The field of genome engineering has created new possibilities for gene therapy, including improved animal models of disease, engineered cell therapies, and in vivo gene repair. The most significant challenge for the clinical translation of genome engineering is the development of safe and effective delivery vehicles. A large body of work has applied genome engineering to genetic modification in vitro, and clinical trials have begun using cells modified by genome editing. Now, promising preclinical work is beginning to apply these tools in vivo. This article summarizes the development of genome engineering platforms, including meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas9, and their flexibility for precise genetic modifications. The prospects for the development of safe and effective viral and nonviral delivery vehicles for genome editing are reviewed, and promising advances in particular therapeutic applications are discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Naldini L. 1.  2015. Gene therapy returns to centre stage. Nature 526:351–60 [Google Scholar]
  2. Kotterman MA, Schaffer DV. 2.  2014. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 15:445–51 [Google Scholar]
  3. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. 3.  2014. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15:541–55 [Google Scholar]
  4. Gaj T, Gersbach CA, Barbas CF 3rd. 4.  2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:397–405 [Google Scholar]
  5. Cox DB, Platt RJ, Zhang F. 5.  2015. Therapeutic genome editing: prospects and challenges. Nat. Med. 21:121–31 [Google Scholar]
  6. Stoddard BL. 6.  2011. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15 [Google Scholar]
  7. Gersbach CA, Gaj T, Barbas CF 3rd. 7.  2014. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 47:2309–18 [Google Scholar]
  8. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 8.  2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11:636–46 [Google Scholar]
  9. Bogdanove AJ, Voytas DF. 9.  2011. TAL effectors: customizable proteins for DNA targeting. Science 333:1843–46 [Google Scholar]
  10. Hsu PD, Lander ES, Zhang F. 10.  2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78 [Google Scholar]
  11. Silva G, Poirot L, Galetto R, Smith J, Montoya G. 11.  et al. 2011. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr. Gene Ther. 11:11–27 [Google Scholar]
  12. Colleaux L, d'Auriol L, Betermier M, Cottarel G, Jacquier A. 12.  et al. 1986. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 44:521–33 [Google Scholar]
  13. Rosen LE, Morrison HA, Masri S, Brown MJ, Springstubb B. 13.  et al. 2006. Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res. 34:4791–800 [Google Scholar]
  14. Doyon JB, Pattanayak V, Meyer CB, Liu DR. 14.  2006. Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J. Am. Chem. Soc. 128:2477–84 [Google Scholar]
  15. Arnould S, Chames P, Perez C, Lacroix E, Duclert A. 15.  et al. 2006. Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J. Mol. Biol. 355:443–58 [Google Scholar]
  16. Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ Jr.. 16.  2006. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441:656–59 [Google Scholar]
  17. Wolfe SA, Nekludova L, Pabo CO. 17.  2000. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29:183–212 [Google Scholar]
  18. Pavletich NP, Pabo CO. 18.  1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–17 [Google Scholar]
  19. Liu Q, Segal DJ, Ghiara JB, Barbas CF 3rd. 19.  1997. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. PNAS 94:5525–30 [Google Scholar]
  20. Kay S, Hahn S, Marois E, Hause G, Bonas U. 20.  2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–51 [Google Scholar]
  21. Römer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T. 21.  2007. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–48 [Google Scholar]
  22. Moscou MJ, Bogdanove AJ. 22.  2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501 [Google Scholar]
  23. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S. 23.  et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–12 [Google Scholar]
  24. Holkers M, Maggio I, Liu J, Janssen JM, Misseli F. 24.  et al. 2013. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 41:e63 [Google Scholar]
  25. Yang L, Guell M, Byrne S, Yang JL, De Los Angeles A. 25.  et al. 2013. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 41:9049–61 [Google Scholar]
  26. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P. 26.  et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12 [Google Scholar]
  27. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E. 27.  et al. 2011. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9:467–77 [Google Scholar]
  28. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ. 28.  et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–64 [Google Scholar]
  29. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y. 29.  et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–7 [Google Scholar]
  30. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 30.  2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21 [Google Scholar]
  31. Doudna JA, Charpentier E. 31.  2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096 [Google Scholar]
  32. Zhou Y, Zhu S, Cai C, Yuan P, Li C. 32.  et al. 2014. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–91 [Google Scholar]
  33. Koike-Yusa H, Li Y, Tan E-P, Del Castillo Velasco-Herrera M, Yusa K. 33.  2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32:267–73 [Google Scholar]
  34. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA. 34.  et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87 [Google Scholar]
  35. Wang T, Wei JJ, Sabatini DM, Lander ES. 35.  2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84 [Google Scholar]
  36. Hilton IB, Gersbach CA. 36.  2015. Enabling functional genomics with genome engineering. Genome Res. 25:1442–55 [Google Scholar]
  37. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA. 37.  et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–51 [Google Scholar]
  38. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. 38.  2013. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10:977–79 [Google Scholar]
  39. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM. 39.  et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10:973–76 [Google Scholar]
  40. Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE. 40.  et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:510–17 [Google Scholar]
  41. Rouet P, Smih F, Jasin M. 41.  1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14:8096–106 [Google Scholar]
  42. Porteus MH, Cathomen T, Weitzman MD, Baltimore D. 42.  2003. Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol. Cell. Biol. 23:3558–65 [Google Scholar]
  43. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC. 43.  et al. 2007. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. PNAS 104:3055–60 [Google Scholar]
  44. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee Y-L. 44.  et al. 2007. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25:1298–306 [Google Scholar]
  45. Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT. 45.  et al. 2015. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol. Ther. 23:523–32 [Google Scholar]
  46. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. 46.  2015. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 6:6244 [Google Scholar]
  47. Canver MC, Bauer DE, Dass A, Yien YY, Chung J. 47.  et al. 2014. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 289:21312–24 [Google Scholar]
  48. Kim YG, Cha J, Chandrasegaran S. 48.  1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 93:1156–60 [Google Scholar]
  49. Miller JC, Tan S, Qiao G, Barlow KA, Wang J. 49.  et al. 2011. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29:143–48 [Google Scholar]
  50. Gordley RM, Smith JD, Graslund T, Barbas CF 3rd. 50.  2007. Evolution of programmable zinc finger-recombinases with activity in human cells. J. Mol. Biol. 367:802–13 [Google Scholar]
  51. Akopian A, He J, Boocock MR, Stark WM. 51.  2003. Chimeric recombinases with designed DNA sequence recognition. PNAS 100:8688–91 [Google Scholar]
  52. Mercer AC, Gaj T, Fuller RP, Barbas CF 3rd. 52.  2012. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. 40:11163–72 [Google Scholar]
  53. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. 53.  2011. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29:149–53 [Google Scholar]
  54. Beerli RR, Dreier B, Barbas CF 3rd. 54.  2000. Positive and negative regulation of endogenous genes by designed transcription factors. PNAS 97:1495–500 [Google Scholar]
  55. Kay MA. 55.  2011. State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12:316–28 [Google Scholar]
  56. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A. 56.  et al. 2003. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80:148–58 [Google Scholar]
  57. Glover DJ, Lipps HJ, Jans DA. 57.  2005. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 6:299–310 [Google Scholar]
  58. Bessis N, GarciaCozar FJ, Boissier M-C. 58.  2004. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 11:Suppl. 1S10–17 [Google Scholar]
  59. Baum C, Kustikova O, Modlich U, Li Z, Fehse B. 59.  2006. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum. Gene Ther. 17:253–63 [Google Scholar]
  60. Wang J, Exline CM, Declercq JJ, Llewellyn GN, Hayward SB. 60.  et al. 2015. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 33:1256–63 [Google Scholar]
  61. Pruett-Miller SM, Reading DW, Porter SN, Porteus MH. 61.  2009. Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLOS Genet. 5:e1000376 [Google Scholar]
  62. Whitehead KA, Dahlman JE, Langer RS, Anderson DG. 62.  2011. Silencing or stimulation? siRNA delivery and the immune system. Annu. Rev. Chem. Biomol. Eng. 2:77–96 [Google Scholar]
  63. Zangi L, Lui KO, von Gise A, Ma Q, Ebina W. 63.  et al. 2013. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31:898–907 [Google Scholar]
  64. Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW. 64.  et al. 2011. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29:154–57 [Google Scholar]
  65. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE. 65.  et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33:985–89 [Google Scholar]
  66. Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M. 66.  et al. 2015. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. PNAS 112:10437–42 [Google Scholar]
  67. Kawabata K, Takakura Y, Hashida M. 67.  1995. The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm. Res. 12:825–30 [Google Scholar]
  68. Behlke MA. 68.  2008. Chemical modification of siRNAs for in vivo use. Oligonucleotides 18:305–19 [Google Scholar]
  69. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. 69.  2008. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5:505–15 [Google Scholar]
  70. Lv H, Zhang S, Wang B, Cui S, Yan J. 70.  2006. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114:100–9 [Google Scholar]
  71. Xiao K, Li Y, Luo J, Lee JS, Xiao W. 71.  et al. 2011. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32:3435–46 [Google Scholar]
  72. Zuckerman JE, Choi CHJ, Han H, Davis ME. 72.  2012. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. PNAS 109:3137–42 [Google Scholar]
  73. Zhang Y, Satterlee A, Huang L. 73.  2012. In vivo gene delivery by nonviral vectors: Overcoming hurdles?. Mol. Ther. 20:1298–304 [Google Scholar]
  74. Matsumura Y, Maeda H. 74.  1986. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46:6387–92 [Google Scholar]
  75. Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM. 75.  et al. 2001. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res. 7:243–54 [Google Scholar]
  76. Dominska M, Dykxhoorn DM. 76.  2010. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 123:1183–89 [Google Scholar]
  77. Dinh AT, Pangarkar C, Theofanous T, Mitragotri S. 77.  2007. Understanding intracellular transport processes pertinent to synthetic gene delivery via stochastic simulations and sensitivity analyses. Biophys. J. 92:831–46 [Google Scholar]
  78. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C. 78.  et al. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–29 [Google Scholar]
  79. Kariko K, Bhuyan P, Capodici J, Weissman D. 79.  2004. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 172:6545–49 [Google Scholar]
  80. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S. 80.  et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740–45 [Google Scholar]
  81. Hyde SC, Pringle IA, Abdullah S, Lawton AE, Davies LA. 81.  et al. 2008. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat. Biotechnol. 26:549–51 [Google Scholar]
  82. Jackson AL, Linsley PS. 82.  2010. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 9:57–67 [Google Scholar]
  83. Suda T, Liu D. 83.  2007. Hydrodynamic gene delivery: its principles and applications. Mol. Ther. 15:2063–69 [Google Scholar]
  84. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E. 84.  et al. 2014. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32:551–53 [Google Scholar]
  85. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T. 85.  et al. 2014. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–84 [Google Scholar]
  86. Rando TA. 86.  2007. Non-viral gene therapy for Duchenne muscular dystrophy: progress and challenges. Biochim. Biophys. Acta 1772:263–71 [Google Scholar]
  87. McNeer NA, Schleifman EB, Cuthbert A, Brehm M, Jackson A. 87.  et al. 2013. Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Ther. 20:658–69 [Google Scholar]
  88. Zanetta C, Nizzardo M, Simone C, Monguzzi E, Bresolin N. 88.  et al. 2014. Molecular therapeutic strategies for spinal muscular atrophies: current and future clinical trials. Clin. Ther. 36:128–40 [Google Scholar]
  89. Torchilin VP. 89.  2005. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4:145–60 [Google Scholar]
  90. Akinc A, Zumbuehl A, Goldberg M, Leschchiner ES, Busini V. 90.  et al. 2008. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26:561–69 [Google Scholar]
  91. Alton EW, Armstrong DK, Ashby D, Bayfield KJ, Bilton D. 91.  et al. 2015. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3:684–91 [Google Scholar]
  92. Akinc A, Thomas M, Klibanov AM, Langer R. 92.  2005. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7:657–63 [Google Scholar]
  93. Wagner E, Ogris M, Zauner W. 93.  1998. Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv. Drug Deliv. Rev. 30:97–113 [Google Scholar]
  94. Boussif O, Lezoualc'h F, Zanta M, Mergny MD, Scherman D. 94.  et al. 1995. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. PNAS 92:7297–301 [Google Scholar]
  95. Goula D, Benoist C, Mantero S, Merlo G, Levi G, Demeneix BA. 95.  1998. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 5:1291–95 [Google Scholar]
  96. Pichon C, Goncalves C, Midoux P. 96.  2001. Histidine-rich peptides and polymers for nucleic acids delivery. Adv. Drug Deliv. Rev. 53:75–94 [Google Scholar]
  97. Bowman K, Leong KW. 97.  2006. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomed. 1:117–28 [Google Scholar]
  98. Bowman K, Sarkar R, Raut S, Leong KW. 98.  2008. Gene transfer to hemophilia A mice via oral delivery of FVIII-chitosan nanoparticles. J. Control. Release 132:252–59 [Google Scholar]
  99. Lee CC, MacKay JA, Frechet JM, Szoka FC. 99.  2005. Designing dendrimers for biological applications. Nat. Biotechnol. 23:1517–26 [Google Scholar]
  100. Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier S. 100.  2009. Bioapplications of RAFT polymerization. Chem. Rev. 109:5402–36 [Google Scholar]
  101. Matyjaszewski K. 101.  2012. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–39 [Google Scholar]
  102. Convertine AJ, Benoit DS, Duvall CL, Hoffman AS, Stayton PS. 102.  2009. Development of a novel endosomolytic diblock copolymer for siRNA delivery. J. Control. Release 133:221–29 [Google Scholar]
  103. Zhou J, Liu J, Cheng CJ, Patel TR, Weller CE. 103.  et al. 2012. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat. Mater. 11:82–90 [Google Scholar]
  104. Manganiello MJ, Cheng C, Convertine AJ, Bryers JD, Stayton PS. 104.  2012. Diblock copolymers with tunable pH transitions for gene delivery. Biomaterials 33:2301–9 [Google Scholar]
  105. Green JJ, Zugates GT, Tedford NC, Huang Y-H, Griffith LG. 105.  et al. 2007. Combinatorial modification of degradable polymers enables transfection of human cells comparable to adenovirus. Adv. Mater. 19:2836–42 [Google Scholar]
  106. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A. 106.  et al. 2010. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–70 [Google Scholar]
  107. Kharfan-Dabaja MA, Boeckh M, Wilck MB, Langston AA, Chu AH. 107.  et al. 2012. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 12:290–99 [Google Scholar]
  108. Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF 3rd. 108.  2012. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat. Methods 9:805–7 [Google Scholar]
  109. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL. 109.  et al. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33:73–80 [Google Scholar]
  110. Schmidt F, Grimm D. 110.  2015. CRISPR genome engineering and viral gene delivery: a case of mutual attraction. Biotechnol. J. 10:258–72 [Google Scholar]
  111. Gruber K. 111.  2012. Europe gives gene therapy the green light. Lancet 380e10 [Google Scholar]
  112. Seto JT, Ramos JN, Muir L, Chamberlain JS, Odom GL. 112.  2012. Gene replacement therapies for Duchenne muscular dystrophy using adeno-associated viral vectors. Curr. Gene Ther. 12:139–51 [Google Scholar]
  113. Wu Z, Yang H, Colosi P. 113.  2010. Effect of genome size on AAV vector packaging. Mol. Ther. 18:80–86 [Google Scholar]
  114. McCarty DM, Young SM Jr, Samulski RJ. 114.  2004. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu. Rev. Genet. 38:819–45 [Google Scholar]
  115. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F. 115.  et al. 2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N. Engl. J. Med. 358:2240–48 [Google Scholar]
  116. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y. 116.  et al. 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33:102–6 [Google Scholar]
  117. Wang Z, Zhu T, Qiao C, Zhou L, Wang B. 117.  et al. 2005. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat. Biotechnol. 23:321–28 [Google Scholar]
  118. Wu Z, Asokan A, Samulski RJ. 118.  2006. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14:316–27 [Google Scholar]
  119. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. 119.  2006. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24:198–204 [Google Scholar]
  120. Li W, Asokan A, Wu Z, Van Dyke T, DiPrimio N. 120.  et al. 2008. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol. Ther. 16:1252–60 [Google Scholar]
  121. Asokan A, Conway JC, Phillips JL, Li C, Hegge J. 121.  et al. 2010. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat. Biotechnol. 28:79–82 [Google Scholar]
  122. Shen S, Horowitz ED, Troupes AN, Brown SM, Pulicherla N. 122.  et al. 2013. Engraftment of a galactose receptor footprint onto adeno-associated viral capsids improves transduction efficiency. J. Biol. Chem. 288:28814–23 [Google Scholar]
  123. Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C. 123.  et al. 2009. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. PNAS 106:3946–51 [Google Scholar]
  124. Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M. 124.  et al. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–76 [Google Scholar]
  125. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS. 125.  et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–91 [Google Scholar]
  126. Mefferd AL, Kornepati AVR, Bogerd HP, Kennedy EM, Cullen BR. 126.  2015. Expression of CRISPR/Cas single guide RNAs using small tRNA promoters. RNA 21:1683–89 [Google Scholar]
  127. Zhang Y, Yue Y, Li L, Hakim CH, Zhang K. 127.  et al. 2013. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy. Hum. Mol. Genet. 22:3720–29 [Google Scholar]
  128. Trapani I, Colella P, Sommella A, Iodice C, Cesi G. 128.  et al. 2014. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol. Med. 6:194–211 [Google Scholar]
  129. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS. 129.  et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–71 [Google Scholar]
  130. Rapti K, Louis-Jeune V, Kohlbrenner E, Ishikawa K, Ladage D. 130.  et al. 2012. Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol. Ther. 20:73–83 [Google Scholar]
  131. Mingozzi F, High KA. 131.  2013. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122:23–36 [Google Scholar]
  132. Faust SM, Bell P, Cutler BJ, Ashley SN, Zhu Y. 132.  et al. 2013. CpG-depleted adeno-associated virus vectors evade immune detection. J. Clin. Investig. 123:2994–3001 [Google Scholar]
  133. Geutskens SB, van der Eb MM, Plomp AC, Jonges LE, Cramer SJ. 133.  et al. 2000. Recombinant adenoviral vectors have adjuvant activity and stimulate T cell responses against tumor cells. Gene Ther. 7:1410–16 [Google Scholar]
  134. Tebas P, Stein D, Tang WW, Frank I, Wang SQ. 134.  et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370:901–10 [Google Scholar]
  135. Wang D, Mou H, Li S, Li Y, Hough S. 135.  et al. 2015. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26:432–42 [Google Scholar]
  136. Choi JW, Lee JS, Kim SW, Yun CO. 136.  2012. Evolution of oncolytic adenovirus for cancer treatment. Adv. Drug Deliv. Rev. 64:720–29 [Google Scholar]
  137. Persons DA. 137.  2010. Lentiviral vector gene therapy: Effective and safe?. Mol. Ther. 18:861–62 [Google Scholar]
  138. Nightingale SJ, Hollis RP, Pepper KA, Petersen D, Yu XJ. 138.  et al. 2006. Transient gene expression by nonintegrating lentiviral vectors. Mol. Ther. 13:1121–32 [Google Scholar]
  139. Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. 139.  2014. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 42:e147 [Google Scholar]
  140. Izmiryan A, Basmaciogullari S, Henry A, Paques F, Danos O. 140.  2011. Efficient gene targeting mediated by a lentiviral vector-associated meganuclease. Nucleic Acids Res. 39:7610–19 [Google Scholar]
  141. Cai Y, Bak RO, Mikkelsen JG. 141.  2014. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. eLife 3:e01911 [Google Scholar]
  142. Cronin J, Zhang XY, Reiser J. 142.  2005. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5:387–98 [Google Scholar]
  143. Pranjol MZ, Hajitou A. 143.  2015. Bacteriophage-derived vectors for targeted cancer gene therapy. Viruses 7:268–84 [Google Scholar]
  144. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW. 144.  et al. 2014. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32:1146–50 [Google Scholar]
  145. Citorik RJ, Mimee M, Lu TK. 145.  2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32:1141–45 [Google Scholar]
  146. Courtney DG, Moore JE, Atkinson SD, Maurizi E, Allen EH. 146.  et al. 2015. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting. Gene Ther. 23:108–12 [Google Scholar]
  147. Shea LD, Smiley E, Bonadio J, Mooney DJ. 147.  1999. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551–54 [Google Scholar]
  148. Segura T, Shea LD. 148.  2002. Surface-tethered DNA complexes for enhanced gene delivery. Bioconjugate Chem. 13:621–29 [Google Scholar]
  149. De Laporte L, Shea LD. 149.  2007. Matrices and scaffolds for DNA delivery in tissue engineering. Adv. Drug Deliv. Rev. 59:292–307 [Google Scholar]
  150. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW. 150.  et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–18 [Google Scholar]
  151. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L. 151.  et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–55 [Google Scholar]
  152. Dow LE, Fisher J, O'Rourke KP, Muley A, Kastenhuber ER. 152.  et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33:390–94 [Google Scholar]
  153. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K. 153.  et al. 2015. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246–60 [Google Scholar]
  154. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA. 154.  et al. 2008. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26:808–16 [Google Scholar]
  155. Holt N, Wang J, Kim K, Friedman G, Wang X. 155.  et al. 2010. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol. 28:839–47 [Google Scholar]
  156. Didigu CA, Wilen CB, Wang J, Duong J, Secreto AJ. 156.  et al. 2014. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood 123:61–69 [Google Scholar]
  157. Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM. 157.  et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–51 [Google Scholar]
  158. Genovese P, Schiroli G, Escobar G, Di Tomaso T, Firrito C. 158.  et al. 2014. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510:235–40 [Google Scholar]
  159. Hoban MD, Cost GJ, Mendel MC, Romero Z, Kaufman ML. 159.  et al. 2015. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125:2597–604 [Google Scholar]
  160. Deng W, Rupon JW, Krivega I, Breda L, Motta I. 160.  et al. 2014. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158:849–60 [Google Scholar]
  161. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y. 161.  et al. 2013. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342:253–57 [Google Scholar]
  162. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE. 162.  et al. 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527:192–97 [Google Scholar]
  163. Li H, Haurigot V, Doyon Y, Li T, Wong SY. 163.  et al. 2011. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–21 [Google Scholar]
  164. Anguela XM, Sharma R, Doyon Y, Miller JC, Li H. 164.  et al. 2013. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 122:3283–87 [Google Scholar]
  165. Sharma R, Anguela XM, Doyon Y, Wechsler T, DeKelver RC. 165.  et al. 2015. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126:1777–84 [Google Scholar]
  166. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS. 166.  et al. 2014. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115:488–92 [Google Scholar]
  167. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T. 167.  et al. 2015. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep. 4:143–54 [Google Scholar]
  168. Popplewell L, Koo T, Leclerc X, Duclert A, Mamchaoui K. 168.  et al. 2013. Gene correction of a Duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in. Hum. Gene Ther. 24:692–701 [Google Scholar]
  169. Benabdallah BF, Duval A, Rousseau J, Chapdelaine P, Holmes MC. 169.  et al. 2013. Targeted gene addition of microdystrophin in mice skeletal muscle via human myoblast transplantation. Mol. Ther. Nucleic Acids 2:e68 [Google Scholar]
  170. Long CZ, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. 170.  2014. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345:1184–88 [Google Scholar]
  171. Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT. 171.  et al. 2013. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol. Ther. 21:1718–26 [Google Scholar]
  172. Veltrop M, Aartsma-Rus A. 172.  2014. Antisense-mediated exon skipping: taking advantage of a trick from Mother Nature to treat rare genetic diseases. Exp. Cell Res. 325:50–55 [Google Scholar]
  173. Xu L, Park KH, Zhao L, Xu J, El Refaey M. 173.  et al. 2016. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol. Ther. 24:564–69 [Google Scholar]
  174. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA. 174.  et al. 2015. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403–7 [Google Scholar]
  175. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ. 175.  et al. 2015. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351:407–11 [Google Scholar]
  176. Long C, Amoasii L, Mierault AA, McAnally JR, Li H. 176.  et al. 2015. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351:400–3 [Google Scholar]
  177. Strimpakos G, Corbi N, Pisani C, Grazia Di Certo M, Onori A. 177.  et al. 2014. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice. J. Cell. Physiol. 229:1283–91 [Google Scholar]
  178. Zhang HS, Liu D, Huang Y, Schmidt S, Hickey R. 178.  et al. 2012. A designed zinc-finger transcriptional repressor of phospholamban improves function of the failing heart. Mol. Ther. 20:1508–15 [Google Scholar]
  179. Kennedy EM, Cullen BR. 179.  2015. Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology 479–80:213–20 [Google Scholar]
  180. Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P. 180.  2013. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol. Ther. 21:1889–97 [Google Scholar]
  181. Lin S-R, Yang H-C, Kuo Y-T, Liu C-J, Yang T-Y. 181.  et al. 2014. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol. Ther. Nucleic Acids 3:e186 [Google Scholar]
  182. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L. 182.  et al. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. PNAS 111:11461–66 [Google Scholar]
  183. Kennedy EM, Kornepati AVR, Goldstein M, Bogerd HP, Poling BC. 183.  et al. 2014. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J. Virol. 88:11965–72 [Google Scholar]
  184. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. 184.  2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88 [Google Scholar]
  185. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT. 185.  et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–95 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error