1932

Abstract

Providing clean water and sufficient affordable energy to all without compromising the environment is a key priority in the scientific community. Many recent studies have focused on carbon-based devices in the hope of addressing this grand challenge, justifying and motivating detailed studies of water in contact with carbonaceous materials. Such studies are becoming increasingly important because of the miniaturization of newly proposed devices, with ubiquitous nanopores, large surface-to-volume ratio, and many, perhaps most of the water molecules in contact with a carbon-based surface. In this brief review, we discuss some recent advances obtained via simulations and experiments in the development of carbon-based materials for applications in water desalination. We suggest possible ways forward, with particular emphasis on the synergistic combination of experiments and simulations, with simulations now sometimes offering sufficient accuracy to provide fundamental insights. We also point the interested reader to recent works that complement our short summary on the state of the art of this important and fascinating field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-034455
2016-06-07
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-034455.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-034455&mimeType=html&fmt=ahah

Literature Cited

  1. Stover RL. 1.  2007. Seawater reverse osmosis with isobaric energy recovery devices. Desalination 203:168–75 [Google Scholar]
  2. Ghaffour N, Missimer TM, Amy GL. 2.  2013. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207 [Google Scholar]
  3. Fritzmann C, Lowenberg J, Wintgens T, Melin T. 3.  2007. State-of-the-art of reverse osmosis desalination. Desalination 216:1–76 [Google Scholar]
  4. Semiat R. 4.  2008. Energy issues in desalination processes. Environ. Sci. Technol. 42:8193–201 [Google Scholar]
  5. Elimelech M, Phillip WA. 5.  2011. The future of seawater desalination: energy, technology, and the environment. Science 333:712–17 [Google Scholar]
  6. Lee KP, Arnot TC, Mattia D. 6.  2011. A review of reverse osmosis membrane materials for desalination—development to date and future potential. J. Membr. Sci. 370:1–22 [Google Scholar]
  7. Cohen-Tanugi D, Grossman JC. 7.  2015. Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination 366:59–70 [Google Scholar]
  8. Subramani A, Jacangelo JG. 8.  2015. Emerging desalination technologies for water treatment: a critical review. Water Res. 75:164–87 [Google Scholar]
  9. Daer S, Kharraz J, Giwa A, Hasan SW. 9.  2015. Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367:37–48 [Google Scholar]
  10. Das R, Ali ME, Abd Hamid SB, Ramakrishna S, Chowdhury ZZ. 10.  2014. Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109 [Google Scholar]
  11. Rodríguez-Calvo A, Silva-Castro GA, Osorio F, González-López J, Calvo C. 11.  2014. Novel membrane materials for reverse osmosis desalination. Hydrol. Curr. Res. 5:1–7 [Google Scholar]
  12. Müller EA. 12.  2013. Purification of water through nanoporous carbon membranes: a molecular simulation viewpoint. Curr. Opin. Chem. Eng. 2:223–28 [Google Scholar]
  13. Guo S, Meshot ER, Kuykendall T, Cabrini S, Fornasiero F. 13.  2015. Nanofluidic transport through isolated carbon nanotube channels: advances, controversies, and challenges. Adv. Mater. 27:5726–37 [Google Scholar]
  14. Kannam SK, Todd BD, Hansen JS, Daivis PJ. 14.  2013. How fast does water flow in carbon nanotubes. J. Chem. Phys. 138:094701 [Google Scholar]
  15. Park HG, Jung Y. 15.  2014. Carbon nanofluidics of rapid water transport for energy applications. Chem. Soc. Rev. 43:565–76 [Google Scholar]
  16. Thomas M, Corry B, Hilder TA. 16.  2014. What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation?. Small 10:1453–65 [Google Scholar]
  17. Ebro H, Kim YM, Kim JH. 17.  2013. Molecular dynamics simulations in membrane-based water treatment processes: a systematic overview. J. Membr. Sci. 438:112–25 [Google Scholar]
  18. Bocquet L, Charlaix E. 18.  2010. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39:1073–95 [Google Scholar]
  19. Hummer G, Rasaiah JC, Noworyta JP. 19.  2001. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–90 [Google Scholar]
  20. Kalra A, Garde S, Hummer G. 20.  2003. Osmotic water transport through carbon nanotube membranes. PNAS 100:10175–80 [Google Scholar]
  21. Pascal TA, Goddard WA, Jung Y. 21.  2011. Entropy and the driving force for the filling of carbon nanotubes with water. PNAS 108:11794–98 [Google Scholar]
  22. Alexiadis A, Kassinos S. 22.  2008. Molecular simulation of water in carbon nanotubes. Chem. Rev. 108:5014–34 [Google Scholar]
  23. Striolo A. 23.  2006. The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett. 6:633–39 [Google Scholar]
  24. Falk K, Sedlmeier F, Joly L, Netz RR, Bocquet L. 24.  2010. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10:4067–73 [Google Scholar]
  25. Falk K, Sedlmeier F, Joly L, Netz RR, Bocquet L. 25.  2012. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water. Langmuir 28:14261–72 [Google Scholar]
  26. Joseph S, Aluru NR. 26.  2008. Why are carbon nanotubes fast transporters of water?. Nano Lett. 8:452–58 [Google Scholar]
  27. Striolo A. 27.  2007. Water self-diffusion through narrow oxygenated carbon nanotubes. Nanotechnology 18:475704 [Google Scholar]
  28. He ZJ, Corry B, Lu XH, Zhou J. 28.  2014. A mechanical nanogate based on a carbon nanotube for reversible control of ion conduction. Nanoscale 6:3686–94 [Google Scholar]
  29. Majumder M, Chopra N, Andrews R, Hinds BJ. 29.  2005. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438:44 [Google Scholar]
  30. 30.  Deleted in proof.
  31. Sisan TB, Lichter S. 31.  2011. The end of nanochannels. Microfluid. Nanofluid. 11:787–91 [Google Scholar]
  32. Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB. 32.  et al. 2006. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–37 [Google Scholar]
  33. Qin XC, Yuan QZ, Zhao YP, Xie SB, Liu ZF. 33.  2011. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 11:2173–77 [Google Scholar]
  34. Joly L. 34.  2011. Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes. J. Chem. Phys. 135:214705 [Google Scholar]
  35. Gravelle S, Joly L, Detcheverry F, Ybert C, Cottin-Bizonne C, Bocquet L. 35.  2013. Optimizing water permeability through the hourglass shape of aquaporins. PNAS 110:16367–72 [Google Scholar]
  36. Gravelle S, Joly L, Ybert C, Bocquet L. 36.  2014. Large permeabilities of hourglass nanopores: from hydrodynamics to single file transport. J. Chem. Phys. 141:18C526 [Google Scholar]
  37. Walther JH, Ritos K, Cruz-Chu ER, Megaridis CM, Koumoutsakos P. 37.  2013. Barriers to superfast water transport in carbon nanotube membranes. Nano Lett. 13:1910–14 [Google Scholar]
  38. Thomas JA, McGaughey AJH. 38.  2009. Water flow in carbon nanotubes: transition to subcontinuum transport. Phys. Rev. Lett. 102:184502 [Google Scholar]
  39. Majumder M, Chopra N, Hinds BJ. 39.  2011. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5:3867–77 [Google Scholar]
  40. Thomas M, Jayatilaka D, Corry B. 40.  2013. How does overcoordination create ion selectivity?. Biophys. Chem. 172:37–42 [Google Scholar]
  41. Sharma S, Debenedetti PG. 41.  2012. Evaporation rate of water in hydrophobic confinement. PNAS 109:4365–70 [Google Scholar]
  42. Suk ME, Aluru NR. 42.  2013. Molecular and continuum hydrodynamics in graphene nanopores. RSC Adv. 3:9365–72 [Google Scholar]
  43. Suk ME, Aluru NR. 43.  2014. Ion transport in sub-5-nm graphene nanopores. J. Chem. Phys. 140:084707 [Google Scholar]
  44. Cohen-Tanugi D, Grossman JC. 44.  2012. Water desalination across nanoporous graphene. Nano Lett. 12:3602–8 [Google Scholar]
  45. O'Hern SC, Jang D, Bose S, Idrobo JC, Song Y. 45.  et al. 2015. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15:3254–60 [Google Scholar]
  46. Konatham D, Yu J, Ho TA, Striolo A. 46.  2013. Simulation insights for graphene-based water desalination membranes. Langmuir 29:11884–97 [Google Scholar]
  47. O'Hern SC, Boutilier MSH, Idrobo JC, Song Y, Kong J. 47.  et al. 2014. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14:1234–41 [Google Scholar]
  48. Pendergast MM, Hoek EMV. 48.  2011. A review of water treatment membrane nanotechnologies. Energ. Environ. Sci. 4:1946–71 [Google Scholar]
  49. Koenig SP, Wang LD, Pellegrino J, Bunch JS. 49.  2012. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7:728–32 [Google Scholar]
  50. Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA. 50.  2010. Graphene as a subnanometre trans-electrode membrane. Nature 467:190–93 [Google Scholar]
  51. Garaj S, Liu S, Golovchenko JA, Branton D. 51.  2013. Molecule-hugging graphene nanopores. PNAS 110:12192–96 [Google Scholar]
  52. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N. 52.  et al. 2010. DNA translocation through graphene nanopores. Nano Lett. 10:2915–21 [Google Scholar]
  53. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. 53.  2012. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335:442–44 [Google Scholar]
  54. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB. 54.  et al. 2007. Preparation and characterization of graphene oxide paper. Nature 448:457–60 [Google Scholar]
  55. Eda G, Chhowalla M. 55.  2010. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22:2392–415 [Google Scholar]
  56. Kim HW, Yoon HW, Yoon SM, Yoo BM, Ahn BK. 56.  et al. 2013. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342:91–95 [Google Scholar]
  57. Park HB. 57.  2014. Graphene-based membranes—a new opportunity for CO2 separation. Carbon Manag. 5:251–53 [Google Scholar]
  58. Li H, Song ZN, Zhang XJ, Huang Y, Li SG. 58.  et al. 2013. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342:95–98 [Google Scholar]
  59. Han Y, Xu Z, Gao C. 59.  2013. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23:3693–700 [Google Scholar]
  60. Sun PZ, Zhu M, Wang KL, Zhong ML, Wei JQ. 60.  et al. 2013. Selective ion penetration of graphene oxide membranes. ACS Nano 7:428–37 [Google Scholar]
  61. Hu M, Mi BX. 61.  2013. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47:3715–23 [Google Scholar]
  62. Huang HB, Mao YY, Ying YL, Liu Y, Sun LW, Peng XS. 62.  2013. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chem. Commun. 49:5963–65 [Google Scholar]
  63. Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y. 63.  et al. 2014. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343:752–54 [Google Scholar]
  64. Huang LL, Zhang LZ, Shao Q, Wang J, Lu LH. 64.  et al. 2006. Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes. J. Phys. Chem. B 110:25761–68 [Google Scholar]
  65. Diallo SO, Vlcek L, Mamontov E, Keum JK, Chen JH. 65.  et al. 2015. Translational diffusion of water inside hydrophobic carbon micropores studied by neutron spectroscopy and molecular dynamics simulation. Phys. Rev. E 91:022124 [Google Scholar]
  66. Marti J, Gordillo MC. 66.  2003. Structure and dynamics of liquid water adsorbed on the external walls of carbon nanotubes. J. Chem. Phys. 119:12540–46 [Google Scholar]
  67. Striolo A, Chialvo AA, Cummings PT, Gubbins KE. 67.  2003. Water adsorption in carbon-slit nanopores. Langmuir 19:8583–91 [Google Scholar]
  68. Striolo A, Gubbins KE, Gruszkiewicz MS, Cole DR, Simonson JM, Chialvo AA. 68.  2005. Effect of temperature on the adsorption of water in porous carbons. Langmuir 21:9457–67 [Google Scholar]
  69. Chandler D. 69.  2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:640–47 [Google Scholar]
  70. Kauzmann W. 70.  1959. Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14:1–63 [Google Scholar]
  71. Stillinger FH. 71.  1973. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solut. Chem. 2:141–58 [Google Scholar]
  72. Lum K, Chandler D, Weeks JD. 72.  1999. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103:4570–77 [Google Scholar]
  73. Huang X, Margulis CJ, Berne BJ. 73.  2003. Dewetting-induced collapse of hydrophobic particles. PNAS 100:11953–58 [Google Scholar]
  74. Cerdeirina CA, Debenedetti PG, Rossky PJ, Giovambattista N. 74.  2011. Evaporation length scales of confined water and some common organic liquids. J. Phys. Chem. Lett. 2:1000–3 [Google Scholar]
  75. Altabet YE, Debenedetti PG. 75.  2014. The role of material flexibility on the drying transition of water between hydrophobic objects: a thermodynamic analysis. J. Chem. Phys. 141:18C531 [Google Scholar]
  76. Remsing RC, Xi E, Vembanur S, Sharma S, Debenedetti PG. 76.  et al. 2015. Pathways to dewetting in hydrophobic confinement. PNAS 112:8181–86 [Google Scholar]
  77. Bakli C, Chakraborty S. 77.  2013. Effect of presence of salt on the dynamics of water in uncharged nanochannels. J. Chem. Phys. 138:054504 [Google Scholar]
  78. Barrat JL, Bocquet L. 78.  1999. Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss. 112:119–27 [Google Scholar]
  79. Bakli C, Chakraborty S. 79.  2015. Electrokinetic energy conversion in nanofluidic channels: addressing the loose ends in nanodevice efficiency. Electrophoresis 36:675–81 [Google Scholar]
  80. Joly L, Ybert C, Trizac E, Bocquet L. 80.  2006. Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. J. Chem. Phys. 125:204716 [Google Scholar]
  81. Ho TA, Papavassiliou DV, Lee LL, Striolo A. 81.  2011. Liquid water can slip on a hydrophilic surface. PNAS 108:16170–75 [Google Scholar]
  82. Tocci G, Joly L, Michaelides A. 82.  2014. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14:6872–77 [Google Scholar]
  83. Bocquet L, Barrat JL. 83.  1994. Hydrodynamic boundary-conditions, correlation-functions, and Kubo relations for confined fluids. Phys. Rev. E 49:3079–92 [Google Scholar]
  84. Bocquet L, Barrat JL. 84.  2013. On the Green-Kubo relationship for the liquid-solid friction coefficient. J. Chem. Phys. 139:044704 [Google Scholar]
  85. Willard AP, Chandler D. 85.  2009. Coarse-grained modeling of the interface between water and heterogeneous surfaces. Faraday Discuss. 141:209–20 [Google Scholar]
  86. Acharya H, Vembanur S, Jamadagni SN, Garde S. 86.  2010. Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins. Faraday Discuss. 146:353–65 [Google Scholar]
  87. Giovambattista N, Lopez CF, Rossky PJ, Debenedetti PG. 87.  2008. Hydrophobicity of protein surfaces: separating geometry from chemistry. PNAS 105:2274–79 [Google Scholar]
  88. Giovambattista N, Rossky PJ, Debenedetti PG. 88.  2009. Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces. J. Phys. Chem. B 113:13723–34 [Google Scholar]
  89. Hua L, Zangi R, Berne BJ. 89.  2009. Hydrophobic interactions and dewetting between plates with hydrophobic and hydrophilic domains. J. Phys. Chem. C 113:5244–53 [Google Scholar]
  90. Striolo A, Chialvo AA, Gubbins KE, Cummings PT. 89a.  2006. Simulated water adsorption in chemically heterogeneous carbon nanotubes. J. Chem. Phys. 124:074710 [Google Scholar]
  91. Gadaleta A, Biance AL, Siria A, Bocquet L. 90.  2015. Ultra-sensitive flow measurement in individual nanopores through pressure-driven particle translocation. Nanoscale 7:7965–70 [Google Scholar]
  92. Lee CY, Choi W, Han JH, Strano MS. 91.  2010. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329:1320–24 [Google Scholar]
  93. Christenson HK. 92.  2001. Confinement effects on freezing and melting. J. Phys. Condens. Matter 13:R95–R133 [Google Scholar]
  94. Majumder M, Zhan X, Andrews R, Hinds BJ. 93.  2007. Voltage gated carbon nanotube membranes. Langmuir 23:8624–31 [Google Scholar]
  95. Reina A, Thiele S, Jia XT, Bhaviripudi S, Dresselhaus MS. 94.  et al. 2009. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2:509–16 [Google Scholar]
  96. Reina A, Jia XT, Ho J, Nezich D, Son HB. 95.  et al. 2009. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9:30–35 [Google Scholar]
  97. Werder T, Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P. 96.  2003. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107:1345–52 [Google Scholar]
  98. Hall JE. 97.  1975. Access resistance of a small circular pore. J. Gen. Physiol. 66:531–32 [Google Scholar]
  99. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. 98.  2009. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 43:2317–48 [Google Scholar]
  100. Busch M, Mickols WE. 99.  2004. Reducing energy consumption in seawater desalination. Desalination 165:299–312 [Google Scholar]
  101. Lin SH, Elimelech M. 100.  2015. Staged reverse osmosis operation: configurations, energy efficiency, and application potential. Desalination 366:9–14 [Google Scholar]
  102. Cohen-Tanugi D, McGovern RK, Dave SH, Lienhard JH, Grossman JC. 101.  2014. Quantifying the potential of ultra-permeable membranes for water desalination. Energ. Environ. Sci. 7:1134–41 [Google Scholar]
  103. Gu MH, Vegas AJ, Anderson DG, Langer RS, Kilduff JE, Belfort G. 102.  2013. Combinatorial synthesis with high throughput discovery of protein-resistant membrane surfaces. Biomaterials 34:6133–38 [Google Scholar]
  104. Imbrogno J, Williams MD, Belfort G. 103.  2015. A new combinatorial method for synthesizing, screening, and discovering antifouling surface chemistries. ACS Appl. Mater. Interfaces 7:2385–92 [Google Scholar]
  105. Hansen CM. 104.  2007. Hansen Solubility Parameters: A User's Handbook Boca Raton, FL: Taylor & Francis Group, LLC, 2nd ed.. [Google Scholar]
  106. Kwan SE, Bar-Zeev E, Elimelech M. 105.  2015. Biofouling in forward osmosis and reverse osmosis: measurements and mechanisms. J. Membr. Sci. 493:703–8 [Google Scholar]
  107. Striolo A. 106.  2011. From interfacial water to macroscopic observables: a review. Adsorpt. Sci. Technol. 29:211–58 [Google Scholar]
  108. Striolo A. 107.  2014. Understanding interfacial water and its role in practical applications using molecular simulations. MRS Bull. 39:1062–68 [Google Scholar]
  109. Patel AJ, Varilly P, Jamadagni SN, Acharya H, Garde S, Chandler D. 108.  2011. Extended surfaces modulate hydrophobic interactions of neighboring solutes. PNAS 108:17678–83 [Google Scholar]
  110. Phan A, Cole DR, Striolo A. 109.  2014. Aqueous methane in slit-shaped silica nanopores: high solubility and traces of hydrates. J. Phys. Chem. C 118:4860–68 [Google Scholar]
  111. Phan A, Cole DR, Striolo A. 110.  2016. Factors governing the behaviour of aqueous methane in narrow pores. Philos. Trans. R. Soc. A. 374:50019 [Google Scholar]
  112. Oren Y. 111.  2008. Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination 228:10–29 [Google Scholar]
  113. Anderson MA, Cudero AL, Palma J. 112.  2010. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?. Electrochim. Acta 55:3845–56 [Google Scholar]
  114. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL. 113.  2006. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–63 [Google Scholar]
  115. Winter M, Brodd RJ. 114.  2004. What are batteries, fuel cells, and supercapacitors?. Chem. Rev. 104:4245–69 [Google Scholar]
  116. Zhang LL, Zhao XS. 115.  2009. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38:2520–31 [Google Scholar]
  117. Simon P, Gogotsi Y. 116.  2008. Materials for electrochemical capacitors. Nat. Mater. 7:845–54 [Google Scholar]
  118. Suss ME, Baumann TF, Bourcier WL, Spadaccini CM, Rose KA. 117.  et al. 2012. Capacitive desalination with flow-through electrodes. Energ. Environ. Sci. 5:9511–19 [Google Scholar]
  119. Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM. 118.  2013. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58:1388–442 [Google Scholar]
  120. Porada S, Sales BB, Hamelers HVM, Biesheuvel PM. 119.  2012. Water desalination with wires. J. Phys. Chem. Lett. 3:1613–18 [Google Scholar]
  121. Feng GA, Qiao R, Huang JS, Sumpter BG, Meunier V. 120.  2010. Atomistic insight on the charging energetics in subnanometer pore supercapacitors. J. Phys. Chem. C 114:18012–16 [Google Scholar]
  122. Yang L, Garde S. 121.  2007. Modeling the selective partitioning of cations into negatively charged nanopores in water. J. Chem. Phys. 126:084706 [Google Scholar]
  123. Shim Y, Kim HJ. 122.  2010. Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study. ACS Nano 4:2345–55 [Google Scholar]
  124. Kalluri RK, Konatham D, Striolo A. 123.  2011. Aqueous NaCl solutions within charged carbon-slit pores: partition coefficients and density distributions from molecular dynamics simulations. J. Phys. Chem. C 115:13786–95 [Google Scholar]
  125. Chialvo AA, Cummings PT. 124.  2011. Aqua ions-graphene interfacial and confinement behavior: insights from isobaric-isothermal molecular dynamics. J. Phys. Chem. A 115:5918–27 [Google Scholar]
  126. Fedorov MV, Kornyshev AA. 125.  2008. Towards understanding the structure and capacitance of electrical double layer in ionic liquids. Electrochim. Acta 53:6835–40 [Google Scholar]
  127. Kalluri RK, Biener MM, Suss ME, Merrill MD, Stadermann M. 126.  et al. 2013. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Phys. Chem. Chem. Phys. 15:2309–20 [Google Scholar]
  128. Kalluri RK, Ho TA, Biener J, Biener MM, Striolo A. 127.  2013. Partition and structure of aqueous NaCl and CaCl2 electrolytes in carbon-slit electrodes. J. Phys. Chem. C 117:13609–19 [Google Scholar]
  129. Ho TA, Striolo A. 128.  2013. Capacitance enhancement via electrode patterning. J. Chem. Phys. 139:204708 [Google Scholar]
  130. Ho TA, Striolo A. 129.  2015. Promising performance indicators for water desalination and aqueous capacitors obtained by engineering the electric double layer in nano-structured carbon electrodes. J. Phys. Chem. C 119:3331–37 [Google Scholar]
  131. Kim S, Lee JK, Kang SO, Ko J, Yum JH. 130.  et al. 2006. Molecular engineering of organic sensitizers for solar cell applications. J. Am. Chem. Soc. 128:16701–7 [Google Scholar]
  132. Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B. 131.  1998. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392:694–96 [Google Scholar]
  133. Greeley J, Mavrikakis M. 132.  2004. Alloy catalysts designed from first principles. Nat. Mater. 3:810–15 [Google Scholar]
  134. Studt F, Abild-Pedersen F, Bligaard T, Sorensen RZ, Christensen CH, Norskov JK. 133.  2008. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320:1320–22 [Google Scholar]
  135. Vega C, Abascal JLF, Conde MM, Aragones JL. 134.  2009. What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 141:251–76 [Google Scholar]
  136. Babin V, Medders GR, Paesani F. 135.  2012. Toward a universal water model: first principles simulations from the dimer to the liquid phase. J. Phys. Chem. Lett. 3:3765–69 [Google Scholar]
  137. Ho TA, Striolo A. 136.  2014. Molecular dynamics simulation of the graphene-water interface: comparing water models. Mol. Simul. 40:1190–200 [Google Scholar]
  138. Liu L, Patey GN. 137.  2014. Simulations of water transport through carbon nanotubes: how different water models influence the conduction rate. J. Chem. Phys. 141:18C518 [Google Scholar]
  139. Jungwirth P, Tobias DJ. 138.  2002. Ions at the air/water interface. J. Phys. Chem. B 106:6361–73 [Google Scholar]
  140. Ho TA, Striolo A. 139.  2013. Polarizability effects in molecular dynamics simulations of the graphene-water interface. J. Chem. Phys. 138:054117 [Google Scholar]
  141. Ma M, Grey F, Shen LM, Urbakh M, Wu S. 140.  et al. 2015. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nat. Nanotechnol. 10:692–95 [Google Scholar]
  142. Ma M, Tocci G, Michaelides A, Aeppli G. 141.  2016. Fast diffusion of water nanodroplets on graphene. Nat. Mater. 15:66–71 [Google Scholar]
  143. Carrasco J, Hodgson A, Michaelides A. 142.  2012. A molecular perspective of water at metal interfaces. Nat. Mater. 11:667–74 [Google Scholar]
  144. Rafiee J, Mi X, Gullapalli H, Thomas AV, Yavari F. 143.  et al. 2012. Wetting transparency of graphene. Nat. Mater. 11:217–22 [Google Scholar]
  145. Li ZT, Wang YJ, Kozbial A, Shenoy G, Zhou F. 144.  et al. 2013. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater. 12:925–31 [Google Scholar]
  146. Raj R, Maroo SC, Wang EN. 145.  2013. Wettability of graphene. Nano Lett. 13:1509–15 [Google Scholar]
  147. Ma J, Michaelides A, Alfe D, Schimka L, Kresse G, Wang EG. 146.  2011. Adsorption and diffusion of water on graphene from first principles. Phys. Rev. B 84:033402 [Google Scholar]
  148. Chen J, Li XZ, Zhang QF, Michaelides A, Wang EG. 147.  2013. Nature of proton transport in a water-filled carbon nanotube and in liquid water. Phys. Chem. Chem. Phys. 15:6344–49 [Google Scholar]
  149. Partovi-Azar P, Kühne TD. 148.  2015. Many-body dispersion interactions for periodic systems based on maximally localized Wannier functions: application to graphene/water systems. Phys. Status Solidi B 253:308–13 [Google Scholar]
  150. Cicero G, Grossman JC, Schwegler E, Gygi F, Galli G. 149.  2008. Water confined in nanotubes and between graphene sheets: a first principle study. J. Am. Chem. Soc. 130:1871–78 [Google Scholar]
  151. Li X, Feng J, Wang EG, Meng S, Klimes J, Michaelides A. 150.  2012. Influence of water on the electronic structure of metal-supported graphene: insights from van der Waals density functional theory. Phys. Rev. B 85:085425 [Google Scholar]
  152. Hamada I. 151.  2012. Adsorption of water on graphene: a van der Waals density functional study. Phys. Rev. B 86:195436 [Google Scholar]
  153. Silvestrelli PL, Ambrosetti A. 152.  2014. Including screening in van der Waals corrected density functional theory calculations: the case of atoms and small molecules physisorbed on graphene. J. Chem. Phys. 140:124107 [Google Scholar]
  154. McKenzie S, Kang HC. 153.  2014. Squeezing water clusters between graphene sheets: energetics, structure, and intermolecular interactions. Phys. Chem. Chem. Phys. 16:26004–15 [Google Scholar]
  155. Burke K. 154.  2012. Perspective on density functional theory. J. Chem. Phys. 136:150901 [Google Scholar]
  156. Gillan MJ, Alfe D, Michaelides A. 155.  2016. Perspective: How good is DFT for water?. J. Chem. Phys. 144:130901 [Google Scholar]
  157. Klimes J, Michaelides A. 156.  2012. Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 137:120901 [Google Scholar]
  158. Wu YB, Aluru NR. 157.  2013. Graphitic carbon-water nonbonded interaction parameters. J. Phys. Chem. B 117:8802–13 [Google Scholar]
  159. Jenness GR, Karalti O, Jordan KD. 158.  2010. Benchmark calculations of water-acene interaction energies: extrapolation to the water-graphene limit and assessment of dispersion-corrected DFT methods. Phys. Chem. Chem. Phys. 12:6375–81 [Google Scholar]
  160. Jenness GR, Karalti O, Al-Saidi WA, Jordan KD. 159.  2011. Evaluation of theoretical approaches for describing the interaction of water with linear acenes. J. Phys. Chem. A 115:5955–64 [Google Scholar]
  161. Jenness GR, Jordan KD. 160.  2009. DF-DFT-SAPT investigation of the interaction of a water molecule to coronene and dodecabenzocoronene: implications for the water-graphite interaction. J. Phys. Chem. C 113:10242–48 [Google Scholar]
  162. Rubes M, Kysilka J, Nachtigall P, Bludsky O. 161.  2010. DFT/CC investigation of physical adsorption on a graphite (0001) surface. Phys. Chem. Chem. Phys. 12:6438–44 [Google Scholar]
  163. Voloshina E, Usvyat D, Schutz M, Dedkov Y, Paulus B. 162.  2011. On the physisorption of water on graphene: a CCSD(T) study. Phys. Chem. Chem. Phys. 13:12041–47 [Google Scholar]
  164. Aragones JL, Sanz E, Vega C. 163.  2012. Solubility of NaCl in water by molecular simulation revisited. J. Chem. Phys. 136:244505 [Google Scholar]
  165. Mester Z, Panagiotopoulos AZ. 164.  2015. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations. J. Chem. Phys. 143:044505 [Google Scholar]
  166. Ding Y, Hassanali AA, Parrinello M. 165.  2014. Anomalous water diffusion in salt solutions. PNAS 111:3310–15 [Google Scholar]
  167. Kim JS, Wu Z, Morrow AR, Yethiraj A, Yethiraj A. 166.  2012. Self-diffusion and viscosity in electrolyte solutions. J. Phys. Chem. B 116:12007–13 [Google Scholar]
  168. Jiang H, Mester Z, Moultos OA, Economou IG, Panagiotopoulos AZ. 167.  2015. Thermodynamic and transport properties of H2O + NaCl from polarizable force fields. J. Chem. Theory Comput. 11:3802–10 [Google Scholar]
  169. Kiss PT, Baranyai A. 168.  2014. A new polarizable force field for alkali and halide ions. J. Chem. Phys. 141:114501 [Google Scholar]
  170. Hassanali AA, Cuny J, Verdolino V, Parrinello M. 169.  2014. Aqueous solutions: state of the art in ab initio molecular dynamics. Philos. Trans. R. Soc. A 372:20120482 [Google Scholar]
  171. Bankura A, Santrab B, DiStasio RA Jr., Swartz CW, Klein ML, Wu X. 170.  2015. A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory. Mol. Phys. 113:2842–54 [Google Scholar]
  172. Li H, Francisco JS, Zeng XC. 171.  2015. Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels. PNAS 112:10851–56 [Google Scholar]
  173. Liu J, Shi G, Guo P, Yang J, Fang H. 172.  2015. Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 115:164502(6) [Google Scholar]
  174. Bussi G, Donadio D, Parrinello M. 173.  2007. Canonical sampling through velocity rescaling. J. Chem. Phys. 126:014101 [Google Scholar]
  175. Thomas M, Corry B. 174.  2015. Thermostat choice significantly influences water flow rates in molecular dynamics studies of carbon nanotubes. Microfluid. Nanofluid. 18:41–47 [Google Scholar]
  176. Merlet C, Rotenberg B, Madden PA, Taberna PL, Simon P. 175.  et al. 2012. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11:306–10 [Google Scholar]
  177. Merlet C, Pean C, Rotenberg B, Madden PA, Simon P, Salanne M. 176.  2013. Simulating supercapacitors: Can we model electrodes as constant charge surfaces?. J. Phys. Chem. Lett. 4:264–68 [Google Scholar]
  178. Palmer JC, Gubbins KE. 177.  2012. Atomistic models for disordered nanoporous carbons using reactive force fields. Micropor. Mesopor. Mater. 154:24–37 [Google Scholar]
  179. Jain SK, Pellenq RJM, Pikunic JP, Gubbins KE. 178.  2006. Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method. Langmuir 22:9942–48 [Google Scholar]
  180. Palmer JC, Llobet A, Yeon SH, Fischer JE, Shi Y. 179.  et al. 2010. Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics. Carbon 48:1116–23 [Google Scholar]
  181. Angelikopoulos P, Papadimitriou C, Koumoutsakos P. 180.  2012. Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. J. Chem. Phys. 137:144103 [Google Scholar]
  182. Behler J. 181.  2015. Constructing high-dimensional neural network potentials: a tutorial review. Int. J. Quantum Chem. 115:1032–50 [Google Scholar]
  183. Bartok AP, Csanyi G. 182.  2015. Gaussian approximation potentials: a brief tutorial introduction. Int. J. Quantum Chem. 115:1051–57 [Google Scholar]
  184. Heiranian M, Farimani AB, Aluru NR. 183.  2015. Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6:8616 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-034455
Loading
/content/journals/10.1146/annurev-chembioeng-080615-034455
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error