1932

Abstract

Accelerated molecular dynamics (AMD) is a class of MD-based methods used to simulate atomistic systems in which the metastable state-to-state evolution is slow compared with thermal vibrations. Temperature-accelerated dynamics (TAD) is a particularly efficient AMD procedure in which the predicted evolution is hastened by elevating the temperature of the system and then recovering the correct state-to-state dynamics at the temperature of interest. TAD has been used to study various materials applications, often revealing surprising behavior beyond the reach of direct MD. This success has inspired several algorithmic performance enhancements, as well as the analysis of its mathematical framework. Recently, these enhancements have leveraged parallel programming techniques to enhance both the spatial and temporal scaling of the traditional approach. We review the ongoing evolution of the modern TAD method and introduce the latest development: speculatively parallel TAD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-033608
2016-06-07
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-033608.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-033608&mimeType=html&fmt=ahah

Literature Cited

  1. Voter AF. 1.  1997. Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys. Rev. Lett. 78:3908–11 [Google Scholar]
  2. Voter AF. 2.  1998. Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57:R13985 [Google Scholar]
  3. Sørensen MR, Voter AF. 3.  2000. Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112:9599–606 [Google Scholar]
  4. Voter AF, Montalenti F, Germann TC. 4.  2002. Extending the time scale in atomistic simulation of materials. Annu. Rev. Mater. Res. 32:321–46 [Google Scholar]
  5. Uberuaga BP, Montalenti F, Germann TC, Voter AF. 5.  2005. Accelerated molecular dynamics methods. Handbook of Materials Modeling S Yip 629–48 New York: Springer [Google Scholar]
  6. Uberuaga B, Voter A. 6.  2007. Accelerated molecular dynamics methods. Radiation Effects in Solids 235 Nato Science Series KE Sickafus, EA Kotomin, BP Uberuaga 25–43 Netherlands: Springer [Google Scholar]
  7. Perez D, Uberuaga BP, Shim Y, Amar JG, Voter AF. 7.  2009. Accelerated molecular dynamics methods: introduction and recent developments. Annu. Rep. Comp. Chem. 5:79–98 [Google Scholar]
  8. Montalenti F, Voter A. 8.  2001. Applying accelerated molecular dynamics to crystal growth. Phys. Status Solidi B 226:21–27 [Google Scholar]
  9. Montalenti F, Sørensen MR, Voter AF. 9.  2001. Closing the gap between experiment and theory: crystal growth by temperature accelerated dynamics. Phys. Rev. Lett. 87:126101 [Google Scholar]
  10. Sprague JA, Montalenti F, Uberuaga BP, Kress JD, Voter AF. 10.  2002. Simulation of growth of Cu on Ag(001) at experimental deposition rates. Phys. Rev. B 66:205415 [Google Scholar]
  11. Uberuaga BP, Smith R, Cleave AR, Montalenti F, Henkelman G. 11.  et al. 2004. Structure and mobility of defects formed from collision cascades in MgO. Phys. Rev. Lett. 92:115505 [Google Scholar]
  12. Cogoni M, Uberuaga BP, Voter AF, Colombo L. 12.  2005. Diffusion of small self-interstitial clusters in silicon: temperature-accelerated tight-binding molecular dynamics simulations. Phys. Rev. B 71:121203 [Google Scholar]
  13. Cogoni M, Mattoni A, Uberuaga BP, Voter AF, Colombo L. 13.  2005. Atomistic study of the dissolution of small boron interstitial clusters in c-Si. Appl. Phys. Lett. 87:191912 [Google Scholar]
  14. Uberuaga BP, Valone SM, Baskes M. 14.  2007. Accelerated dynamics study of vacancy mobility in δ-plutonium. J. Alloy. Compd. 444:314–19 [Google Scholar]
  15. Shim Y, Borovikov V, Uberuaga BP, Voter AF, Amar JG. 15.  2008. Vacancy formation and strain in low-temperature Cu/Cu(100) growth. Phys. Rev. Lett. 101:116101 [Google Scholar]
  16. Ichinomiya T, Uberuaga BP, Sickafus KE, Nishiura Y, Itakura M. 16.  et al. 2009. Temperature accelerated dynamics study of migration process of oxygen defects in UO2. J. Nucl. Mater. 384:315–21 [Google Scholar]
  17. Uberuaga BP, Stuart SJ, Windl W, Masquelier MP, Voter AF. 17.  2012. Fullerene and graphene formation from carbon nanotube fragments. Comput. Theor. Chem. 987:115–21 [Google Scholar]
  18. Montalenti F, Voter AF. 18.  2002. Exploiting past visits or minimum-barrier knowledge to gain further boost in the temperature-accelerated dynamics method. J. Chem. Phys. 116:4819–28 [Google Scholar]
  19. Shim Y, Amar JG. 19.  2011. Adaptive temperature-accelerated dynamics. J. Chem. Phys. 134:054127 [Google Scholar]
  20. Shim Y, Callahan NB, Amar JG. 20.  2013. Localized saddle-point search and application to temperature-accelerated dynamics. J. Chem. Phys. 138:194101 [Google Scholar]
  21. Shim Y, Amar JG, Uberuaga BP, Voter AF. 21.  2007. Reaching extended length scales and time scales in atomistic simulations via spatially parallel temperature-accelerated dynamics. Phys. Rev. B 76:205439 [Google Scholar]
  22. Bochenkov V, Suetin N, Shankar S. 22.  2014. Extended temperature-accelerated dynamics: enabling long-time full-scale modeling of large rare-event systems. J. Chem. Phys. 141:094105 [Google Scholar]
  23. Vineyard GH. 23.  1957. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3:121–27 [Google Scholar]
  24. Chekmarev S, Krivov S. 24.  1998. Confinement of the molecular dynamics trajectory to a specified catchment area on the potential surface. Chem. Phys. Lett. 287:719–24 [Google Scholar]
  25. Aristoff D, Lelièvre T. 25.  2014. Mathematical analysis of temperature accelerated dynamics. Multiscale Model. Sim. 12:290–317 [Google Scholar]
  26. Mniszewski SM, Junghans C, Voter AF, Perez D, Eidenbenz SJ. 26.  2015. TADSim: discrete event-based performance prediction for temperature-accelerated dynamics. ACM Trans. Model. Comput. Simul. 25:15 [Google Scholar]
  27. Henkelman G, Uberuaga BP, Jónsson H. 27.  2000. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113:9901–4 [Google Scholar]
  28. Bortz A, Kalos M, Lebowitz J. 28.  1975. A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comp. Phys. 17:10–18 [Google Scholar]
  29. Voter AF. 29.  2007. Introduction to the kinetic Monte Carlo method. Radiation Effects in Solids KE Sickafus, EA Kotomin, BP Uberuaga 1–23 New York: Springer [Google Scholar]
  30. Uberuaga BP, Pilania G. 30.  2015. Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites. Chem. Mater. 27:5020–26 [Google Scholar]
  31. Uberuaga BP, Perriot R. 31.  2015. Insights into dynamic processes of cations in pyrochlores and other complex oxides. Phys. Chem. Chem. Phys. 17:24215–23 [Google Scholar]
  32. Uberuaga BP, Andersson DA, Stanek CR. 32.  2013. Defect behavior in oxides: insights from modern atomistic simulation methods. Curr. Opin. Solid State Mater. Sci. 17:249–56 [Google Scholar]
  33. Uberuaga BP, Vernon LJ. 33.  2013. Interstitial and vacancy mediated transport mechanisms in perovskites: a comparison of chemistry and potentials. Solid State Ion. 253:18–26 [Google Scholar]
  34. Li YH, Uberuaga BP, Jiang C, Choudhury S, Valdez JA. 34.  et al. 2012. Role of antisite disorder on preamorphization swelling in titanate pyrochlores. Phys. Rev. Lett. 108:195504 [Google Scholar]
  35. Uberuaga BP, Vernon LJ, Martinez E, Voter AF. 35.  2015. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency. Sci. Rep. 5:9095 [Google Scholar]
  36. Bai XM, Voter AF, Hoagland RG, Nastasi M, Uberuaga BP. 36.  2010. Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327:1631–34 [Google Scholar]
  37. Bai XM, Uberuaga B. 37.  2013. The influence of grain boundaries on radiation-induced point defect production in materials: a review of atomistic studies. JOM 65:360–73 [Google Scholar]
  38. Montalenti F, Voter AF, Ferrando R. 38.  2002. Spontaneous atomic shuffle in flat terraces: Ag(100). Phys. Rev. B 66:205404 [Google Scholar]
  39. Henkelman G, Jónsson H. 39.  1999. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111:7010–22 [Google Scholar]
  40. Munro LJ, Wales DJ. 40.  1999. Defect migration in crystalline silicon. Phys. Rev. B 59:3969–80 [Google Scholar]
  41. Barkema GT, Mousseau N. 41.  1996. Event-based relaxation of continuous disordered systems. Phys. Rev. Lett. 77:4358–61 [Google Scholar]
  42. Béland LK, Brommer P, El-Mellouhi F, Joly JF, Mousseau N. 42.  2011. Kinetic activation-relaxation technique. Phys. Rev. E 84:046704 [Google Scholar]
  43. Xu L, Henkelman G. 43.  2008. Adaptive kinetic Monte Carlo for first-principles accelerated dynamics. J. Chem. Phys. 129:114104 [Google Scholar]
  44. Divi S, Chatterjee A. 44.  2014. Accelerating rare events while overcoming the low-barrier problem using a temperature program. J. Chem. Phys. 140:184115 [Google Scholar]
  45. Shim Y, Amar JG. 45.  2005. Semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo simulations of thin film growth. Phys. Rev. B 71:125432 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-033608
Loading
/content/journals/10.1146/annurev-chembioeng-080615-033608
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error