Zeolites containing Sn, Ti, Zr, Hf, Nb, or Ta heteroatoms are versatile catalysts for the activation and conversion of oxygenated molecules owing to the unique Lewis acid character of their tetrahedral metal sites. Through fluoride-mediated synthesis, hydrophobic Lewis acid zeolites can behave as water-tolerant catalysts, which has resulted in a recent surge of experimental and computational studies in the field of biomass conversion. However, many open questions still surround these materials, especially relating to the nature of their active sites. This lack of fundamental understanding is exemplified by the many dissonant results that have been described in recent literature reports. In this review, we use a molecular-based approach to provide insight into the relationship between the structure of the metal center and its reactivity toward different substrates, with the ultimate goal of providing a robust framework to understand the properties that have the strongest influence on catalytic performance for the conversion of oxygenates.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Taramasso M, Perego G, Notari B. 1.  1983. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent No. 7081237
  2. Camblor MA, Corma A, Valencia S. 2.  1998. Synthesis in fluoride media and characterisation of aluminosilicate zeolite beta. J. Mater. Chem. 8:2137–45 [Google Scholar]
  3. Blasco T, Camblor M, Corma A, Esteve P, Guil J. 3.  et al. 1998. Direct synthesis and characterization of hydrophobic aluminum-free Ti-beta zeolite. J. Phys. Chem. B 102:75–88 [Google Scholar]
  4. Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH. 4.  2011. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci. 4:793–804 [Google Scholar]
  5. Kubička D, Kubičková I, Čejka J. 5.  2013. Application of molecular sieves in transformations of biomass and biomass-derived feedstocks. Catal. Rev. 55:1–78 [Google Scholar]
  6. Moliner M. 6.  2014. State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes. Dalton Trans. 43:4197–208 [Google Scholar]
  7. Dapsens PY, Mondelli C, Pérez-Ramírez J. 7.  2015. Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables. Chem. Soc. Rev. 44:7025–43 [Google Scholar]
  8. Román-Leshkov Y, Davis ME. 8.  2011. Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal. 1:1566–80 [Google Scholar]
  9. Gounder R, Davis ME. 9.  2013. Beyond shape selective catalysis with zeolites: Hydrophobic void spaces in zeolites enable catalysis in liquid water. AIChE J. 59:3349–58 [Google Scholar]
  10. Boronat M, Corma A, Renz M, Viruela PM. 10.  2006. Predicting the activity of single isolated Lewis acid sites in solid catalysts. Chem. A Eur. J. 12:7067–77 [Google Scholar]
  11. Yang G, Zhou L, Han X. 11.  2012. Lewis and Brönsted acidic sites in M4+-doped zeolites (M=Ti, Zr, Ge, Sn, Pb) as well as interactions with probe molecules: a DFT study. J. Mol. Catal. A Chem. 363:371–79 [Google Scholar]
  12. Li Y-P, Head-Gordon M, Bell AT. 12.  2014. Analysis of the reaction mechanism and catalytic activity of metal-substituted beta zeolite for the isomerization of glucose to fructose. ACS Catal. 4:1537–45 [Google Scholar]
  13. Yang G, Pidko EA, Hensen EJ. 13.  2013. Structure, stability, and Lewis acidity of mono and double Ti, Zr, and Sn framework substitutions in BEA zeolites: a periodic density functional theory study. J. Phys. Chem. C 117:3976–86 [Google Scholar]
  14. Corma A, Domine ME, Valencia S. 14.  2003. Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. J. Catal. 215:294–304 [Google Scholar]
  15. Li H, Wang J, Zhou D, Tian D, Shi C. 15.  et al. 2015. Structural stability and Lewis acidity of tetravalent Ti, Sn, or Zr-linked interlayer-expanded zeolite COE-4: a DFT study. Microporous Mesoporous Mater. 218:160–66 [Google Scholar]
  16. Shetty S, Kulkarni BS, Kanhere DG, Goursot A, Pal S. 16.  2008. A comparative study of structural, acidic and hydrophilic properties of Sn-BEA with Ti-BEA using periodic density functional theory. J. Phys. Chem. B 112:2573–79 [Google Scholar]
  17. Kulkarni BS, Krishnamurty S, Pal S. 17.  2010. Probing Lewis acidity and reactivity of Sn- and Ti-beta zeolite using industrially important moieties: a periodic density functional study. J. Mol. Catal. A Chem. 329:36–43 [Google Scholar]
  18. van der Waal JC, Rigutto MS, van Bekkum H. 18.  1998. Zeolite titanium beta as a selective catalyst in the epoxidation of bulky alkenes. Appl. Catal. A Gen. 167:331–42 [Google Scholar]
  19. van der Waal JC, van Bekkum H. 19.  1997. Zeolite titanium beta: a versatile epoxidation catalyst. Solvent effects. J. Mol. Catal. A Chem. 124:137–46 [Google Scholar]
  20. Moliner M, Román-Leshkov Y, Davis ME. 20.  2010. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. PNAS 107:6164–68 [Google Scholar]
  21. Wolf P, Hammond C, Conrad S, Hermans I. 21.  2014. Post-synthetic preparation of Sn-, Ti- and Zr-beta: a facile route to water tolerant, highly active Lewis acidic zeolites. Dalton Trans. 43:4514–19 [Google Scholar]
  22. Van de Vyver S, Odermatt C, Romero K, Prasomsri T, Román-Leshkov Y. 22.  2015. Solid Lewis acids catalyze the carbon–carbon coupling between carbohydrates and formaldehyde. ACS Catal. 5:972–77 [Google Scholar]
  23. Zhu Y, Chuah G, Jaenicke S. 23.  2004. Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. J. Catal. 227:1–10 [Google Scholar]
  24. Luo HY, Consoli DF, Gunther WR, Román-Leshkov Y. 24.  2014. Investigation of the reaction kinetics of isolated Lewis acid sites in beta zeolites for the Meerwein–Ponndorf–Verley reduction of methyl levulinate to γ-valerolactone. J. Catal. 320:198–207 [Google Scholar]
  25. Lewis JD, Van de Vyver S, Crisci AJ, Gunther WR, Michaelis VK. 25.  et al. 2014. A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl) furfural using Lewis acid zeolites. ChemSusChem 7:2255–65 [Google Scholar]
  26. Lewis JD, Van de Vyver S, Román-Leshkov Y. 26.  2015. Acid–base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization. Angew. Chem. Int. Ed. 54:9835–38 [Google Scholar]
  27. Corma A. 27.  1997. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97:2373–420 [Google Scholar]
  28. Dapsens PY, Mondelli C, Jagielski J, Hauert R, Pérez-Ramírez J. 28.  2014. Hierarchical Sn-MFI zeolites prepared by facile top-down methods for sugar isomerisation. Catal. Sci. Technol. 4:2302–11 [Google Scholar]
  29. Tang B, Dai W, Sun X, Wu G, Guan N. 29.  et al. 2015. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chem. 17:1744–55 [Google Scholar]
  30. Kumar M, Luo H, Román-Leshkov Y, Rimer JD. 30.  2015. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J. Am. Chem. Soc. 137:13007–17 [Google Scholar]
  31. Lupulescu AI, Kumar M, Rimer JD. 31.  2013. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. J. Am. Chem. Soc. 135:6608–17 [Google Scholar]
  32. Ouyang X, Hwang S-J, Xie D, Rea T, Zones SI, Katz A. 32.  2015. Heteroatom-substituted delaminated zeolites as solid Lewis acid catalysts. ACS Catal. 5:3108–19 [Google Scholar]
  33. Luo HY, Bui L, Gunther WR, Min E, Román-Leshkov Y. 33.  2012. Synthesis and catalytic activity of Sn-MFI nanosheets for the Baeyer–Villiger oxidation of cyclic ketones. ACS Catal. 2:2695–99 [Google Scholar]
  34. Ren L, Guo Q, Kumar P, Orazov M, Xu D. 34.  et al. 2015. Self-pillared, single-unit-cell Sn-MFI zeolite nanosheets and their use for glucose and lactose isomerization. Angew. Chem. Int. Ed. 54:10848–51 [Google Scholar]
  35. Gounder R, Davis ME. 35.  2013. Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves. J. Catal. 308:176–88 [Google Scholar]
  36. Bai P, Siepmann JI, Deem MW. 36.  2013. Adsorption of glucose into zeolite beta from aqueous solution. AIChE J. 59:3523–29 [Google Scholar]
  37. Sastre G, Corma A. 37.  1999. Relation between structure and Lewis acidity of Ti-Beta and TS-1 zeolites: a quantum-chemical study. Chem. Phys. Lett. 302:447–53 [Google Scholar]
  38. Shetty S, Pal S, Kanhere DG, Goursot A. 38.  2006. Structural, electronic, and bonding properties of zeolite Sn-beta: a periodic density functional theory study. Chem. A Eur. J. 12:518–23 [Google Scholar]
  39. Bare SR, Kelly SD, Sinkler W, Low JJ, Modica FS. 39.  et al. 2005. Uniform catalytic site in Sn-β-zeolite determined using x-ray absorption fine structure. J. Am. Chem. Soc. 127:12924–32 [Google Scholar]
  40. Newsam J, Treacy MM, Koetsier W, De Gruyter C. 40.  1988. Structural characterization of zeolite beta. Proc. R. Soc. Lond. A Math. Phys. Sci. 420:375–405 [Google Scholar]
  41. Baerlocher C, McCusker LB, Olson DH. 41.  2007. Atlas of Zeolite Framework Types London: Elsevier
  42. Yuan S, Si H, Fu A, Chu T, Tian F. 42.  et al. 2011. Location of Si vacancies and [Ti (OSi) 4] and [Ti (OSi) 3OH] sites in the MFI framework: a large cluster and full ab initio study. J. Phys. Chem. A 115:940–47 [Google Scholar]
  43. Millini R, Perego G, Seiti K. 43.  1994. Ti substitution in MFI type zeolites: a quantum mechanical study. Stud. Surf. Sci. Catal. 84:2123–29 [Google Scholar]
  44. Oumi Y, Matsuba K, Kubo M, Inui T, Miyamoto A. 44.  1995. Selective T-site substitution as a cause of the anisotropy of lattice expansion in titanosilicate-1 investigated by molecular dynamics and computer graphics. Microporous Mater. 4:53–57 [Google Scholar]
  45. Njo SL, van Koningsveld H, van de Graaf B. 45.  1997. A combination of the Monte Carlo method and molecular mechanics calculations: a novel way to study the Ti (IV) distribution in titanium silicalite-1. J. Phys. Chem. B 101:10065–68 [Google Scholar]
  46. Ricchiardi G, de Man A, Sauer J. 46.  2000. The effect of hydration on structure and location of Ti-sites in Ti-silicalite catalysts. A computational study. Phys. Chem. Chem. Phys. 2:2195–204 [Google Scholar]
  47. Atoguchi T, Yao S. 47.  2003. Ti atom in MFI zeolite framework: a large cluster model study by ONIOM method. J. Mol. Catal. A Chem. 191:281–88 [Google Scholar]
  48. Gamba A, Tabacchi G, Fois E. 48.  2009. TS-1 from first principles. J. Phys. Chem. A 113:15006–15 [Google Scholar]
  49. Deka RC, Nasluzov VA, Ivanova Shor EA, Shor AM, Vayssilov GN, Rösch N. 49.  2005. Comparison of all sites for Ti substitution in zeolite TS-1 by an accurate embedded-cluster method. J. Phys. Chem. B 109:24304–10 [Google Scholar]
  50. Hijar C, Jacubinas R, Eckert J, Henson N, Hay P, Ott K. 50.  2000. The siting of Ti in TS-1 is non-random. Powder neutron diffraction studies and theoretical calculations of TS-1 and FeS-1. J. Phys. Chem. B 104:12157–64 [Google Scholar]
  51. Lamberti C, Bordiga S, Zecchina A, Artioli G, Marra G, Spano G. 51.  2001. Ti location in the MFI framework of Ti-silicalite-1: a neutron powder diffraction study. J. Am. Chem. Soc. 123:2204–12 [Google Scholar]
  52. Henry PF, Weller MT, Wilson CC. 52.  2001. Structural investigation of TS-1: determination of the true nonrandom titanium framework substitution and silicon vacancy distribution from powder neutron diffraction studies using isotopes. J. Phys. Chem. B 105:7452–58 [Google Scholar]
  53. Lamberti C, Bordiga S, Zecchina A, Carati A, Fitch A. 53.  et al. 1999. Structural characterization of Ti-silicalite-1: a synchrotron radiation X-ray powder diffraction study. J. Catal. 183:222–31 [Google Scholar]
  54. Marra G, Artioli G, Fitch A, Milanesio M, Lamberti C. 54.  2000. Orthorhombic to monoclinic phase transition in high-Ti-loaded TS-1: an attempt to locate Ti in the MFI framework by low temperature XRD. Microporous Mesoporous Mater. 40:85–94 [Google Scholar]
  55. Conrad S, Verel R, Hammond C, Wolf P, Göltl F, Hermans I. 55.  2015. Silica-grafted SnIV catalysts in hydrogen-transfer reactions. ChemCatChem 7:3270–78 [Google Scholar]
  56. Boronat M, Concepción P, Corma A, Navarro MT, Renz M, Valencia S. 56.  2009. Reactivity in the confined spaces of zeolites: the interplay between spectroscopy and theory to develop structure–activity relationships for catalysis. Phys. Chem. Chem. Phys. 11:2876–84 [Google Scholar]
  57. Corma A, Navarro MT, Renz M. 57.  2003. Lewis acidic Sn (IV) centers—grafted onto MCM-41—as catalytic sites for the Baeyer–Villiger oxidation with hydrogen peroxide. J. Catal. 219:242–46 [Google Scholar]
  58. Osmundsen CM, Holm MS, Dahl S, Taarning E. 58.  2012. Tin-containing silicates: structure–activity relations. Proc. R. Soc. Lond. A Math. Phys. Sci. 468:2000–16 [Google Scholar]
  59. Cho HJ, Dornath P, Fan W. 59.  2014. Synthesis of hierarchical Sn-MFI as Lewis acid catalysts for isomerization of cellulosic sugars. ACS Catal. 4:2029–37 [Google Scholar]
  60. De Clercq R, Dusselier M, Christiaens C, Dijkmans J, Iacobescu RI. 60.  et al. 2015. Confinement effects in Lewis acid catalyzed sugar conversion: steering toward functional polyester building blocks. ACS Catal. 5:5803–11 [Google Scholar]
  61. Lew CM, Rajabbeigi N, Tsapatsis M. 61.  2012. Tin-containing zeolite for the isomerization of cellulosic sugars. Microporous Mesoporous Mater. 153:55–58 [Google Scholar]
  62. Gleeson D, Sankar G, Catlow CRA, Thomas JM, Spanó G. 62.  et al. 2000. The architecture of catalytically active centers in titanosilicate (TS-1) and related selective-oxidation catalysts. Phys. Chem. Chem. Phys. 2:4812–17 [Google Scholar]
  63. Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y. 63.  et al. 2012. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. PNAS 109:9727–32 [Google Scholar]
  64. Wells DH, Delgass WN, Thomson KT. 64.  2004. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: a DFT study. J. Am. Chem. Soc. 126:2956–62 [Google Scholar]
  65. Khouw CB, Davis ME. 65.  1995. Catalytic activity of titanium silicates synthesized in the presence of alkali-metal and alkaline-earth ions. J. Catal. 151:77–86 [Google Scholar]
  66. Bordiga S, Bonino F, Damin A, Lamberti C. 66.  2007. Reactivity of Ti(IV) species hosted in TS-1 towards H2O2–H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: a review and new highlights. Phys. Chem. Chem. Phys. 9:4854–78 [Google Scholar]
  67. Boronat M, Concepción P, Corma A, Renz M, Valencia S. 67.  2005. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J. Catal. 234:111–18 [Google Scholar]
  68. Boronat M, Corma A, Renz M. 68.  2006. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn-and Zr-beta zeolite catalysts. J. Phys. Chem. B 110:21168–74 [Google Scholar]
  69. Sushkevich VL, Palagin D, Ivanova II. 69.  2015. With open arms: open sites of ZrBEA zeolite facilitate selective synthesis of butadiene from ethanol. ACS Catal. 5:4833–36 [Google Scholar]
  70. Román-Leshkov Y, Moliner M, Labinger JA, Davis ME. 70.  2010. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew. Chem. Int. Ed. 49:8954–57 [Google Scholar]
  71. Gunther WR, Wang Y, Ji Y, Michaelis VK, Hunt ST. 71.  et al. 2012. Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nat. Commun. 3:1109 [Google Scholar]
  72. Gunther WR, Duong Q, Román-Leshkov Y. 72.  2013. Catalytic consequences of borate complexation and pH on the epimerization of L-arabinose to L-ribose in water catalyzed by Sn-Beta zeolite with borate salts. J. Mol. Catal. A Chem. 379:294–302 [Google Scholar]
  73. Bermejo-Deval R, Orazov M, Gounder R, Hwang S-J, Davis ME. 73.  2014. Active sites in Sn-beta for glucose isomerization to fructose and epimerization to mannose. ACS Catal. 4:2288–97 [Google Scholar]
  74. Brand SK, Labinger JA, Davis ME. 74.  2015. Tin silsesquioxanes as models for the “open” site in tin-containing zeolite Beta. ChemCatChem 8:121–24 [Google Scholar]
  75. Wolf P, Valla M, Rossini AJ, Comas-Vives A, Núñez-Zarur F. 75.  et al. 2014. NMR signatures of the active sites in Sn-β zeolite. Angew. Chem. 126:10343–47 [Google Scholar]
  76. Zimmerman PM, Head-Gordon M, Bell AT. 76.  2011. Selection and validation of charge and Lennard-Jones parameters for QM/MM simulations of hydrocarbon interactions with zeolites. J. Chem. Theory Comput. 7:1695–703 [Google Scholar]
  77. Rai N, Caratzoulas S, Vlachos DG. 77.  2013. Role of silanol group in Sn-beta zeolite for glucose isomerization and epimerization reactions. ACS Catal. 3:2294–98 [Google Scholar]
  78. Li G, Pidko EA, Hensen EJ. 78.  2014. Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites: a theoretical perspective. Catal. Sci. Technol. 4:2241–50 [Google Scholar]
  79. Tolborg S, Katerinopoulou A, Falcone DD, Sádaba I, Osmundsen CM. 79.  et al. 2014. Incorporation of tin affects crystallization, morphology, and crystal composition of Sn-Beta. J. Mater. Chem. A 2:20252–62 [Google Scholar]
  80. Wakihara T, Iida T, Okubo T, Kohara S, Takagaki A. 80.  2015. Sn-beta zeolite catalysts with high Sn contents prepared from Sn-Si mixed oxide composites. ChemNanoMat 1:155–58 [Google Scholar]
  81. Hammond C, Conrad S, Hermans I. 81.  2012. Simple and scalable preparation of highly active Lewis acidic Sn-β. Angew. Chem. Int. Ed. 51:11736–39 [Google Scholar]
  82. Chang C-C, Cho HJ, Wang Z, Wang X, Fan W. 82.  2015. Fluoride-free synthesis of a Sn-BEA catalyst by dry gel conversion. Green Chem. 17:2943–51 [Google Scholar]
  83. Tang B, Dai W, Wu G, Guan N, Li L, Hunger M. 83.  2014. Improved postsynthesis strategy to Sn-Beta zeolites as Lewis acid catalysts for the ring-opening hydration of epoxides. ACS Catal. 4:2801–10 [Google Scholar]
  84. Dapsens PY, Mondelli C, Kusema BT, Verel R, Pérez-Ramírez J. 84.  2014. A continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green Chem. 16:1176–86 [Google Scholar]
  85. van der Graaff WN, Li G, Mezari B, Pidko EA, Hensen EJ. 85.  2015. Synthesis of Sn-Beta with exclusive and high framework Sn content. ChemCatChem 7:1152–60 [Google Scholar]
  86. Hammond C, Padovan D, Al-Nayili A, Wells P, Gibson EK, Dimitratos N. 86.  2015. Identification of active and spectator Sn sites in Sn-β following solid-state stannation, and consequences for Lewis acid catalysis. ChemCatChem 7:3322–31 [Google Scholar]
  87. van Bokhoven JA, Koningsberger DC, Kunkeler P, van Bekkum H, Kentgens APM. 87.  2000. Stepwise dealumination of zeolite Beta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR. J. Am. Chem. Soc. 122:12842–47 [Google Scholar]
  88. Dijkmans J, Demol J, Houthoofd K, Huang S, Pontikes Y, Sels B. 88.  2015. Post-synthesis Snβ: an exploration of synthesis parameters and catalysis. J. Catal. 330:545–57 [Google Scholar]
  89. Dijkmans J, Dusselier M, Janssens W, Trekels M, Vantomme A. 89.  et al. 2016. An inner-/outer-sphere stabilized Sn active site in β-zeolite: spectroscopic evidence and kinetic consequences. ACS Catal. 6:31–46 [Google Scholar]
  90. Bermejo-Deval R, Gounder R, Davis ME. 90.  2012. Framework and extraframework tin sites in zeolite Beta react glucose differently. ACS Catal. 2:2705–13 [Google Scholar]
  91. Dartt C, Khouw C, Li H-X, Davis M. 91.  1994. Synthesis and physicochemical properties of zeolites containing framework titanium. Microporous Mater. 2:425–37 [Google Scholar]
  92. Hwang S-J, Gounder R, Bhawe Y, Orazov M, Bermejo-Deval R, Davis ME. 92.  2015. Solid state NMR characterization of Sn-Beta zeolites that catalyze glucose isomerization and epimerization. Topics Catal. 58:435–40 [Google Scholar]
  93. Gunther WR, Michaelis VK, Caporini MA, Griffin RG, Román-Leshkov Y. 93.  2014. Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance 119Sn precursors. J. Am. Chem. Soc. 136:6219–22 [Google Scholar]
  94. Ricchiardi G, Damin A, Bordiga S, Lamberti C, Spanò G. 94.  et al. 2001. Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. J. Am. Chem. Soc. 123:11409–19 [Google Scholar]
  95. Buzzoni R, Bordiga S, Ricchiardi G, Lamberti C, Zecchina A, Bellussi G. 95.  1996. Interaction of pyridine with acidic (H-ZSm5, H-β, H-Mord zeolites) and superacidic (H-nafion membrane) systems: an IR investigation. Langmuir 12:930–40 [Google Scholar]
  96. Emeis C. 96.  1993. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141:347–54 [Google Scholar]
  97. Barzetti T, Selli E, Moscotti D, Forni L. 97.  1996. Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. J. Chem. Soc. Faraday Trans. 92:1401–7 [Google Scholar]
  98. Farneth W, Gorte R. 98.  1995. Methods for characterizing zeolite acidity. Chem. Rev. 95:615–35 [Google Scholar]
  99. Roy S, Bakhmutsky K, Mahmoud E, Lobo RF, Gorte RJ. 99.  2013. Probing Lewis acid sites in Sn-Beta zeolite. ACS Catal. 3:573–80 [Google Scholar]
  100. Sushkevich VL, Vimont A, Travert A, Ivanova II. 100.  2015. Spectroscopic evidence for open and closed Lewis acid sites in ZrBEA zeolites. J. Phys. Chem. C 119:17633–39 [Google Scholar]
  101. Zheng A, Huang S-J, Liu S-B, Deng F. 101.  2011. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Phys. Chem. Chem. Phys. 13:14889–901 [Google Scholar]
  102. Chu Y, Yu Z, Zheng A, Fang H, Zhang H. 102.  et al. 2011. Acidic strengths of Brønsted and Lewis acid sites in solid acids scaled by 31P NMR chemical shifts of adsorbed trimethylphosphine. J. Phys. Chem. C 115:7660–67 [Google Scholar]
  103. Johnson RL, Schmidt-Rohr K. 103.  2014. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J. Magn. Reson. 239:44–49 [Google Scholar]
  104. Offerdahl TJ, Salsbury JS, Dong Z, Grant DJ, Schroeder SA. 104.  et al. 2005. Quantitation of crystalline and amorphous forms of anhydrous neotame using 13C CPMAS NMR spectroscopy. J. Pharm. Sci. 94:2591–605 [Google Scholar]
  105. Guo Q, Fan F, Pidko EA, van der Graaff WN, Feng Z. 105.  et al. 2013. Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid. ChemSusChem 6:1352–56 [Google Scholar]
  106. Rajabbeigi N, Torres A, Lew C, Elyassi B, Ren L. 106.  et al. 2014. On the kinetics of the isomerization of glucose to fructose using Sn-Beta. Chem. Eng. Sci. 116:235–42 [Google Scholar]
  107. Koehle M, Lobo RF. 107.  2015. Lewis acidic zeolite Beta catalyst for the Meerwein-Ponndorf-Verley reduction of furfural. Catal. Sci. Technol. In press. doi: 10.1039/c5cy01501d
  108. Lari GM, Dapsens PY, Scholz D, Mitchell S, Mondelli C, Péréz-Ramírez J. 108.  2016. Deactivation mechanisms of tin-zeolites in biomass conversions. Green Chem. 18:1249–60 [Google Scholar]
  109. Corma A, Llabrés i Xamena FX, Prestipino C, Renz M, Valencia S. 109.  2009. Water resistant, catalytically active Nb and Ta isolated Lewis acid sites, homogeneously distributed by direct synthesis in a Beta zeolite. J. Phys. Chem. C 113:11306–15 [Google Scholar]
  110. Corma A, Nemeth LT, Renz M, Valencia S. 110.  2001. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature 412:423–25 [Google Scholar]
  111. Bui L, Luo H, Gunther WR, Román-Leshkov Y. 111.  2013. Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural. Angew. Chem. 125:8180–83 [Google Scholar]
  112. Beyerlein R, Choi-Feng C, Hall J, Huggins B, Ray G. 112.  1997. Effect of steaming on the defect structure and acid catalysis of protonated zeolites. Top. Catal. 4:27–42 [Google Scholar]
  113. Zhang L, Chen K, Chen B, White JL, Resasco DE. 113.  2015. Factors that determine zeolite stability in hot liquid water. J. Am. Chem. Soc. 13711810–19
  114. Zapata PA, Huang Y, Gonzalez-Borja MA, Resasco DE. 114.  2013. Silylated hydrophobic zeolites with enhanced tolerance to hot liquid water. J. Catal. 308:82–97 [Google Scholar]
  115. Vjunov A, Derewinski MA, Fulton JL, Camaioni DM, Lercher JA. 115.  2015. Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols. J. Am. Chem. Soc. 137:10374–82 [Google Scholar]
  116. Vjunov A, Fulton JL, Camaioni DM, Hu JZ, Burton SD. 116.  et al. 2015. Impact of aqueous medium on zeolite framework integrity. Chem. Mater. 27:3533–45 [Google Scholar]
  117. Sádaba I, Granados ML, Riisager A, Taarning E. 117.  2015. Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions. Green Chem. 17:4133–45 [Google Scholar]
  118. Taarning E, Saravanamurugan S, Spangsberg Holm M, Xiong J, West RM, Christensen CH. 118.  2009. Zeolite-catalyzed isomerization of triose sugars. ChemSusChem 2:625–27 [Google Scholar]
  119. Corma A, Domine ME, Nemeth L, Valencia S. 119.  2002. Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). J. Am. Chem. Soc. 124:3194–95 [Google Scholar]
  120. Sushkevich VL, Ivanova II, Tolborg S, Taarning E. 120.  2014. Meerwein–Ponndorf–Verley–Oppenauer reaction of crotonaldehyde with ethanol over Zr-containing catalysts. J. Catal. 316:121–29 [Google Scholar]
  121. Li L, Cani D, Pescarmona PP. 121.  2015. Metal-containing TUD-1 mesoporous silicates as versatile solid acid catalysts for the conversion of bio-based compounds into valuable chemicals. Inorg. Chim. Acta 431:289–96 [Google Scholar]
  122. Pacheco JJ, Davis ME. 122.  2014. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. PNAS 111:8363–67 [Google Scholar]
  123. Mal NK, Ramaswamy AV. 123.  1996. Hydroxylation of phenol over Sn-silicalite-1 molecular sieve: solvent effects. J. Mol. Catal. A Chem. 105:149–58 [Google Scholar]
  124. Bhagwat M, Shah P, Ramaswamy V. 124.  2003. Synthesis of nanocrystalline SnO2 powder by amorphous citrate route. Mater. Lett. 57:1604–11 [Google Scholar]
  125. Dijkmans J, Dusselier M, Gabriëls D, Houthoofd K, Magusin PCMM. 125.  et al. 2015. Cooperative catalysis for multistep biomass conversion with Sn/Al Beta zeolite. ACS Catal. 5:928–40 [Google Scholar]
  126. Pang G, Chen S, Koltypin Y, Zaban A, Feng S, Gedanken A. 126.  2001. Controlling the particle size of calcined SnO2 nanocrystals. Nano Lett. 1:723–26 [Google Scholar]
  127. Chaudhari K, Das T, Rajmohanan P, Lazar K, Sivasanker S, Chandwadkar A. 127.  1999. Synthesis, characterization, and catalytic properties of mesoporous tin-containing analogs of MCM-41. J. Catal. 183:281–91 [Google Scholar]
  128. Li L, Collard X, Bertrand A, Sels BF, Pescarmona PP, Aprile C. 128.  2014. Extra-small porous Sn-silicate nanoparticles as catalysts for the synthesis of lactates. J. Catal. 314:56–65 [Google Scholar]
  129. Mal N, Ramaswamy V, Rajamohanan P, Ramaswamy A. 129.  1997. Sn-MFI molecular sieves: synthesis methods, 29Si liquid and solid MAS-NMR, 119Sn static and MAS NMR studies. Microporous Mater. 12:331–40 [Google Scholar]
  130. Casagrande M, Moretti E, Storaro L, Lenarda M, Gersich J. 130.  et al. 2006. Synthesis and structural characterization of MSU-type silica–tin molecular sieves: post-synthesis grafting of tin chlorides. Microporous Mesoporous Mater. 91:261–67 [Google Scholar]
  131. Lázár K, Szeleczky A, Mal N, Ramaswamy A. 131.  1997. In situ 119Sn-Mössbauer spectroscopic study on MR, MEL, and MTW tin silicalites. Zeolites 19:123–27 [Google Scholar]
  132. Lazar K, Chandwadkar A, Fejes P, Čejka J, Ramaswamy A. 132.  2000. Valency changes of iron and tin in framework-substituted molecular sieves investigated by in situ Mössbauer spectroscopy. J. Radioanal. Nuclear Chem. 246:143–48 [Google Scholar]
  133. Özkendir O, Ufuktepe Y. 133.  2007. Electronic and structural properties of SnO and SnO2 thin films studied by X-ray-absorption spectroscopy. J. Optoelectron. Adv. Mater. 9:3729–33 [Google Scholar]
  134. Nemeth L, Moscoso J, Erdman N, Bare S, Oroskar A. 134.  et al. 2004. Synthesis and characterization of Sn-Beta as a selective oxidation catalyst. Stud. Surf. Sci. Catal. 154:2626–31 [Google Scholar]
  135. Antunes MM, Lima S, Neves P, Magalhães AL, Fazio E. 135.  et al. 2015. One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis routes. J. Catal. 329:522–37 [Google Scholar]
  136. Courtney TD, Chang C-C, Gorte RJ, Lobo RF, Fan W, Nikolakis V. 136.  2015. Effect of water treatment on Sn-BEA zeolite: origin of 960 cm−1 FTIR peak. Microporous Mesoporous Mater. 210:69–76 [Google Scholar]
  137. Dijkmans J, Gabriëls D, Dusselier M, de Clippel F, Vanelderen P. 137.  et al. 2013. Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chem. 15:2777–85 [Google Scholar]
  138. Zhuang J, Han X, Bao X. 138.  2015. In-situ 31P MAS NMR probing of the active centers in Ti silicalite molecular sieve. Catal. Commun. 62:75–78 [Google Scholar]
  139. Renz M, Blasco T, Corma A, Fornés V, Jensen R, Nemeth L. 139.  2002. Selective and shape-selective Baeyer–Villiger oxidations of aromatic aldehydes and cyclic ketones with Sn-Beta zeolites and H2O2. Chem. A Eur. J. 8:4708–17 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error