing. Tech. 86:7991–1012 [Google Scholar]
  43. Floudas CA, Gounaris CE. 43.  2009. A review of recent advances in global optimization. J. Glob. Optim. 45:13–38 [Google Scholar]
  44. Sahinidis NV. 44.  2004. Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28:6–7971–83 [Google Scholar]
  45. Grossmann IE, Trespalacios F. 45.  2013. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE J 59:93276–95 [Google Scholar]
  46. Friedman Z, Ingalls J, Siirola JD, Watson JP. 46.  2013. Block-oriented modeling of superstructure optimization problems. Comput. Chem. Eng. 57:10–23 [Google Scholar]
  47. Quesada I, Grossmann IE. 47.  1995. Global optimization of bilinear process networks with multicomponent flows. Comput. Chem. Eng. 19:121219–42 [Google Scholar]
  48. Barttfeld M, Aguirre PA, Grossmann IE. 48.  2003. Alternative representations and formulations for the economic optimization of multicomponent distillation columns. Comput. Chem. Eng. 27:3363–83 [Google Scholar]
  49. Amundsen CA, Swaney R. 49.  2008. Canonical primal-dual (CPD) formulation of process models Presented at AIChE Annu. Meet., Nov 16–21 Philadelphia: [Google Scholar]
  50. Amundsen CA. 50.  2010. General formulation structure for steady-state process models: guaranteeing solvability PhD Thesis, Univ Wisconsin-Madison: [Google Scholar]
  51. Halemane KP, Grossmann IE. 51.  1983. Optimal process design under uncertainty. AIChE J 29:3425–33 [Google Scholar]
  52. Grossmann IE, Floudas CA. 52.  1987. Active constraint strategy for flexibility analysis in chemical processes. Comput. Chem. Eng. 11:6675–93 [Google Scholar]
  53. Pistikopoulos EN, Ierapetritou MG. 53.  1995. Novel approach for optimal process design under uncertainty. Comput. Chem. Eng. 19:101089–110 [Google Scholar]
  54. Pistikopoulos EN. 54.  1995. Uncertainty in process design and operations. Comput. Chem. Eng. 19:95553–63 [Google Scholar]
  55. Chaudhuri PD, Diwekar UM. 55.  1996. Process synthesis under uncertainty: a penalty function approach. AIChE J 42:3742–52 [Google Scholar]
  56. Acevedo J, Pistikopoulos EN. 56.  1997. A multiparametric programming approach for linear process engineering problems under uncertainty. Ind. Eng. Chem. Res. 36:3717–28 [Google Scholar]
  57. Acevedo J, Pistikopoulos EN. 57.  1998. Stochastic optimization based algorithms for process synthesis under uncertainty. Comput. Chem. Eng. 22:4/5647–71 [Google Scholar]
  58. Gargalo CL, Sin G. 58.  2015. Sustainable process design under uncertainty analysis: targeting environmental indicators. 12th Int. Symp. Process Syst. Eng. and 25th Eur. Symp. Comput. Aided Process Eng KV Gernaey, J Huusom, R Gani 372579–84 Amsterdam: Elsevier [Google Scholar]
  59. Karuppiah R, Grossmann IE. 59.  2006. Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Comput. Aided Chem. Eng. 21:C1747–52 [Google Scholar]
  60. Guillén-Gosálbez G, Grossmann IE. 60.  2009. Optimal design and planning of sustainable chemical supply chains under uncertainty. AIChE J 55:199–121 [Google Scholar]
  61. Wolfram C, Shelef O, Gertler P. 61.  2012. How will energy demand develop in the developing world?. J. Econ. Perspect. 26:119–38 [Google Scholar]
  62. 62. World Economic Forum. 2013. Global Risks Report 2013, 8th ed.80 http://www3.weforum.org/docs/WEF_GlobalRisks_Report_2013.pdf [Google Scholar]
  63. Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR. 63.  2012. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat. Clim. Chang. 2:12–4 [Google Scholar]
  64. Lam HL, Klemeš JJ, Varbanov PS, Kravanja Z. 64.  2012. P-graph synthesis of open-structure biomass networks. Ind. Eng. Chem. Res. 52:1172–80 [Google Scholar]
  65. Čuček L, Martín M, Grossmann IE, Kravanja Z. 65.  2011. Energy, water and process technologies integration for the simultaneous production of ethanol and food from the entire corn plant. Comput. Chem. Eng. 35:81547–57 [Google Scholar]
  66. Ahmetović E, Martín M, Grossmann IE. 66.  2010. Optimization of energy and water consumption in corn-based ethanol plants. Ind. Eng. Chem. Res. 49:177972–82 [Google Scholar]
  67. Martín M, Grossmann IE. 67.  2011. Energy optimization of bioethanol production via gasification of switchgrass. AIChE J 57:123408–28 [Google Scholar]
  68. Martín M, Grossmann IE. 68.  2011. Process optimization of FT-diesel production from lignocellulosic switchgrass. Ind. Eng. Chem. Res. 50:2313485–99 [Google Scholar]
  69. Martín M, Grossmann IE. 69.  2011. Energy optimization of hydrogen production from lignocellulosic biomass. Comput. Chem. Eng. 35:91798–806 [Google Scholar]
  70. Wang B, Gebreslassie BH, You F. 70.  2013. Sustainable design and synthesis of hydrocarbon biorefinery via gasification pathway: integrated life cycle assessment and technoeconomic analysis with multiobjective superstructure optimization. Comput. Chem. Eng. 52:55–76 [Google Scholar]
  71. Agrawal R. 71.  1996. Synthesis of distillation column configurations for a multicomponent separation. Ind. Eng. Chem. Res. 35:41059–71 [Google Scholar]
  72. Kondili E, Pantelides CC, Sargent RWH. 72.  1993. A general algorithm for short-term scheduling of batch operations. I: MILP formulation. Comput. Chem. Eng. 17:2211–27 [Google Scholar]
  73. Smith EMB, Pantelides CC. 73.  1995. Design of reaction/separation networks using detailed models. Comput. Chem. Eng. 19:Suppl. 183–88 [Google Scholar]
  74. Yeomans H, Grossmann IE. 74.  1999. A systematic modeling framework of superstructure optimization in process synthesis. Comput. Chem. Eng. 23:6709–31 [Google Scholar]
  75. Bagajewicz MJ, Manousiouthakis V. 75.  1992. Mass/heat-exchange network representation of distillation networks. AIChE J 38:111769–800 [Google Scholar]
  76. Burri JF, Wilson SD, Manousiouthakis VI. 76.  2002. Infinite DimEnsionAl State-space approach to reactor network synthesis: application to attainable region construction. Comput. Chem. Eng. 26:6849–62 [Google Scholar]
  77. Friedler F, Tarján K, Huang YW, Fan LT. 77.  1992. Graph-theoretic approach to process synthesis: axioms and theorems. Chem. Eng. Sci. 47:81973–88 [Google Scholar]
  78. Friedler F, Tarjan K, Huang YW, Fan LT. 78.  1993. Graph-theoretic approach to process synthesis: polynomial algorithm for maximal structure generation. Comput. Chem. Eng. 17:9929–42 [Google Scholar]
  79. Wu W, Henao CA, Maravelias CT. 79.  2016. A superstructure representation, generation, and modeling framework for chemical process synthesis. AIChE J 62:93199–214 [Google Scholar]
  80. Papoulias SA, Grossmann IE. 80.  1983. A structural optimization approach in process synthesis—II. Comput. Chem. Eng. 7:6707–21 [Google Scholar]
  81. Caballero JA, Grossmann IE. 81.  1999. Aggregated models for integrated distillation systems. Ind. Eng. Chem. Res. 38:62330–44 [Google Scholar]
  82. Balakrishna S, Biegler LT. 82.  1992. Constructive targeting approaches for the synthesis of chemical reactor networks. Ind. Eng. Chem. Res. 141985:300–12 [Google Scholar]
  83. Ciric AR, Floudas CA. 83.  1991. Heat exchanger network synthesis without decomposition. Comput. Chem. Eng. 15:6385–96 [Google Scholar]
  84. Aggarwal A, Floudas CA. 84.  1990. Synthesis of general distillation sequences - nonsharp separations. Comput. Chem. Eng. 14:6631–53 [Google Scholar]
  85. Proios P, Goula NF, Pistikopoulos EN. 85.  2005. Generalized modular framework for the synthesis of heat integrated distillation column sequences. Chem. Eng. Sci. 60:174678–701 [Google Scholar]
  86. Papalexandri KP, Pistikopoulos EN. 86.  1996. Generalized modular representation framework for process synthesis. AIChE J 42:41010–32 [Google Scholar]
  87. Kocis GR, Grossmann IE. 87.  1989. A modelling and decomposition strategy for the MINLP optimization of process flowsheets. Comput. Chem. Eng. 13:7797–819 [Google Scholar]
  88. Türkay M, Grossmann IE. 88.  1996. Logic-based MINLP algorithms for the optimal synthesis of process networks. Comput. Chem. Eng. 20:8959–78 [Google Scholar]
  89. Türkay M, Grossmann IE. 89.  1998. Structural flowsheet optimization with complex investment cost functions. Comput. Chem. Eng. 22:4–5673–86 [Google Scholar]
  90. Grossmann IE, Lee S. 90.  2003. Generalized convex disjunctive programming: nonlinear convex hull relaxation. Comput. Optim. Appl. 26:183–100 [Google Scholar]
  91. Bauer MH, Stichlmair J. 91.  1998. Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming. Comput. Chem. Eng. 22:91271–86 [Google Scholar]
  92. Bauer M, Stichlmair J. 92.  1996. Superstructures for the mixed integer optimization of nonideal and azeotropic distillation processes. Comput. Chem. Eng. 20:96S25–30 [Google Scholar]
  93. Yeomans H, Grossmann IE. 93.  2000. Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res. 39:114326–35 [Google Scholar]
  94. Barttfeld M, Aguirre PA, Grossmann IE. 94.  2004. A decomposition method for synthesizing complex column configurations using tray-by-tray GDP models. Comput. Chem. Eng. 28:112165–88 [Google Scholar]
  95. Caballero JA, Milán-Yañez D, Grossmann IE. 95.  2005. Rigorous design of distillation columns: integration of disjunctive programming and process simulators. Ind. Eng. Chem. Res. 44:176760–75 [Google Scholar]
  96. Raman R, Grossmann IE. 96.  1994. Modelling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18:7563–78 [Google Scholar]
  97. Balas E. 97.  1985. Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebr. Discret. Methods 6:3466–86 [Google Scholar]
  98. Grossmann IE, Ruiz JP. 98.  2012. Generalized disjunctive programming: a framework for formulation and alternative algorithms for MINLP optimization. Mixed Integer Nonlinear Programming J Lee, S Leyffer 93–115 New York: Springer [Google Scholar]
  99. Vecchietti A, Grossmann IE. 99.  1997. LOGMIP: a disjunctive 0–1 nonlinear optimizer for process systems models Presented at PSE '97-ESCAPE 7, May 25–29 Trondheim, Norway: [Google Scholar]
  100. Vecchietti A, Lee S, Grossmann IE. 100.  2003. Modeling of discrete/continuous optimization problems: characterization and formulations of disjunctions and their relaxations. Comput. Chem. Eng. 27:3433–48 [Google Scholar]
  101. Sawaya NW, Grossmann IE. 101.  2003. A cutting plane method for solving linear generalized disjunctive programming problems. Comput. Aided Chem. Eng. 15:C1032–37 [Google Scholar]
  102. Trespalacios F, Grossmann IE. 102.  2015. Improved big-M reformulation for generalized disjunctive programs. Comput. Chem. Eng. 76:98–103 [Google Scholar]
  103. Lee S, Grossmann IE. 103.  2001. A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems. Comput. Chem. Eng. 25:11–121675–97 [Google Scholar]
  104. Lee S, Grossmann IE. 104.  2005. Logic-based modeling and solution of nonlinear discrete/continuous optimization problems. Ann. Oper. Res. 139:1267–88 [Google Scholar]
  105. Viswanathan J, Grossmann IE. 105.  1990. A combined penalty function and outer-approximation method for MINLP optimization. Comput. Chem. Eng. 14:7769–82 [Google Scholar]
  106. Bergamini ML, Aguirre P, Grossmann I. 106.  2005. Logic-based outer approximation for globally optimal synthesis of process networks. Comput. Chem. Eng. 29:91914–33 [Google Scholar]
  107. Trespalacios F, Grossmann IE. 107.  2016. Cutting planes for improved global logic-based outer-approximation for the synthesis of process networks. Comput. Chem. Eng. 90:201–21 [Google Scholar]
  108. Brook A, Kendrick D, Meeraus A. 108.  1988. GAMS, a user's guide. ACM SIGNUM Newsl 23:3–410–11 [Google Scholar]
  109. Fourer R, Gay DM, Kernighan BW. 109.  2003. AMPL: A Modeling Language for Mathematical Programming Pacific Grove, CA: Thomson/Cengage Learn, 2nd ed.. [Google Scholar]
  110. Bisschop J, Roelofs M. 110.  2006. AIMMS – The User's Guide Kirkland, WA: Paragon Decision Technol [Google Scholar]
  111. Kallrath J. 111.  2012. Algebraic Modeling Systems 104 Berlin/Heidelberg: Springer [Google Scholar]
  112. Hart WE, Laird C, Watson J-P, Woodruff DL. 112.  2012. PyOMO - Optimization Modeling in Python 67 Boston: Springer [Google Scholar]
  113. Lubin M, Dunning I. 113.  2015. Computing in operations research using Julia. INFORMS J. Comput. 27:2238–48 [Google Scholar]
  114. Dowling AW, Biegler LT. 114.  2015. A framework for efficient large scale equation-oriented flowsheet optimization. Comput. Chem. Eng. 72:3–20 [Google Scholar]
  115. Chvátal V. 115.  1983. Linear Programming New York: Freeman [Google Scholar]
  116. Marsten R, Subramanian R, Saltzman M, Lustig I, Shanno D. 116.  1990. Interior point methods for linear programming: Just call Newton, Lagrange, and Fiacco and McCormick!. Interfaces 20:4105–16 [Google Scholar]
  117. Lustig IJ, Marsden RE, Shanno DF. 117.  1994. Interior point methods for linear programming: computational state of the art with discussion. ORSA J. Comput. 6:11–36 [Google Scholar]
  118. Bazaraa MS, Jarvis JJ, Sherali HD. 118.  2009. Linear Programming and Network Flows Hoboken, NJ: Wiley [Google Scholar]
  119. Nemhauser GL, Wolsey LA. 119.  1988. Integer and Combinatorial Optimization New York: Wiley [Google Scholar]
  120. Balas E, Ceria S, Cornuéjols G. 120.  1993. A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58:1–3295–324 [Google Scholar]
  121. Balas E, Ceria S, Cornuéjols G, Natraj N. 121.  1996. Gomory cuts revisited. Oper. Res. Lett. 19:11–9 [Google Scholar]
  122. Marchand H, Wolsey LA. 122.  2001. Aggregation and mixed integer rounding to solve MIPs. Oper. Res. 49:3363–71 [Google Scholar]
  123. Jünger M, Naddef D, Pulleyblank WR, Rinaldi G, Liebling TM. 123.  et al. 2010. 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art Berlin/Heidelberg: Springer [Google Scholar]
  124. 124. IBM. 2015. IBM ILOG CPLEX optimization studio CPLEX user's manual, Version 12 Release 6 Armonk, NY: IBM Corp https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.1/ilog.odms.studio.help/pdf/usrcplex.pdf [Google Scholar]
  125. 125. Gurobi Optimization, Inc. 2017. Gurobi optimizer reference manual, Version 7 Houston: Gurobi Optimization, Inc http://www.gurobi.com/documentation/7.0/refman.pdf [Google Scholar]
  126. 126. FICO. 2009. XPRESS-optimizer reference manual, Release 20.00 San Jose, CA: Fair Issac Corporation http://www.fico.com/en/node/8140?file=5097 [Google Scholar]
  127. Linderoth JT, Ralphs TK. 127.  2005. Noncommercial software for mixed-integer linear programming. Integer Programming: Theory and Practice JK Karlof 3253–303 Boca Raton, FL: Taylor & Francis [Google Scholar]
  128. Han SP. 128.  1977. A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22:3297–309 [Google Scholar]
  129. Powell MJD. 129.  1978. A fast algorithm for nonlinearly constrained optimization calculations. Numer. Anal. Lect. Notes Math. 630:144–57 [Google Scholar]
  130. Schittkowski K. 130.  1982. The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function. Numer. Math. 38:183–114 [Google Scholar]
  131. Murtagh B, Saunders M. 131.  1978. Large-scale linearly constrained optimization. Math. Program. 14:41–72 [Google Scholar]
  132. Fletcher R. 132.  1987. Practical Methods of Optimization Hoboken, NJ: Wiley [Google Scholar]
  133. Bazaraa MS, Sherali HD, Shetty CM. 133.  1993. Nonlinear Programming: Theory and Algorithms New York: Wiley [Google Scholar]
  134. Gill PE, Murray W, Saunders MA. 134.  2002. SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12:4979–1006 [Google Scholar]
  135. Drud AS. 135.  1994. CONOPT—a large-scale GRG code. ORSA J. Comput. 6:2207–16 [Google Scholar]
  136. Murtagh BA, Saunders MA. 136.  2003. MINOS 5.51 user's guide Tech. Rep. SOL 83-20R Stanford Univ. Stanford, CA: http://web.stanford.edu/group/SOL/guides/minos55.pdf [Google Scholar]
  137. Wächter A, Biegler LT. 137.  2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106:125–57 [Google Scholar]
  138. Byrd RH, Nocedal J, Waltz RA. 138.  2006. KNITRO: an integrated package for nonlinear optimization. Large-Scale Nonlinear Optim 83:35–59 [Google Scholar]
  139. Biegler LT. 139.  2010. Numerical algorithms for constrained optimization. Nonlinear Programming T Liebling 133–79 Philadelphia: SIAM [Google Scholar]
  140. Rios LM, Sahinidis NV. 140.  2013. Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56:31247–93 [Google Scholar]
  141. Bonami P, Kilinç M, Linderoth J. 141.  2012. Algorithms and software for convex mixed integer nonlinear programs. Mixed Integer Nonlinear Programming J Lee, S Leyffer 1541–39 New York: Springer [Google Scholar]
  142. Grossmann IE. 142.  2002. Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3:3227–52 [Google Scholar]
  143. Gupta OK, Ravindran A. 143.  1985. Branch and bound experiments in convex nonlinear integer programming. Manag. Sci. 31:121533–46 [Google Scholar]
  144. Benders JF. 144.  1962. Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4:1238–52 [Google Scholar]
  145. Geoffrion AM. 145.  1972. Generalized benders decomposition. J. Optim. Theory Appl. 10:4237–60 [Google Scholar]
  146. Duran MA, Grossmann IE. 146.  1986. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36:3307 [Google Scholar]
  147. Quesada I, Grossmann IE. 147.  1992. An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16:10–11937–47 [Google Scholar]
  148. Westerlund T, Pettersson F. 148.  1995. An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19:Suppl. 1131–36 [Google Scholar]
  149. Bonami P, Lee J. 149.  2013. Bonmin users' manual Version 1.7. COIN-OR. [Google Scholar]
  150. Abhishek K, Leyffer S, Linderoth J. 150.  2010. FilMINT: an outer approximation-based solver for convex mixed-integer nonlinear programs. INFORMS J. Comput. 22:4555–67 [Google Scholar]
  151. Leyffer S. 151.  1998. User manual for MINLP_BB Chicago: Argonne Natl. Lab http://www.mcs.anl.gov/∼leyffer/MINLP_manual.pdf [Google Scholar]
  152. Bussieck MR, Drud A. 152.  2001. SBB: a new solver for mixed integer nonlinear programming Washington, DC: GAMS Development Corp http://gams-software.com/presentations/present_sbb.pdf [Google Scholar]
  153. Smith EMB, Pantelides CC. 153.  1996. Global optimisation of general process models. Global Optimization in Engineering Design IE Grossmann 355–86 Boston: Springer [Google Scholar]
  154. McCormick GP. 154.  1976. Computability of global solutions to factorable nonconvex programs: part I - convex underestimating problems. Math. Program. 10:1147–75 [Google Scholar]
  155. Adjiman CS, Dallwig S, Floudas CA, Neumaier A. 155.  1998. A global optimization method, BB, for general twice-differentiable constrained NLPs—I: Theoretical advances. Comput. Chem. Eng. 22:91137–58 [Google Scholar]
  156. Castro PM. 156.  2015. Tightening piecewise McCormick relaxations for bilinear problems. Comput. Chem. Eng. 72:300–11 [Google Scholar]
  157. Tawarmalani M, Sahinidis NV. 157.  2005. A polyhedral branch-and-cut approach to global optimization. Math. Program. 103:225–49 [Google Scholar]
  158. Misener R, Floudas CA. 158.  2014. Antigone: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59:503–26 [Google Scholar]
  159. Vigerske S, Gleixner A. 159.  2016. SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework ZIB Rep 16–24 Zuse Inst. Berlin http://nbn-resolving.de/urn:nbn:de:0297-zib-59377 [Google Scholar]
  160. Belotti P. 160.  2009. COUENNE: a user's manual COIN-OR. https://www.coin-or.org/Couenne/couenne-user-manual.pdf [Google Scholar]
  161. Kesavan P, Allgor RJ, Gatzke EP, Barton PI. 161.  2004. Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs. Math. Program. 100:3517–35 [Google Scholar]
  162. Zamora JM, Grossmann IE. 162.  1999. A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Glob. Optim. 14:3217–49 [Google Scholar]
  163. Ruiz JP, Grossmann IE. 163.  2013. Using convex nonlinear relaxations in the global optimization of nonconvex generalized disjunctive programs. Comput. Chem. Eng. 49:70–84 [Google Scholar]
  164. Kirkpatrick S, Gelatt CD, Vecchi MP. 164.  1983. Optimization by simulated annealing. Science 220:4598671–80 [Google Scholar]
  165. Goldberg DE. 165.  1989. Genetic Algorithms in Search, Optimization, and Machine Learning Reading, MA: Addison-Wesley [Google Scholar]
  166. Glover F. 166.  1986. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13:5533–49 [Google Scholar]
  167. Furman KC, Sahinidis NV. 167.  2002. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century. Ind. Eng. Chem. Res. 41:102335–70 [Google Scholar]
  168. Morar M, Agachi PS. 168.  2010. Review: important contributions in development and improvement of the heat integration techniques. Comput. Chem. Eng. 34:81171–79 [Google Scholar]
  169. Klemeš JJ, Kravanja Z. 169.  2013. Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP). Curr. Opin. Chem. Eng. 2:4461–74 [Google Scholar]
  170. Duran MA, Grossmann IE. 170.  1986. Simultaneous optimization and heat integration of chemical processes. AIChE J 32:1123–38 [Google Scholar]
  171. Lang Y-D, Biegler LT, Grossmann IE. 171.  1988. Simultaneous optimization and heat integration with process simulators. Comput. Chem. Eng. 12:4311–27 [Google Scholar]
  172. Dowling AW, Biegler LT. 172.  2013. Optimization-based process synthesis for sustainable power generation. Chem. Eng. Trans. 35:1–12 [Google Scholar]
  173. Baliban RC, Elia JA, Floudas CA. 173.  2011. Optimization framework for the simultaneous process synthesis, heat and power integration of a thermochemical hybrid biomass, coal, and natural gas facility. Comput. Chem. Eng. 35:91647–90 [Google Scholar]
  174. Niziolek AM, Onel O, Guzman YA, Floudas CA. 174.  2016. Biomass-based production of benzene, toluene, and xylenes via methanol: process synthesis and deterministic global optimization. Energy & Fuels 30:64970–98 [Google Scholar]
  175. Escobar M, Trierweiler JO. 175.  2013. Optimal heat exchanger network synthesis: a case study comparison. Appl. Therm. Eng. 51:1–2801–26 [Google Scholar]
  176. Brownrigg N, Zhang J. 176.  2013. Jump Start: Aspen Energy Analyzer V8 Bedford, MA: Aspen Technol. Inc http://www.aspentech.com/get-started-guide-aspen-plus-v8/ [Google Scholar]
  177. Petroulas T, Reklaitis GV. 177.  1984. Computer-aided synthesis and design of plant utility systems. AIChE J 30:169–78 [Google Scholar]
  178. Papoulias SA, Grossmann IE. 178.  1983. A structural optimization approach in process synthesis—I. Comput. Chem. Eng. 7:6695–706 [Google Scholar]
  179. Bruno JC, Fernandez F, Castells F, Grossmann IE. 179.  1998. A rigorous MINLP model for the optimal synthesis and operation of utility plants. Chem. Eng. Res. Des. 76:March246–58 [Google Scholar]
  180. Aguilar O, Kim JK, Perry S, Smith R. 180.  2008. Availability and reliability considerations in the design and optimisation of flexible utility systems. Chem. Eng. Sci. 63:143569–84 [Google Scholar]
  181. Khoshgoftar Manesh MH, Navid P, Baghestani M, Khamis Abadi S, Rosen MA. 181.  et al. 2014. Exergoeconomic and exergoenvironmental evaluation of the coupling of a gas fired steam power plant with a total site utility system. Energy Convers. Manag. 77:469–83 [Google Scholar]
  182. Oliveira Francisco AP, Matos HA. 182.  2003. Multiperiod synthesis and operational planning of utility systems with environmental concerns. Comput. Aided Chem. Eng. 14:C233–38 [Google Scholar]
  183. Varbanov P, Perry S, Klemeš J, Smith R. 183.  2005. Synthesis of industrial utility systems: cost-effective de-carbonisation. Appl. Therm. Eng. 25:7985–1001 [Google Scholar]
  184. Kamath R. 184.  2012. Strategies for optimization and heat integration in integrated gasification combined cycle systems PhD Thesis Carnegie Mellon Univ [Google Scholar]
  185. Varbanov PS, Doyle S, Smith R. 185.  2004. Modelling and optimization of utility systems. Chem. Eng. Res. Des. 82:5561–78 [Google Scholar]
  186. Soave G, Feliu JA. 186.  2002. Saving energy in distillation towers by feed splitting. Appl. Therm. Eng. 22:8889–96 [Google Scholar]
  187. Caballero JA, Grossmann IE. 187.  2014. Optimization of distillation processes. Distillation: Fundamentals and Principles A Gorak, E Sorensen 437–96 Boston: Elsevier [Google Scholar]
  188. Westerberg AW. 188.  1985. The synthesis of distillation-based separation systems. Comput. Chem. Eng. 9:5421–29 [Google Scholar]
  189. Westerberg AW, Wahnschafft O. 189.  1996. Synthesis of distillation-based separation systems. Adv. Chem. Eng. 23:63–170 [Google Scholar]
  190. Andrecovich MJ, Westerberg AW. 190.  1985. An MILP formulation for heat-integrated distillation sequence synthesis. AIChE J 31:91461–74 [Google Scholar]
  191. Kakhu AI, Flower JR. 191.  1988. Synthesizing heat-integrated distillation sequences using mixed integer programming. Chem. Eng. Res. Des. 66:3241 [Google Scholar]
  192. Floudas CA, Paules IV GE. 192.  1988. A mixed-integer nonlinear programming formulation for the synthesis of heat-integrated distillation sequences. Comput. Chem. Eng. 12:6531–46 [Google Scholar]
  193. Floudas CA, Anastasiadis SH. 193.  1988. Synthesis of distillation sequences with several multicomponent feed and product streams. Chem. Eng. Sci. 43:92407–19 [Google Scholar]
  194. Viswanathan J, Grossmann IE. 194.  1993. An alternate MINLP model for finding the number of trays required for a specified separation objective. Comput. Chem. Eng. 17:9949–55 [Google Scholar]
  195. Novak Z, Kravanja Z, Grossmann IE. 195.  1996. Simultaneous synthesis of distillation sequences in overall process schemes using an improved MINLP approach. Comput. Chem. Eng. 20:121425–40 [Google Scholar]
  196. Yeomans H, Grossmann IE. 196.  1999. Nonlinear disjunctive programming models for the synthesis of heat integrated distillation sequences. Comput. Chem. Eng. 23:91135–51 [Google Scholar]
  197. Yeomans H, Grossmann IE. 197.  2000. Disjunctive programming models for the optimal design of distillation columns and separation sequences. Ind. Eng. Chem. Res. 39:61637–48 [Google Scholar]
  198. Grossmann IE, Aguirre PA, Barttfeld M. 198.  2005. Optimal synthesis of complex distillation columns using rigorous models. Comput. Chem. Eng. 29:61203–15 [Google Scholar]
  199. Sargent RWH. 199.  1998. A functional approach to process synthesis and its application to distillation systems. Comput. Chem. Eng. 22:1–231–45 [Google Scholar]
  200. Caballero JA, Grossmann IE. 200.  2006. Structural considerations and modeling in the synthesis of heat-integrated−thermally coupled distillation sequences. Ind. Eng. Chem. Res. 45:258454–74 [Google Scholar]
  201. Okasinski MJ, Doherty MF. 201.  1998. Distillation columns. Ind. Eng. Chem. Res. 37:972821–34 [Google Scholar]
  202. Siirola JJ. 202.  1996. Industrial applications of chemical process synthesis. Adv. Chem. Eng. 23:1–62 [Google Scholar]
  203. Ciric AR, Gu D. 203.  1994. Synthesis of nonequilibrium reactive distillation processes by MINLP optimization. AIChE J 40:91479–87 [Google Scholar]
  204. Jackson JR, Grossmann IE. 204.  2001. A disjunctive programming approach for the optimal design of reactive distillation columns. Comput. Chem. Eng. 25:11–121661–73 [Google Scholar]
  205. Ropotar M, Pintarič ZN, Reneaume J-M, Kravanja Z. 205.  2009. MINLP synthesis of reactive distillation using a disjunctive, hybrid model. 10th Int. Symp. Process Syst. Eng. Part A 272006:543–48 [Google Scholar]
  206. Almeida-Rivera CP, Swinkels PLJ, Grievink J. 206.  2004. Designing reactive distillation processes: present and future. Comput. Chem. Eng. 28:101997–2020 [Google Scholar]
  207. Kiss AA. 207.  2014. Distillation technology—still young and full of breakthrough opportunities. J. Chem. Technol. Biotechnol. 89:4479–98 [Google Scholar]
  208. Harmsen GJ. 208.  2007. Reactive distillation: the front-runner of industrial process intensification. A full review of commercial applications, research, scale-up, design and operation. Chem. Eng. Process. Process Intensif. 46:9 Spec. Iss.774–80 [Google Scholar]
  209. Sharma MM, Mahajani SM. 209.  2002. Industrial applications of reactive distillation. Reactive Distillation K Sundmacher, A Kienle 31–29 Weinheim, Ger.: Wiley [Google Scholar]
  210. El-Halwagi MM, Manousiouthakis V. 210.  1990. Automatic synthesis of mass-exchange networks with single-component targets. Chem. Eng. Sci. 45:92813–31 [Google Scholar]
  211. El-Halwagi MM, Manousiouthakis V. 211.  1990. Simultaneous synthesis of mass-exchange and regeneration networks. AIChE J 36:81209–19 [Google Scholar]
  212. Kovács Z, Ercsey Z, Friedler F, Fan LT. 212.  2000. Separation-network synthesis: global optimum through rigorous super-structure. Comput. Chem. Eng. 24:81881–900 [Google Scholar]
  213. Foo DCY. 213.  2009. State-of-the-art review of pinch analysis techniques for water network synthesis. Ind. Eng. Chem. Res. 48:115125–59 [Google Scholar]
  214. Bagajewicz M. 214.  2000. A review of recent design procedures for water networks in refineries and process plants. Comput. Chem. Eng. 24:9–102093–113 [Google Scholar]
  215. Wang Y-P, Smith R. 215.  1994. Design of distributed effluent treatment systems. Chem. Eng. Sci. 49:3127–45 [Google Scholar]
  216. Kuo W-CJ, Smith R. 216.  1997. Effluent treatment system design. Chem. Eng. Sci. 52:974273–90 [Google Scholar]
  217. Alva-Argáez A, Kokossis A, Smith R. 217.  1998. Wastewater minimisation of industrial systems using an integrated approach. Comput. Chem. Eng. 22:Suppl.S741–44 [Google Scholar]
  218. Galán B, Grossmann IE. 218.  1998. Optimal design of distributed wastewater treatment networks. Ind. Eng. Chem. Res. 371996:4036–48 [Google Scholar]
  219. Karuppiah R, Grossmann IE. 219.  2006. Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30:4650–73 [Google Scholar]
  220. Ahmetović E, Grossmann IE. 220.  2011. Global superstructure optimization for the design of integrated process water networks. AIChE J 57:2434–57 [Google Scholar]
  221. Yang L, Grossmann IE. 221.  2013. Water targeting models for simultaneous flowsheet optimization. Ind. Eng. Chem. Res. 52:93209–24 [Google Scholar]
  222. Klemeš JJ, Varbanov PS, Kravanja Z. 222.  2013. Recent developments in process integration. Chem. Eng. Res. Des. 91:102037–53 [Google Scholar]
  223. Ahmetović E, Kravanja Z. 223.  2013. Simultaneous synthesis of process water and heat exchanger networks. Energy 57:236–50 [Google Scholar]
  224. Sreepathi BK, Rangaiah GP. 224.  2014. Review of heat exchanger network retrofitting methodologies and their applications. Ind. Eng. Chem. Res. 53:2811205–20 [Google Scholar]
  225. Ahmetović E, Ibrić N, Kravanja Z, Grossmann IE. 225.  2015. Water and energy integration: a comprehensive literature review of non-isothermal water network synthesis. Comput. Chem. Eng. 82:144–71 [Google Scholar]
  226. Horn F. 226.  1964. Attainable and non-attainable regions in chemical reaction technique. Proc. 3rd Eur. Symp. Chem. Reaction Eng., Sept. 15–17, Amsterdam London: Pergamon [Google Scholar]
  227. Glasser D, Crowe CM, Hildebrandt D. 227.  1987. A geometric approach to steady flow reactors: the attainable region and optimization in concentration space. Ind. Eng. Chem. Res. 26:19801803–10 [Google Scholar]
  228. Hildebrandt D, Glasser D, Crowe CM. 228.  1990. Geometry of the attainable region generated by reaction and mixing: with and without constraints. Ind. Eng. Chem. Res. 29:49–58 [Google Scholar]
  229. Glasser D, Hildebrandt D. 229.  1997. Reactor and process synthesis. Comput. Chem. Eng. 21:97S775–83 [Google Scholar]
  230. Feinberg M, Hildebrandt D. 230.  1997. Optimal reactor design from a geometric viewpoint–I. Universal properties of the attainable region. Chem. Eng. Sci. 52:101637–65 [Google Scholar]
  231. Lakshmanan A, Biegler LT. 231.  1996. Synthesis of optimal chemical reactor networks. Ind. Eng. Chem. Res. 35:41344–53 [Google Scholar]
  232. Burri JF, Wilson SD, Manousiouthakis VI. 232.  2002. Infinite dimensional state-space approach to reactor network synthesis: application to attainable region construction. Comput. Chem. Eng. 26:6849–62 [Google Scholar]
  233. Kokossis AC, Floudas CA. 233.  1990. Optimization of complex reactor networks–I. Isothermal operation. Chem. Eng. Sci. 45:3595–614 [Google Scholar]
  234. Achenie LKE, Biegler LT. 234.  1990. A superstructure based approach to chemical reactor network synthesis. Comput. Chem. Eng. 14:123–40 [Google Scholar]
  235. Esposito WR, Floudas CA. 235.  2002. Deterministic global optimization in isothermal reactor network synthesis. J. Glob. Optim. 221993:59–95 [Google Scholar]
  236. Douglas JM. 236.  1988. Conceptual Design of Chemical Processes New York: McGraw-Hill [Google Scholar]
  237. Schembecker G, Simmrock KH, Wolff A. 237.  1994. Synthesis of chemical process flowsheets by means of cooperating knowledge integrating systems Presented at 4th Eur. Symp., Comput. Aided Process Eng., Inst. Chem. Eng. Symp. Ser 133333–41 Dublin, Ireland: [Google Scholar]
  238. Gani R, Hytoft G, Jaksland C, Jensen AK. 238.  1997. An integrated computer aided system for integrated design of chemical processes. Comput. Chem. Eng. 21:101135–46 [Google Scholar]
  239. Carvalho A, Matos HA, Gani R. 239.  2013. Sustainpro—a tool for systematic process analysis, generation and evaluation of sustainable design alternatives. Comput. Chem. Eng. 50:8–27 [Google Scholar]
  240. Kocis GR, Grossmann IE. 240.  1989. Computational experience with DICOPT solving MINLP problems in process systems-engineering. Comput. Chem. Eng. 13:3307–15 [Google Scholar]
  241. Kocis GR, Grossmann IE. 241.  1987. Relaxation strategy for the structural optimization of process flow sheets. Ind. Eng. Chem. Res. 26:2051869–80 [Google Scholar]
  242. Kravanja Z, Grossmann IE. 242.  1994. New developments and capabilities in PROSYN—an automated topology and parameter process synthesizer. Comput. Chem. Eng. 18:11–121097–114 [Google Scholar]
  243. Kravanja Z, Grossmann IE. 243.  1993. PROSYN—an automated topology and parameter process synthesizer. Comput. Chem. Eng. 17:Suppl. 1S87–94 [Google Scholar]
  244. Kravanja Z, Grossmann IE. 244.  1996. A computational approach for the modeling/decomposition strategy in the MINLP optimization of process flowsheets with implicit models. Ind. Eng. Chem. Res. 35:62065–70 [Google Scholar]
  245. Reneaume JM, Joulia X, Koehret B. 245.  1995. Development of a process synthesizer in a modular environment. Comput. Chem. Eng. 19:Suppl. 133–38 [Google Scholar]
  246. Díaz MS, Bandoni JA. 246.  1996. A mixed integer optimization strategy for a large scale chemical plant in operation. Comput. Chem. Eng. 20:5531–45 [Google Scholar]
  247. Caballero JA, Grossmann IE. 247.  2008. An algorithm for the use of surrogate models in modular flowsheet optimization. AIChE J 54:102633–50 [Google Scholar]
  248. Ruiz JP, Grossmann IE. 248.  2011. Using redundancy to strengthen the relaxation for the global optimization of MINLP problems. Comput. Chem. Eng. 35:122729–40 [Google Scholar]
  249. Ruiz JP, Grossmann IE. 249.  2012. A hierarchy of relaxations for nonlinear convex generalized disjunctive programming. Eur. J. Oper. Res. 218:138–47 [Google Scholar]
  250. Harmsen GJ. 250.  2004. Industrial best practices of conceptual process design. Chem. Eng. Process. Process Intensif. 43:5677–81 [Google Scholar]
  251. Hostrup M, Gani R, Kravanja Z, Sorsak A, Grossmann I. 251.  2001. Integration of thermodynamic insights and MINLP optimization for the synthesis, design and analysis of process flowsheets. Comput. Chem. Eng. 25:173–83 [Google Scholar]
  252. Kravanja Z, Grossmann IE. 252.  1990. PROSYN—an MINLP process synthesizer. Comput. Chem. Eng. 14:121363–78 [Google Scholar]
  253. Bertok B, Barany M, Friedler F. 253.  2013. Generating and analyzing mathematical programming models of conceptual process design by P-graph software. Ind. Eng. Chem. Res. 52:1166–71 [Google Scholar]
  254. Saboo AK, Morari M, Colberg RD. 254.  1986. RESHEX: an interactive software package for the synthesis and analysis of resilient heat-exchanger networks—I. Comput. Chem. Eng. 10:6577–89 [Google Scholar]
  255. Lu MD, Motard RL. 255.  1985. Computer-aided total flowsheet synthesis. Comput. Chem. Eng. 9:5431–45 [Google Scholar]
  256. 256. Gurobi Optimization Inc. 2016. SAP chooses Gurobi News Release. June. http://www.gurobi.com/company/news/sap-chooses-gurobi [Google Scholar]
  257. Lang YD, Biegler LT. 257.  1987. A unified algorithm for flowsheet optimization. Comput. Chem. Eng. 11:2143–58 [Google Scholar]
  258. Biegler LT, Lang Y, Lin W. 258.  2014. Multi-scale optimization for process systems engineering. Comput. Chem. Eng. 60:17–30 [Google Scholar]
  259. Eason JP, Biegler LT. 259.  2016. A trust region filter method for glass box/black box optimization. AIChE J 62:93124–36 [Google Scholar]
  260. Cozad A, Sahinidis NV, Miller DC. 260.  2014. Learning surrogate models for simulation-based optimization. AIChE J 60:62211–27 [Google Scholar]
  261. Arizmendi-Sánchez JA, Sharratt PN. 261.  2008. Phenomena-based modularisation of chemical process models to approach intensive options. Chem. Eng. J. 135:1–283–94 [Google Scholar]
  262. Mitsos A, Lemonidis P, Barton PI. 262.  2007. Global solution of bilevel programs with a nonconvex inner program. J. Glob. Optim. 42:4475–513 [Google Scholar]
  263. Kleniati P-M, Adjiman CS. 263.  2014. Branch-and-sandwich: a deterministic global optimization algorithm for optimistic bilevel programming problems. Part I: Theoretical development. J. Glob. Optim. 60:3425–58 [Google Scholar]
  264. Grossmann IE, Westerberg AW, Biegler LT. 264.  1987. Retrofit design of processes. Proc. 1st Int. Conf. Found. Comput. Aided Process Operations (“FOCAPO”), July 5–10, Park City, Utah Amsterdam: Elsevier [Google Scholar]
  265. Yee TF, Grossmann IE. 265.  1991. A screening and optimization approach for the retrofit of heat-exchanger networks. Ind. Eng. Chem. Res. 301986:146–62 [Google Scholar]
  266. Papalexandri KP, Pistikopoulos EN. 266.  1994. Synthesis and retrofit design of operable heat exchanger networks. 1. Flexibility and structural controllability aspects. Ind. Eng. Chem. Res. 33:71718–37 [Google Scholar]
  267. Papalexandri KP, Pistikopoulos EN. 267.  1994. Synthesis and retrofit design of operable heat exchanger networks. 2. Dynamics and control structure considerations. Ind. Eng. Chem. Res. 33:71738–55 [Google Scholar]
  268. Ab. Rashid SR, Kalthum Ibrahim U, Mohd Alauddin S. 268.  2011. Retrofit design of heat exchanger network (HEN) on synthesis and purification unit of methanol plant Presented at IEEE Colloquium on Humanities, Science and Engineering, Dec 5–6 Penang, Malaysia: [Google Scholar]
  269. Björk KM, Nordman R. 269.  2005. Solving large-scale retrofit heat exchanger network synthesis problems with mathematical optimization methods. Chem. Eng. Process. Process Intensif. 44:8869–76 [Google Scholar]
  270. Bozkurt H. 270.  2015. Computer-aided framework for synthesis, design and retrofit of wastewater treatment plants PhD Thesis Technical Univ. Denmark [Google Scholar]
  271. Floudas CA, Grossmann IE. 271.  1987. Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures. Comput. Chem. Eng. 11:4319–36 [Google Scholar]
  272. You F, Wang B. 272.  2011. Life cycle optimization of biomass-to-liquid supply chains with distributed-centralized processing networks. Ind. Eng. Chem. Res. 50:1710102–27 [Google Scholar]
  273. Lara CL, Grossmann IE. 273.  2016. Global optimization for a continuous location-allocation model for centralized and distributed manufacturing. Proceedings 26th European Symposium on Computer Aided Process Engineering Z Kravanja, M Bogataj 1009–14 Portorož, Slovenia: [Google Scholar]
  274. Martin M, Grossmann IE. 274.  2016. Alternative Energy Sources and Technologies Basel, Switz.: Springer Int. Publ [Google Scholar]
  275. Buchholz S. 275.  2010. Future manufacturing approaches in the chemical and pharmaceutical industry. Chem. Eng. Process. Process Intensif. 49:10993–95 [Google Scholar]
  276. Bramsiepe C, Sievers S, Seifert T, Stefanidis GD, Vlachos DG. 276.  et al. 2012. Low-cost small scale processing technologies for production applications in various environments—mass produced factories. Chem. Eng. Process. Process Intensif. 51:32–52 [Google Scholar]
  277. Seifert T, Sievers S, Bramsiepe C, Schembecker G. 277.  2012. Small scale, modular and continuous: a new approach in plant design. Chem. Eng. Process. Process Intensif. 52:140–50 [Google Scholar]
  278. Lier S, Wörsdörfer D, Grünewald M. 278.  2015. Wandlungsfähige produktionskonzepte: flexibel, mobil, dezentral, modular, beschleunigt. Chem. Ing. Tech. 87:91147–58 [Google Scholar]
  279. Roughton BC, Christian B, White J, Camarda KV, Gani R. 279.  2012. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Comput. Chem. Eng. 42:248–62 [Google Scholar]
  280. Zhang L, Babi D, Gani R. 280.  2016. New vistas in chemical product and process design. Annu. Rev. Chem. Biomol. Eng. 7:1557–82 [Google Scholar]
  281. Eden M, Jorgensen S, Gani R, El-Halwagi MM. 281.  2004. A novel framework for simultaneous separation process and product design. Chem. Eng. Process. Process Intensif. 43:5595–608 [Google Scholar]
  282. Pasztor A. 282.  2016. Luxembourg sets aside funds for asteroid-mining push. Wall Street Journal June 3. http://www.wsj.com/articles/luxembourg-sets-aside-funds-for-asteroid-mining-push-1464947123 [Google Scholar]
  283. Biegler LT, Grossmann IE, Westerberg AW. 283.  1997. Systematic Methods of Chemical Process Design Upper Saddle River, NJ: Prentice Hall [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error