1932

Abstract

Stem cells and other functionally defined therapeutic cells (e.g., T cells) are promising to bring hope of a permanent cure for diseases and disorders that currently cannot be cured by conventional drugs or biological molecules. This paradigm shift in modern medicine of using cells as novel therapeutics can be realized only if suitable manufacturing technologies for large-scale, cost-effective, reproducible production of high-quality cells can be developed. Here we review the state of the art in therapeutic cell manufacturing, including cell purification and isolation, activation and differentiation, genetic modification, expansion, packaging, and preservation. We identify current challenges and discuss opportunities to overcome them such that cell therapies become highly effective, safe, and predictively reproducible while at the same time becoming affordable and widely available.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-033559
2016-06-07
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-033559.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-033559&mimeType=html&fmt=ahah

Literature Cited

  1. Davie NL, Brindley DA, Culme-Seymour EJ, Mason C. 1.  2012. Streaming cell therapy manufacture. Bioprocess Int. 10:Suppl. 324–29 [Google Scholar]
  2. 2. PR Newswire 2015. Stem cell therapy to redefine regenerative medicine, says Frost & Sullivan. News Rel., July 28. http://ww2.frost.com/news/press-releases/stem-cell-therapy-redefine-regenerative-medicine-says-frost-sullivan/ [Google Scholar]
  3. Bellone G, Turletti A, Artusio E, Mareschi K, Carbone A. 3.  et al. 1999. Tumor-associated transforming growth factor-beta and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Am. J. Pathol. 155:537–47 [Google Scholar]
  4. Gajewski TF, Schreiber H, Fu YX. 4.  2013. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14:1014–22 [Google Scholar]
  5. Decker T, Fischer G, Bucke W, Bucke P, Stotz F. 5.  et al. 2012. Increased number of regulatory T cells (T-regs) in the peripheral blood of patients with Her-2/neu-positive early breast cancer. J. Cancer Res. Clin. Oncol. 138:1945–50 [Google Scholar]
  6. Stolzing A, Jones E, McGonagle D, Scutt A. 6.  2008. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech. Ageing Dev. 129:163–73 [Google Scholar]
  7. Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S, Surendran R. 7.  2015. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology 67:793–807 [Google Scholar]
  8. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. 8.  2006. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–301 [Google Scholar]
  9. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA. 9.  et al. 2003. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–9 [Google Scholar]
  10. Fan CG, Zhang QJ, Zhou JR. 10.  2011. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev. 7:195–207 [Google Scholar]
  11. Klebanoff CA, Gattinoni L, Restifo NP. 11.  2012. Sorting through subsets: Which T-cell populations mediate highly effective adoptive immunotherapy?. J. Immunother. 35:651–60 [Google Scholar]
  12. Hinrichs CS, Borman ZA, Gattinoni L, Yu Z, Burns WR. 12.  et al. 2011. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117:808–14 [Google Scholar]
  13. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. 13.  2008. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Investig. 118:294–305 [Google Scholar]
  14. Wang X, Naranjo A, Brown CE, Bautista C, Wong CW. 14.  et al. 2012. Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale. J. Immunother. 35:689–701 [Google Scholar]
  15. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM. 15.  et al. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17:1290–97 [Google Scholar]
  16. Kiskinis E, Eggan K. 16.  2010. Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Investig. 120:51–59 [Google Scholar]
  17. Gonzalez F, Boue S, Izpisua Belmonte JC. 17.  2011. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat. Rev. Genet. 12:231–42 [Google Scholar]
  18. Wang X, Riviere I. 18.  2015. Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Therapy 22:85–94 [Google Scholar]
  19. Kikuchi T, Worgall S, Singh R, Moore MA, Crystal RG. 19.  2000. Dendritic cells genetically modified to express CD40 ligand and pulsed with antigen can initiate antigen-specific humoral immunity independent of CD4+ T cells. Nat. Med. 6:1154–59 [Google Scholar]
  20. Waehler R, Russell SJ, Curiel DT. 20.  2007. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 8:573–87 [Google Scholar]
  21. Young LS, Searle PF, Onion D, Mautner V. 21.  2006. Viral gene therapy strategies: from basic science to clinical application. J. Pathol. 208:299–318 [Google Scholar]
  22. Gresch O, Engel FB, Nesic D, Tran TT, England HM. 22.  et al. 2004. New non-viral method for gene transfer into primary cells. Methods 33:151–63 [Google Scholar]
  23. Chen C, Okayama H. 23.  1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–52 [Google Scholar]
  24. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW. 24.  et al. 1987. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. PNAS 84:7413–17 [Google Scholar]
  25. Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD. 25.  et al. 2010. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28:64–74 [Google Scholar]
  26. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL. 26.  et al. 2007. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25:1298–306 [Google Scholar]
  27. Seki T, Yuasa S, Oda M, Egashira T, Yae K. 27.  et al. 2010. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7:11–14 [Google Scholar]
  28. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M. 28.  et al. 2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–70 [Google Scholar]
  29. Lacoste A, Berenshteyn F, Brivanlou AH. 29.  2009. An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell 5:332–42 [Google Scholar]
  30. Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L. 30.  et al. 2013. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLOS ONE 8:e64138 [Google Scholar]
  31. Huls MH, Figliola MJ, Dawson MJ, Olivares S, Kebriaei P. 31.  et al. 2013. Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J. Vis. Exp. 72:e50070 [Google Scholar]
  32. Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L. 32.  et al. 2012. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119:5697–705 [Google Scholar]
  33. Gaj T, Gersbach CA, Barbas CF 3rd. 33.  2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:397–405 [Google Scholar]
  34. Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ. 34.  et al. 2012. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat. Med. 18:807–15 [Google Scholar]
  35. Mullard A. 35.  2015. Novartis secures first CRISPR pharma collaborations. Nat. Rev. Drug Discov. 14:82 [Google Scholar]
  36. Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O. 36.  et al. 2009. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J. Immunother. 32:169–80 [Google Scholar]
  37. Heathman TRJ, Nienow AW, McCall MJ, Coopman K, Kara B, Hewitt CJ. 37.  2015. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen. Med. 10:49–64 [Google Scholar]
  38. Sensebe L, Bourin P, Tarte K. 38.  2011. Good manufacturing practices production of mesenchymal stem/stromal cells. Hum. Gene Therapy 22:19–26 [Google Scholar]
  39. Wuchter P, Bieback K, Schrezenmeier H, Bornhäuser M, Müller LP. 39.  et al. 2015. Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 17:128–39 [Google Scholar]
  40. Nienow AW. 40.  2006. Reactor engineering in large scale animal cell culture. Cytotechnology 50:9–33 [Google Scholar]
  41. Birch JR, Racher AJ. 41.  2006. Antibody production. Adv. Drug Deliv. Rev. 58:671–85 [Google Scholar]
  42. Shukla AA, Thommes J. 42.  2010. Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol. 28:253–61 [Google Scholar]
  43. Darkins CL, Mandenius CF. 43.  2014. Design of large-scale manufacturing of induced pluripotent stem cell derived cardiomyocytes. Chem. Eng. Res. Des. 92:1142–52 [Google Scholar]
  44. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA. 44.  2003. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. 26:332–42 [Google Scholar]
  45. Topalian SL, Muul LM, Solomon D, Rosenberg SA. 45.  1987. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J. Immunol. Methods 102:127–41 [Google Scholar]
  46. Riddell SR, Greenberg PD. 46.  1990. The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J. Immunol. Methods 128:189–201 [Google Scholar]
  47. Hanley PJ, Mei Z, da Graca Cabreira-Hansen M, Klis M, Li W. 47.  et al. 2013. Manufacturing mesenchymal stromal cells for phase I clinical trials. Cytotherapy 15:416–22 [Google Scholar]
  48. Tuyaerts S, Noppe SM, Corthals J, Breckpot K, Heirman C. 48.  et al. 2002. Generation of large numbers of dendritic cells in a closed system using Cell Factories. J. Immunol. Methods 264:135–51 [Google Scholar]
  49. Papadopoulou A, Gerdemann U, Katari UL, Tzannou I, Liu H. 49.  et al. 2014. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci. Transl. Med. 6:242ra83 [Google Scholar]
  50. Sart S, Errachid A, Schneider YJ, Agathos SN. 50.  2011. Controlled expansion and differentiation of mesenchymal stem cells in a microcarrier based stirred bioreactor. BMC Proc. 5:Suppl. 8P55 [Google Scholar]
  51. Chen AK, Chen X, Choo AB, Reuveny S, Oh SK. 51.  2011. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res. 7:97–111 [Google Scholar]
  52. Eibes G, dos Santos F, Andrade PZ, Boura JS, Abecasis MM. 52.  et al. 2010. Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J. Biotechnol. 146:194–97 [Google Scholar]
  53. Yuan Y, Kallos MS, Hunter C, Sen A. 53.  2014. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. J. Tissue Eng. Regen. Med. 8:210–25 [Google Scholar]
  54. Hewitt CJ, Lee K, Nienow AW, Thomas RJ, Smith M, Thomas CR. 54.  2011. Expansion of human mesenchymal stem cells on microcarriers. Biotechnol. Lett. 33:2325–35 [Google Scholar]
  55. Heng BC, Li J, Chen AK, Reuveny S, Cool SM. 55.  et al. 2012. Translating human embryonic stem cells from 2-dimensional to 3-dimensional cultures in a defined medium on laminin- and vitronectin-coated surfaces. Stem Cells Dev. 21:1701–15 [Google Scholar]
  56. Hervy M, Weber JL, Pecheul M, Dolley-Sonneville P, Henry D. 56.  et al. 2014. Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions. PLOS ONE 9e92120 [Google Scholar]
  57. Lecina M, Ting S, Choo A, Reuveny S, Oh S. 57.  2010. Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Eng. C Methods 16:1609–19 [Google Scholar]
  58. Yi W, Sun Y, Wei X, Gu C, Dong X. 58.  et al. 2010. Proteomic profiling of human bone marrow mesenchymal stem cells under shear stress. Mol. Cell. Biochem. 341:9–16 [Google Scholar]
  59. Potier E, Noailly J, Ito K. 59.  2010. Directing bone marrow-derived stromal cell function with mechanics. J. Biomech. 43:807–17 [Google Scholar]
  60. Leung HW, Chen A, Choo AB, Reuveny S, Oh SK. 60.  2011. Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures. Tissue Eng. C Methods 17:165–72 [Google Scholar]
  61. Santos F, Andrade PZ, Abecasis MM, Gimble JM, Chase LG. 61.  et al. 2011. Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng. C Methods 17:1201–10 [Google Scholar]
  62. Chen AK, Reuveny S, Oh SK. 62.  2013. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol. Adv. 31:1032–46 [Google Scholar]
  63. Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C. 63.  et al. 2006. Process parameter shifting: part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol. Bioeng. 94:1033–44 [Google Scholar]
  64. Butler M. 64.  2005. Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl. Microbiol. Biotechnol. 68:283–91 [Google Scholar]
  65. Singh V. 65.  1999. Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–58 [Google Scholar]
  66. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X. 66.  et al. 2011. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:4817–28 [Google Scholar]
  67. Davila ML, Riviere I, Wang X, Bartido S, Park J. 67.  et al. 2014. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6:224ra25 [Google Scholar]
  68. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X. 68.  et al. 2013. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5:177ra38 [Google Scholar]
  69. Timmins NE, Kiel M, Gunther M, Heazlewood C, Doran MR. 69.  et al. 2012. Closed system isolation and scalable expansion of human placental mesenchymal stem cells. Biotechnol. Bioeng. 109:1817–26 [Google Scholar]
  70. Bancroft GN, Sikavitsas VI, Mikos AG. 70.  2003. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9:549–54 [Google Scholar]
  71. Glowacki J, Mizuno S, Greenberger JS. 71.  1998. Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture. Cell Transplant. 7:319–26 [Google Scholar]
  72. Sittinger M, Bujia J, Minuth WW, Hammer C, Burmester GR. 72.  1994. Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials 15:451–56 [Google Scholar]
  73. Liao J, Guo X, Grande-Allen KJ, Kasper FK, Mikos AG. 73.  2010. Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials 31:8911–20 [Google Scholar]
  74. Li S, Glynne-Jones P, Andriotis OG, Ching KY, Jonnalagadda US. 74.  et al. 2014. Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering. Lab. Chip 14:4475–85 [Google Scholar]
  75. Palsson BO, Paek SH, Schwartz RM, Palsson M, Lee GM. 75.  et al. 1993. Expansion of human bone marrow progenitor cells in a high cell density continuous perfusion system. Biotechnology 11:368–72 [Google Scholar]
  76. Koller MR, Emerson SG, Palsson BO. 76.  1993. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 82:378–84 [Google Scholar]
  77. Peng CA, Palsson BO. 77.  1996. Cell growth and differentiation on feeder layers is predicted to be influenced by bioreactor geometry. Biotechnol. Bioeng. 50:479–92 [Google Scholar]
  78. Dennis JE, Esterly K, Awadallah A, Parrish CR, Poynter GM, Goltry KL. 78.  2007. Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration. Stem Cells 25:2575–82 [Google Scholar]
  79. Kalbfuss B, Genzel Y, Wolff M, Zimmermann A, Morenweiser R, Reichl U. 79.  2007. Harvesting and concentration of human influenza A virus produced in serum-free mammalian cell culture for the production of vaccines. Biotechnol. Bioeng. 97:73–85 [Google Scholar]
  80. Pan D, Whitley CB. 80.  1999. Closed hollow-fiber bioreactor: a new approach to retroviral vector production. J. Gene Med. 1:433–40 [Google Scholar]
  81. Abu-Absi SF, Seth G, Narayanan RA, Groehler K, Lai P. 81.  et al. 2005. Characterization of a hollow fiber bioartificial liver device. Artif. Organs 29:419–22 [Google Scholar]
  82. Curcio E, De Bartolo L, Barbieri G, Rende M, Giorno L. 82.  et al. 2005. Diffusive and convective transport through hollow fiber membranes for liver cell culture. J. Biotechnol. 117:309–21 [Google Scholar]
  83. Meuwly F, Ruffieux PA, Kadouri A, von Stockar U. 83.  2007. Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications. Biotechnol. Adv. 25:45–56 [Google Scholar]
  84. Knazek RA, Wu YW, Aebersold PM, Rosenberg SA. 84.  1990. Culture of human tumor infiltrating lymphocytes in hollow fiber bioreactors. J. Immunol. Methods 127:29–37 [Google Scholar]
  85. Hillman GG, Wolf ML, Montecillo E, Younes E, Ali E. 85.  et al. 1994. Expansion of activated lymphocytes obtained from renal cell carcinoma in an automated hollow fiber bioreactor. Cell Transplant. 3:263–71 [Google Scholar]
  86. Malone CC, Schiltz PM, MacKintosh AD, Beutel LD, Heinemann FS, Dillman RO. 86.  2001. Characterization of human tumor-infiltrating lymphocytes expanded in hollow-fiber bioreactors for immunotherapy of cancer. Cancer Biother. Radiopharm. 16:381–90 [Google Scholar]
  87. Rojewski MT, Fekete N, Baila S, Nguyen K, Furst D. 87.  et al. 2013. GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system. Cell Transplant. 22:1981–2000 [Google Scholar]
  88. Hanley PJ, Mei Z, Durett AG, da Graca Cabreira-Harrison M, Klis M. 88.  et al. 2014. Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion system. Cytotherapy 16:1048–58 [Google Scholar]
  89. Rowley J, Abraham E, Campbell A, Brandwein H, Oh S. 89.  2012. Meeting lot-size challenges of manufacturing adherent cells for therapy. Bioprocess Int. 10:Suppl. 316–22 [Google Scholar]
  90. Apel M, Bruning M, Granzin M, Essl M, Stuth J. 90.  et al. 2013. Integrated clinical scale manufacturing system for cellular products derived by magnetic cell separation, centrifugation and cell culture. Chem. Ing. Tech. 85:103–10 [Google Scholar]
  91. Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R. 91.  et al. 2013. Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10:228–38 [Google Scholar]
  92. Yang HS, Jeon O, Bhang SH, Lee SH, Kim BS. 92.  2010. Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment. Cell Transplant. 19:1123–32 [Google Scholar]
  93. Guillaume-Gentil O, Semenov OV, Zisch AH, Zimmermann R, Voros J, Ehrbar M. 93.  2011. pH-controlled recovery of placenta-derived mesenchymal stem cell sheets. Biomaterials 32:4376–84 [Google Scholar]
  94. Dou XQ, Yang XM, Li P, Zhang ZG, Schonherr H. 94.  et al. 2012. Novel pH responsive hydrogels for controlled cell adhesion and triggered surface detachment. Soft Matter 8:9539–44 [Google Scholar]
  95. Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K. 95.  et al. 2010. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. PNAS 107:13724–29 [Google Scholar]
  96. Amit M, Laevsky I, Miropolsky Y, Shariki K, Peri M, Itskovitz-Eldor J. 96.  2011. Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat. Protoc. 6:572–79 [Google Scholar]
  97. Larijani MR, Seifinejad A, Pournasr B, Hajihoseini V, Hassani SN. 97.  et al. 2011. Long-term maintenance of undifferentiated human embryonic and induced pluripotent stem cells in suspension. Stem Cells Dev. 20:1911–23 [Google Scholar]
  98. Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U. 98.  2011. Scalable expansion of human pluripotent stem cells in suspension culture. Nat. Protoc. 6:689–700 [Google Scholar]
  99. Fekete N, Rojewski MT, Furst D, Kreja L, Ignatius A. 99.  et al. 2012. GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC. PLOS ONE 7:e43255 [Google Scholar]
  100. Menard C, Tarte K. 100.  2013. Immunoregulatory properties of clinical grade mesenchymal stromal cells: evidence, uncertainties, and clinical application. Stem Cell Res. Ther. 4:64 [Google Scholar]
  101. Carmen J, Burger SR, McCaman M, Rowley JA. 101.  2012. Developing assays to address identity, potency, purity and safety: cell characterization in cell therapy process development. Regen. Med. 7:85–100 [Google Scholar]
  102. Gee AP, Sumstad D, Stanson J, Watson P, Proctor J. 102.  et al. 2008. A multicenter comparison study between the Endosafe PTS rapid-release testing system and traditional methods for detecting endotoxin in cell-therapy products. Cytotherapy 10:427–35 [Google Scholar]
  103. Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U. 103.  et al. 2011. Assessing the safety of stem cell therapeutics. Cell Stem Cell 8:618–28 [Google Scholar]
  104. Rayment EA, Williams DJ. 104.  2010. Concise review: mind the gap: challenges in characterizing and quantifying cell- and tissue-based therapies for clinical translation. Stem Cells 28:996–1004 [Google Scholar]
  105. Hocquet D, Sauget M, Roussel S, Malugani C, Pouthier F. 105.  et al. 2014. Validation of an automated blood culture system for sterility testing of cell therapy products. Cytotherapy 16:692–98 [Google Scholar]
  106. Khuu HM, Patel N, Carter CS, Murray PR, Read EJ. 106.  2006. Sterility testing of cell therapy products: parallel comparison of automated methods with a CFR-compliant method. Transfusion 46:2071–82 [Google Scholar]
  107. Rubio D, Garcia S, De la Cueva T, Paz MF, Lloyd AC. 107.  et al. 2008. Human mesenchymal stem cell transformation is associated with a mesenchymal-epithelial transition. Exp. Cell Res. 314:691–98 [Google Scholar]
  108. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC. 108.  et al. 2005. Spontaneous human adult stem cell transformation. Cancer Res. 65:3035–39 [Google Scholar]
  109. de la Fuente R, Bernad A, Garcia-Castro J, Martin MC, Cigudosa JC. 109.  2010. Retraction: spontaneous human adult stem cell transformation. Cancer Res. 70:6682 [Google Scholar]
  110. Torsvik A, Rosland GV, Svendsen A, Molven A, Immervoll H. 110.  et al. 2010. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track—letter. Cancer Res. 70:6393–96 [Google Scholar]
  111. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA. 111.  et al. 2007. Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 67:9142–49 [Google Scholar]
  112. Aguilar S, Nye E, Chan J, Loebinger M, Spencer-Dene B. 112.  et al. 2007. Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 25:1586–94 [Google Scholar]
  113. Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M. 113.  et al. 2010. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115:1549–53 [Google Scholar]
  114. Shibata KR, Aoyama T, Shima Y, Fukiage K, Otsuka S. 114.  et al. 2007. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells 25:2371–82 [Google Scholar]
  115. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD. 115.  et al. 2007. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25:207–15 [Google Scholar]
  116. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B. 116.  et al. 2010. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521–31 [Google Scholar]
  117. Stephenson E, Ogilvie CM, Patel H, Cornwell G, Jacquet L. 117.  et al. 2010. Safety paradigm: genetic evaluation of therapeutic grade human embryonic stem cells. J. R. Soc. Interface 7:Suppl. 6S677–88 [Google Scholar]
  118. Ben-David U, Benvenisty N. 118.  2011. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer 11:268–77 [Google Scholar]
  119. Carpenter MK, Frey-Vasconcells J, Rao MS. 119.  2009. Developing safe therapies from human pluripotent stem cells. Nat. Biotechnol. 27:606–13 [Google Scholar]
  120. Choi WH, Choi BH, Min BH, Park SR. 120.  2011. Low-intensity ultrasound increased colony forming unit-fibroblasts of mesenchymal stem cells during primary culture. Tissue Eng. C Methods 17:517–26 [Google Scholar]
  121. Schellenberg A, Hemeda H, Wagner W. 121.  2013. Tracking of replicative senescence in mesenchymal stem cells by colony-forming unit frequency. Methods Mol. Biol. 976:143–54 [Google Scholar]
  122. Alexander ET, Towery JA, Miller AN, Kramer C, Hogan KR. 122.  et al. 2011. Beyond CD34+ cell dose: impact of method of peripheral blood hematopoietic stem cell mobilization (granulocyte-colony-stimulating factor [G-CSF], G-CSF plus plerixafor, or cyclophosphamide G-CSF/granulocyte-macrophage [GM]-CSF) on number of colony-forming unit-GM, engraftment, and Day +100 hematopoietic graft function. Transfusion 51:1995–2000 [Google Scholar]
  123. Pamphilon D, Selogie E, McKenna D, Cancelas-Peres JA, Szczepiorkowski ZM. 123.  et al. 2013. Current practices and prospects for standardization of the hematopoietic colony-forming unit assay: a report by the cellular therapy team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Cytotherapy 15:255–62 [Google Scholar]
  124. Ankrum J, Karp JM. 124.  2010. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 16:203–9 [Google Scholar]
  125. DeBenedette MA, Calderhead DM, Tcherepanova IY, Nicolette CA, Healey DG. 125.  2011. Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8+/CD28+ cytotoxic T-cell responses in vitro. J. Immunother. 34:45–57 [Google Scholar]
  126. Su Z, Dannull J, Heiser A, Yancey D, Pruitt S. 126.  et al. 2003. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res. 63:2127–33 [Google Scholar]
  127. Kaiser AD, Assenmacher M, Schroder B, Meyer M, Orentas R. 127.  et al. 2015. Towards a commercial process for the manufacture of genetically modified T cells for therapy. Cancer Gene Ther. 22:72–78 [Google Scholar]
  128. Hunt CJ. 128.  2011. Cryopreservation of human stem cells for clinical application: a review. Transfus. Med. Hemother. 38:107–23 [Google Scholar]
  129. Thirumala S, Goebel WS, Woods EJ. 129.  2009. Clinical grade adult stem cell banking. Organogenesis 5:143–54 [Google Scholar]
  130. Fuller BJ. 130.  2004. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett. 25:375–88 [Google Scholar]
  131. Windrum P, Morris TCM. 131.  2003. Severe neurotoxicity because of dimethyl sulphoxide following peripheral blood stem cell transplantation. Bone Marrow Transpl. 31:315 [Google Scholar]
  132. Liseth K, Abrahamsen JF, Bjorsvik S, Grottebo K, Bruserud O. 132.  2005. The viability of cryopreserved PBPC depends on the DMSO concentration and the concentration of nucleated cells in the graft. Cytotherapy 7:328–33 [Google Scholar]
  133. Zhao J, Hao HN, Thomas RL, Lyman WD. 133.  2001. An efficient method for the cryopreservation of fetal human liver hematopoeitic progenitor cells. Stem Cells 19:212–18 [Google Scholar]
  134. Abrahamsen JF, Bakken AM, Bruserud Ø. 134.  2002. Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+ cells. Transfusion 42:1573–80 [Google Scholar]
  135. Reuther T, Kettmann C, Scheer M, Kochel M, Iida S, Kubler AC. 135.  2006. Cryopreservation of osteoblast-like cells: viability and differentiation with replacement of fetal bovine serum in vitro. Cells Tissues Organs 183:32–40 [Google Scholar]
  136. Thirumala S, Zvonic S, Floyd E, Gimble JM, Devireddy RV. 136.  2005. Effect of various freezing parameters on the immediate post-thaw membrane integrity of adipose tissue derived adult stem cells. Biotechnol. Prog. 21:1511–24 [Google Scholar]
  137. Rollig C, Babatz J, Wagner I, Maiwald A, Schwarze V. 137.  et al. 2002. Thawing of cryopreserved mobilized peripheral blood—comparison between waterbath and dry warming device. Cytotherapy 4:551–55 [Google Scholar]
  138. Moon JH, Lee JR, Jee BC, Suh CS, Kim SH. 138.  et al. 2008. Successful vitrification of human amnion-derived mesenchymal stem cells. Hum. Reprod. 23:1760–70 [Google Scholar]
  139. Kurata H, Takakuwa K, Tanaka K. 139.  1994. Vitrification of hematopoietic progenitor cells obtained from human cord blood. Bone Marrow Transplant. 14:261–63 [Google Scholar]
  140. Rall WF, Fahy GM. 140.  1985. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature 313:573–75 [Google Scholar]
  141. Khuu HM, Cowley H, David-Ocampo V, Carter CS, Kasten-Sportes C. 141.  et al. 2002. Catastrophic failures of freezing bags for cellular therapy products: description, cause, and consequences. Cytotherapy 4:539–49 [Google Scholar]
  142. Schachter B. 142.  2014. Therapies of the state. Nat. Biotechnol. 32:736–41 [Google Scholar]
  143. Elseberg CL, Leber J, Salzig D, Wallrapp C, Kassem M. 143.  et al. 2012. Microcarrier-based expansion process for hMSCs with high vitality and undifferentiated characteristics. Int. J. Artif. Organs 35:93–107 [Google Scholar]
  144. Oh SK, Chen AK, Mok Y, Chen X, Lim UM. 144.  et al. 2009. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res. 2:219–30 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-033559
Loading
/content/journals/10.1146/annurev-chembioeng-080615-033559
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error