1932

Abstract

Metabolic engineering reprograms cells to synthesize value-added products. In doing so, endogenous genes are altered and heterologous genes can be introduced to achieve the necessary enzymatic reactions. Dynamic regulation of metabolic flux is a powerful control scheme to alleviate and overcome the competing cellular objectives that arise from the introduction of these production pathways. This review explores dynamic regulation strategies that have demonstrated significant production benefits by targeting the metabolic node corresponding to a specific challenge. We summarize the stimulus-responsive control circuits employed in these strategies that determine the criterion for actuating a dynamic response and then examine the points of control that couple the stimulus-responsive circuit to a shift in metabolic flux.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-091720-125738
2021-06-07
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-091720-125738.html?itemId=/content/journals/10.1146/annurev-chembioeng-091720-125738&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H et al. 2004. Just-in-time transcription program in metabolic pathways. Nat. Genet. 36:5486–91
    [Google Scholar]
  2. 2. 
    Gadkar KG, Doyle FJ III, Edwards JS, Mahadevan R 2004. Estimating optimal profiles of genetic alterations using constraint-based models. Biotechnol. Bioeng. 89:2243–51
    [Google Scholar]
  3. 3. 
    Anesiadis N, Cluett WR, Mahadevan R 2008. Dynamic metabolic engineering for increasing bioprocess productivity. Metab. Eng. 10:5255–66
    [Google Scholar]
  4. 4. 
    Anesiadis N, Kobayashi H, Cluett WR, Mahadevan R 2013. Analysis and design of a genetic circuit for dynamic metabolic engineering. ACS Synth. Biol. 2:8442–52
    [Google Scholar]
  5. 5. 
    Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:3318–56
    [Google Scholar]
  6. 6. 
    Ohshima Y, Matsuura M, Horiuchi T 1972. Conformational change of the lac repressor induced with the inducer. Biochem. Biophys. Res. Commun. 47:61444–50
    [Google Scholar]
  7. 7. 
    Müller-Hill B. 1976. Lac repressor and Lac operator. Prog. Biophys. Mol. Biol. 30:227–52
    [Google Scholar]
  8. 8. 
    Yang HL, Zubay G, Levy SB 1976. Synthesis of an R plasmid protein associated with tetracycline resistance is negatively regulated. PNAS 73:51509–12
    [Google Scholar]
  9. 9. 
    Deuschle U, Gentz R, Bujard H 1986. lac repressor blocks transcribing RNA polymerase and terminates transcription. PNAS 83:124134–37
    [Google Scholar]
  10. 10. 
    Smith LD, Bertrand KP. 1988. Mutations in the Tn10tet repressor that interfere with induction: location of the tetracycline-binding domain. J. Mol. Biol. 203:4949–59
    [Google Scholar]
  11. 11. 
    Deuschle U, Hipskind RA, Bujard H 1990. RNA polymerase II transcription blocked by Escherichia coli lac repressor. Science 248:4954480–83
    [Google Scholar]
  12. 12. 
    Degenkolb J, Takahashi M, Ellestad GA, Hillen W 1991. Structural requirements of tetracycline-Tet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with the Tet repressor. Antimicrob. Agents Chemother. 35:81591–95
    [Google Scholar]
  13. 13. 
    Collins CH, Leadbetter JR, Arnold FH 2006. Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat. Biotechnol. 24:6708–12
    [Google Scholar]
  14. 14. 
    Meyer AJ, Segall-Shapiro TH, Glassey E, Zhang J, Voigt CA 2019. Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15:2196–204
    [Google Scholar]
  15. 15. 
    Gardner TS, Cantor CR, Collins JJ 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403:6767339–42
    [Google Scholar]
  16. 16. 
    Bothfeld W, Kapov G, Tyo KEJ 2017. A glucose-sensing toggle switch for autonomous, high productivity genetic control. ACS Synth. Biol. 6:71296–304
    [Google Scholar]
  17. 17. 
    Venayak N, Raj K, Jaydeep R, Mahadevan R 2018. An optimized bistable metabolic switch to decouple phenotypic states during anaerobic fermentation. ACS Synth. Biol. 7:122854–66
    [Google Scholar]
  18. 18. 
    Cardoso VM, Campani G, Santos MP, Silva GG, Pires MC et al. 2020. Cost analysis based on bioreactor cultivation conditions: production of a soluble recombinant protein using Escherichia coli BL21(DE3). Biotechnol. Rep 26:e00441
    [Google Scholar]
  19. 19. 
    Lieb M. 1966. Studies of heat-inducible lambda bacteriophage: I. Order of genetic sites and properties of mutant prophages. J. Mol. Biol. 16:1149–63
    [Google Scholar]
  20. 20. 
    Remaut E, Stanssens P, Fiers W 1981. Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene 15:181–93
    [Google Scholar]
  21. 21. 
    Cho HS, Seo SW, Kim YM, Jung GY, Park JM 2012. Engineering glyceraldehyde-3-phosphate dehydrogenase for switching control of glycolysis in Escherichia coli. Biotechnol. Bioeng. 109:102612–19
    [Google Scholar]
  22. 22. 
    Harder B-J, Bettenbrock K, Klamt S 2017. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. . Biotechnol. Bioeng 115:1156–64
    [Google Scholar]
  23. 23. 
    Nash AI, McNulty R, Shillito ME, Swartz TE, Bogomolni RA et al. 2011. Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. PNAS 108:239449–54
    [Google Scholar]
  24. 24. 
    Zhao EM, Zhang Y, Mehl J, Park H, Lalwani MA et al. 2018. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 555:683–87
    [Google Scholar]
  25. 25. 
    Ohlendorf R, Vidavski RR, Eldar A, Moffat K, Möglich A 2012. From dusk till dawn: one-plasmid systems for light-regulated gene expression. J. Mol. Biol. 416:4534–42
    [Google Scholar]
  26. 26. 
    Möglich A, Ayers RA, Moffat K 2009. Design and signaling mechanism of light-regulated histidine kinases. J. Mol. Biol. 385:51433–44
    [Google Scholar]
  27. 27. 
    Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM et al. 2007. Conformational switching in the fungal light sensor vivid. Science 316:58271054–57
    [Google Scholar]
  28. 28. 
    Kawano F, Suzuki H, Furuya A, Sato M 2015. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6:6256
    [Google Scholar]
  29. 29. 
    Baumschlager A, Aoki SK, Khammash M 2017. Dynamic blue light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise spatiotemporal gene expression control. ACS Synth. Biol. 6:112157–67
    [Google Scholar]
  30. 30. 
    Sheets MB, Wong WW, Dunlop MJ 2020. Light-inducible recombinases for bacterial optogenetics. ACS Synth. Biol. 9:2227–35
    [Google Scholar]
  31. 31. 
    Lalwani MA, Zhao EM, Avalos JL 2018. Current and future modalities of dynamic control in metabolic engineering. Curr. Opin. Biotechnol 52:56–65
    [Google Scholar]
  32. 32. 
    Nevoigt E, Fischer C, Mucha O, Matthaus F, Stahl U, Stephanopoulos G 2006. Engineering promoter regulation. Biotechnol. Bioeng. 96:3550–58
    [Google Scholar]
  33. 33. 
    Yin X, Shin H-D, Li J, Du G, Liu L, Chen J 2017. Pgas, a low-pH-induced promoter, as a tool for dynamic control of gene expression for metabolic engineering of Aspergillusniger. Appl. Environ. Microbiol. 83:6e03222–16
    [Google Scholar]
  34. 34. 
    Xie W, Ye L, Lv X, Xu H, Yu H 2015. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomycescerevisiae. Metab. Eng. 28:8–18
    [Google Scholar]
  35. 35. 
    Menacho‐Melgar R, Moreb EA, Efromson JP, Yang T, Hennigan JN et al. 2020. Improved two‐stage protein expression and purification via autoinduction of both autolysis and auto DNA/RNA hydrolysis conferred by phage lysozyme and DNA/RNA endonuclease. Biotechnol. Bioeng. 117:92852–60
    [Google Scholar]
  36. 36. 
    Lo TM, Chng SH, Teo WS, Cho HS, Chang MW 2016. A two-layer gene circuit for decoupling cell growth from metabolite production. Cell Syst. 3:2133–43
    [Google Scholar]
  37. 37. 
    Moreb EA, Ye Z, Efromson JP, Hennigan JN, Menacho-Melgar R, Lynch MD 2020. Media robustness and scalability of phosphate regulated promoters useful for two-stage autoinduction in E. coli. . ACS Synth. Biol. 9:61483–86
    [Google Scholar]
  38. 38. 
    Immethun CM, Ng KM, DeLorenzo DM, Waldron-Feinstein B, Lee Y-C, Moon TS 2016. Oxygen-responsive genetic circuits constructed in Synechocystis sp. PCC 6803. Biotechnol. Bioeng. 113:2433–42
    [Google Scholar]
  39. 39. 
    Grainger DC, Aiba H, Hurd D, Browning DF, Busby SJW 2006. Transcription factor distribution in Escherichia coli: studies with FNR protein. Nucleic Acids Res. 35:1269–78
    [Google Scholar]
  40. 40. 
    Moser F, Espah Borujeni A, Ghodasara AN, Cameron E, Park Y, Voigt CA 2018. Dynamic control of endogenous metabolism with combinatorial logic circuits. Mol. Syst. Biol. 14:11e8605
    [Google Scholar]
  41. 41. 
    Gupta A, Reizman IMB, Reisch CR, Prather KLJ 2017. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat. Biotechnol. 35:273–79
    [Google Scholar]
  42. 42. 
    Dinh CV, Prather KLJ. 2019. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered Escherichia coli. PNAS 116:5125562–68
    [Google Scholar]
  43. 43. 
    Hou J, Gao C, Guo L, Nielsen J, Ding Q et al. 2020. Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch. Metab. Eng. 61:47–57
    [Google Scholar]
  44. 44. 
    Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ 1981. Structural identification of autoinducer of Photobacteriumfischeri luciferase. Biochemistry 20:92444–49
    [Google Scholar]
  45. 45. 
    Cao JG, Meighen EA. 1989. Purification and structural identification of an autoinducer for the luminescence system of Vibrioharveyi. J. Biol. Chem. 264:3621670–76
    [Google Scholar]
  46. 46. 
    Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A et al. 1994. Structure of the autoinducer required for expression of Pseudomonasaeruginosa virulence genes. PNAS 91:1197–201
    [Google Scholar]
  47. 47. 
    Engebrecht J, Silverman M. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. PNAS 81:134154–58
    [Google Scholar]
  48. 48. 
    Hanzelka BL, Greenberg EP. 1995. Evidence that the N-terminal region of the Vibriofischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol. 177:3815–17
    [Google Scholar]
  49. 49. 
    Engebrecht J, Nealson K, Silverman M 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibriofischeri. . Cell 32:3773–81
    [Google Scholar]
  50. 50. 
    Ochsner UA, Reiser J. 1995. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonasaeruginosa. PNAS 92:146424–28
    [Google Scholar]
  51. 51. 
    Soma Y, Hanai T. 2015. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab. Eng. 30:7–15
    [Google Scholar]
  52. 52. 
    Kim E-M, Min Woo H, Tian T, Yilmaz S, Javidpour P et al. 2017. Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli. Metab. Eng. 44:325–36
    [Google Scholar]
  53. 53. 
    Tsao CY, Hooshangi S, Wu HC, Valdes JJ, Bentley WE 2010. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli. Metab. Eng. 12:3291–97
    [Google Scholar]
  54. 54. 
    Chen M-T, Weiss R. 2005. Artificial cell-cell communication in yeast Saccharomycescerevisiae using signaling elements from Arabidopsis thaliana. Nat. Biotechnol. 23:121551–55
    [Google Scholar]
  55. 55. 
    Williams TC, Nielsen LK, Vickers CE 2013. Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomycescerevisiae. ACS Synth. Biol. 2:3136–49
    [Google Scholar]
  56. 56. 
    Shong J, Huang YM, Bystroff C, Collins CH 2013. Directed evolution of the quorum-sensing regulator EsaR for increased signal sensitivity. ACS Chem. Biol. 8:4789–95
    [Google Scholar]
  57. 57. 
    Neidhardt FC, Magasanik B. 1960. Studies on the role of ribonucleic acid in the growth of bacteria. Biochim. Biophys. Acta. 42:99–116
    [Google Scholar]
  58. 58. 
    Lemke JJ, Sanchez-Vazquez P, Burgos HL, Hedberg G, Ross W, Gourse RL 2011. Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. PNAS 108:145712–17
    [Google Scholar]
  59. 59. 
    Maeda M, Shimada T, Ishihama A 2016. Strength and regulation of seven rRNA promoters in Escherichia coli. PLOS ONE 10:12e0144697
    [Google Scholar]
  60. 60. 
    Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I et al. 2006. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3:8623–28
    [Google Scholar]
  61. 61. 
    Shimada T, Makinoshima H, Ogawa Y, Miki T, Maeda M, Ishihama A 2004. Classification and strength measurement of stationary-phase promoters by use of a newly developed promoter cloning vector. J. Bacteriol. 186:217112–22
    [Google Scholar]
  62. 62. 
    Chang DE, Smalley DJ, Conway T 2002. Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol. Microbiol. 45:2289–306
    [Google Scholar]
  63. 63. 
    Borkowski O, Endy D, Subsoontorn P 2017. Hands-free control of heterologous gene expression in batch cultures. bioRxiv. https://doi.org/10.1101/150375
    [Crossref]
  64. 64. 
    Kang Z, Wang Q, Zhang H, Qi Q 2008. Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl. Microbiol. Biotechnol. 79:2203–8
    [Google Scholar]
  65. 65. 
    Liang Q, Zhang H, Li S, Qi Q 2011. Construction of stress-induced metabolic pathway from glucose to 1,3-propanediol in Escherichia coli. . Appl. Microbiol. Biotechnol. 89:157–62
    [Google Scholar]
  66. 66. 
    Miksch G, Bettenworth F, Friehs K, Flaschel E, Saalbach A et al. 2005. Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli. . J. Biotechnol. 120:125–37
    [Google Scholar]
  67. 67. 
    Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS et al. 2013. Engineering dynamic pathway regulation using stress-response promoters. Nat. Biotechnol. 31:111039–46
    [Google Scholar]
  68. 68. 
    Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O et al. 2018. Burden-driven feedback control of gene expression. Nat. Methods 15:5387–93
    [Google Scholar]
  69. 69. 
    Farmer WR, Liao JC. 2000. Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 18:5533–37
    [Google Scholar]
  70. 70. 
    Xu P, Wang W, Li L, Bhan N, Zhang F, Koffas MAG 2014. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in E. coli. ACS Chem. Biol. 9:451–58
    [Google Scholar]
  71. 71. 
    Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M 2014. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. PNAS 111:3111299–304
    [Google Scholar]
  72. 72. 
    Zhang F, Carothers JM, Keasling JD 2012. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30:4354–59
    [Google Scholar]
  73. 73. 
    Doong SJ, Gupta A, Prather KLJ 2018. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. PNAS 115:122964–69
    [Google Scholar]
  74. 74. 
    Louvion J-F, Havaux-Copf B, Picard D 1993. Fusion of GAL4-VP16 to a steroid-binding domain provides a tool for gratuitous induction of galactose-responsive genes in yeast. Gene 131:1129–34
    [Google Scholar]
  75. 75. 
    Meinhardt S, Manley MW, Becker NA, Hessman JA, Maher LJ, Swint-Kruse L 2012. Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression. Nucleic Acids Res. 40:2111139–54
    [Google Scholar]
  76. 76. 
    Younger AKD, Dalvie NC, Rottinghaus AG, Leonard JN 2017. Engineering modular biosensors to confer metabolite-responsive regulation of transcription. ACS Synth. Biol. 6:2311–25
    [Google Scholar]
  77. 77. 
    Dossani ZY, Reider Apel A, Szmidt-Middleton H, Hillson NJ, Deutsch S et al. 2018. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering. Yeast 35:3273–80
    [Google Scholar]
  78. 78. 
    Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:4968505–10
    [Google Scholar]
  79. 79. 
    Bayer TS, Smolke CD. 2005. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23:3337–43
    [Google Scholar]
  80. 80. 
    Win MN, Smolke CD. 2007. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. PNAS 104:36 14283– 88
    [Google Scholar]
  81. 81. 
    Alon U. 2006. An Introduction to Systems Biology: Design Principles of Biological Circuits Hoboken, NJ: Chapman & Hall/CRC
    [Google Scholar]
  82. 82. 
    Sauer B. 1987. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomycescerevisiae. Mol. Cell. Biol 7:62087–96
    [Google Scholar]
  83. 83. 
    Yamanishi M, Matsuyama T. 2012. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomycescerevisiae. ACS Synth. Biol. 1:5172–80
    [Google Scholar]
  84. 84. 
    Gralla JD. 1991. Transcriptional control—lessons from an E. coli promoter data base. Cell 66:3415–18
    [Google Scholar]
  85. 85. 
    Lanzer M, Bujard H. 1988. Promoters largely determine the efficiency of repressor action. PNAS 85:238973–77
    [Google Scholar]
  86. 86. 
    Matthews KS, Nichols JC. 1998. Lactose repressor protein: functional properties and structure. Prog. Nucleic Acid Res. Mol. Biol. 58:127–64
    [Google Scholar]
  87. 87. 
    Lempp M, Farke N, Kuntz M, Freibert SA, Lill R, Link H 2019. Systematic identification of metabolites controlling gene expression in E. coli. Nat. Commun. 10:4463
    [Google Scholar]
  88. 88. 
    Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J et al. 2009. Measuring the activity of BioBrick promoters using an in vivo reference standard. J. Biol. Eng. 3:4
    [Google Scholar]
  89. 89. 
    Davis JH, Rubin AJ, Sauer RT 2011. Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res. 39:31131–41
    [Google Scholar]
  90. 90. 
    Hammer K, Mijakovic I, Jensen PR 2006. Synthetic promoter libraries—tuning of gene expression. Trends Biotechnol 24:253–55
    [Google Scholar]
  91. 91. 
    Collado-Vides J, Magasanik B, Gralla JD 1991. Control site location and transcriptional regulation in Escherichia coli. Microbiol. Rev. 55:3371–94
    [Google Scholar]
  92. 92. 
    Cox RS, Surette MG, Elowitz MB 2007. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3:145
    [Google Scholar]
  93. 93. 
    Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K et al. 2012. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13:5R40
    [Google Scholar]
  94. 94. 
    Taylor ND, Garruss AS, Moretti R, Chan S, Arbing M et al. 2016. Engineering an allosteric transcription factor to respond to new ligands. Nat. Methods 13:2177–83
    [Google Scholar]
  95. 95. 
    Chan CTY, Lee JW, Cameron DE, Bashor CJ, Collins JJ 2015. “Deadman” and “Passcode” microbial kill switches for bacterial containment. Nat. Chem. Biol. 12:282–86
    [Google Scholar]
  96. 96. 
    Tabor S, Richardson CC. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. PNAS 82:41074–78
    [Google Scholar]
  97. 97. 
    Zhou L, Niu DD, Tian KM, Chen XZ, Prior BA et al. 2012. Genetically switched d-lactate production in Escherichia coli. Metab. Eng. 14:5560–68
    [Google Scholar]
  98. 98. 
    Soma Y, Tsuruno K, Wada M, Yokota A, Hanai T 2014. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab. Eng. 23:175–84
    [Google Scholar]
  99. 99. 
    Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99
    [Google Scholar]
  100. 100. 
    He X, Chen Y, Liang Q, Qi Q 2017. Autoinduced AND gate controls metabolic pathway dynamically in response to microbial communities and cell physiological state. ACS Synth. Biol. 6:3463–70
    [Google Scholar]
  101. 101. 
    Wang J, Cui X, Yang L, Zhang Z, Lv L et al. 2017. A real-time control system of gene expression using ligand-bound nucleic acid aptamer for metabolic engineering. Metab. Eng. 42:85–97
    [Google Scholar]
  102. 102. 
    Deng J, Chen C, Gu Y, Lv X, Liu Y et al. 2019. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillussubtilis. Metab. Eng. 55:179–90
    [Google Scholar]
  103. 103. 
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:51173–83
    [Google Scholar]
  104. 104. 
    Cress BF, Toparlak OD, Guleria S, Lebovich M, Stieglitz JT et al. 2015. CRISPathBrick: modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in E. coli. . ACS Synth. Biol. 4:9987–1000
    [Google Scholar]
  105. 105. 
    Jakočinas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M et al. 2015. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomycescerevisiae. Metab. Eng. 28:213–22
    [Google Scholar]
  106. 106. 
    Gordon GC, Korosh TC, Cameron JC, Markley AL, Begemann MB, Pfleger BF 2016. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab. Eng. 38:170–79
    [Google Scholar]
  107. 107. 
    Liu Y, Wan X, Wang B 2019. Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. Nat. Commun. 10:3693
    [Google Scholar]
  108. 108. 
    Dong C, Fontana J, Patel A, Carothers JM, Zalatan JG 2018. Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat. Commun. 9:2489
    [Google Scholar]
  109. 109. 
    Kundert K, Lucas JE, Watters KE, Fellmann C, Ng AH et al. 2019. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs. Nat. Commun. 10:2127
    [Google Scholar]
  110. 110. 
    Tang W, Hu JH, Liu DR 2017. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat. Commun. 8:15939
    [Google Scholar]
  111. 111. 
    Chappell J, Westbrook A, Verosloff M, Lucks JB 2017. Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nat. Commun. 8:1051
    [Google Scholar]
  112. 112. 
    Glasscock CJ, Lazar JT, Biggs BW, Arnold JH, Kang M-K et al. 2019. Dynamic control of pathway expression with riboregulated switchable feedback promoters. bioRxiv. https://doi.org/10.1101/529180
    [Crossref]
  113. 113. 
    Wang J, Rennie W, Liu C, Carmack CS, Prévost K et al. 2015. Identification of bacterial sRNA regulatory targets using ribosome profiling. Nucleic Acids Res. 43:2110308–20
    [Google Scholar]
  114. 114. 
    Breaker RR. 2012. Riboswitches and the RNA world. Cold Spring Harb. Perspect. Biol. 4:2a003566
    [Google Scholar]
  115. 115. 
    Nakashima N, Ohno S, Yoshikawa K, Shimizu H, Tamura T 2014. A vector library for silencing central carbon metabolism genes with antisense RNAs in Escherichia coli. Appl. Environ. Microbiol. 80:2564–73
    [Google Scholar]
  116. 116. 
    Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY 2013. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31:2170–74
    [Google Scholar]
  117. 117. 
    Yoo SM, Na D, Lee SY 2013. Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nat. Protoc. 8:91694–707
    [Google Scholar]
  118. 118. 
    Ghodasara A, Voigt CA. 2017. Balancing gene expression without library construction via a reusable sRNA pool. Nucleic Acids Res. 45:138116–27
    [Google Scholar]
  119. 119. 
    Wang J, Wang H, Yang L, Lv L, Zhang Z et al. 2018. A novel riboregulator switch system of gene expression for enhanced microbial production of succinic acid. J. Ind. Microbiol. Biotechnol. 45:4253–69
    [Google Scholar]
  120. 120. 
    Kudla G, Murray AW, Tollervey D, Plotkin JB 2009. Coding-sequence determinants of expression in Escherichia coli. Science 324:5924255–58
    [Google Scholar]
  121. 121. 
    Green AA, Silver PA, Collins JJ, Yin P 2014. Toehold switches: de-novo-designed regulators of gene expression. Cell 159:4925–39
    [Google Scholar]
  122. 122. 
    Kim SJ, Leong M, Amrofell MB, Lee YJ, Moon TS 2019. Modulating responses of toehold switches by an inhibitory hairpin. ACS Synth. Biol. 8:3601–5
    [Google Scholar]
  123. 123. 
    Kim J, Zhou Y, Carlson PD, Teichmann M, Chaudhary S et al. 2019. De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nat. Chem. Biol. 15:121173–82
    [Google Scholar]
  124. 124. 
    Noh M, Yoo SM, Kim WJ, Lee SY 2017. Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Syst. 5:4418–26.e4
    [Google Scholar]
  125. 125. 
    Crook NC, Schmitz AC, Alper HS 2014. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. ACS Synth. Biol. 3:5307–13
    [Google Scholar]
  126. 126. 
    Williams TC, Averesch NJH, Winter G, Plan MR, Vickers CE et al. 2015. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomycescerevisiae. Metab. Eng. 29:124–34
    [Google Scholar]
  127. 127. 
    Zhou LB, Zeng AP. 2015. Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacteriumglutamicum. ACS Synth. Biol. 4:6729–34
    [Google Scholar]
  128. 128. 
    Rudolph MM, Vockenhuber MP, Suess B 2013. Synthetic riboswitches for the conditional control of gene expression in Streptomycescoelicolor. Microbiology 159:71416–22
    [Google Scholar]
  129. 129. 
    Qi L, Lucks JB, Liu CC, Mutalik VK, Arkin AP 2012. Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. 40:125775–86
    [Google Scholar]
  130. 130. 
    Wang J, Yang D, Guo X, Song Q, Tan L, Dong L 2020. A novel RNA aptamer-modified riboswitch as chemical sensor. Anal. Chim. Acta. 1100:240–49
    [Google Scholar]
  131. 131. 
    Stifel J, Spöring M, Hartig JS 2019. Expanding the toolbox of synthetic riboswitches with guanine-dependent aptazymes. Synth. Biol. 4:1ysy022
    [Google Scholar]
  132. 132. 
    Olivares AO, Baker TA, Sauer RT 2015. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat. Rev. Microbiol 14:33–44
    [Google Scholar]
  133. 133. 
    Janssen BD, Hayes CS. 2012. The tmRNA ribosome-rescue system. Adv. Protein Chem. Struct. Biol. 86:151–91
    [Google Scholar]
  134. 134. 
    Andersen JB, Sternberg C, Poulsen LK, Bjørn SP, Givskov M, Molin S 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64:62240–46
    [Google Scholar]
  135. 135. 
    McGinness KE, Baker TA, Sauer RT 2006. Engineering controllable protein degradation. Mol. Cell 22:5701–7
    [Google Scholar]
  136. 136. 
    Brockman IM, Prather KLJ. 2015. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab. Eng. 28:104–13
    [Google Scholar]
  137. 137. 
    Gao C, Hou J, Xu P, Guo L, Chen X et al. 2019. Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat. Commun. 10:3751
    [Google Scholar]
  138. 138. 
    Durante-Rodríguez G, De Lorenzo V, Nikel PI 2018. A post-translational metabolic switch enables complete decoupling of bacterial growth from biopolymer production in engineered Escherichia coli. . ACS Synth. Biol. 7:112686–97
    [Google Scholar]
  139. 139. 
    Cameron DE, Collins JJ. 2014. Tunable protein degradation in bacteria. Nat. Biotechnol. 32:121276–81
    [Google Scholar]
  140. 140. 
    Volke DC, Turlin J, Mol V, Nikel PI 2020. Physical decoupling of XylS/Pm regulatory elements and conditional proteolysis enable precise control of gene expression in Pseudomonasputida. . Microb. Biotechnol 13:1222–32
    [Google Scholar]
  141. 141. 
    Camacho-Soto K, Castillo-Montoya J, Tye B, Ogunleye LO, Ghosh I 2014. Small molecule gated split-tyrosine phosphatases and orthogonal split-tyrosine kinases. J. Am. Chem. Soc. 136:4917078–86
    [Google Scholar]
  142. 142. 
    Haslinger K, Prather KLJ. 2020. Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial Cytochrome P450. Microb. Cell Fact. 19:26
    [Google Scholar]
  143. 143. 
    Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY et al. 2012. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res. 40:41879–89
    [Google Scholar]
  144. 144. 
    Sachdeva G, Garg A, Godding D, Way JC, Silver PA 2014. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res. 42:149493–503
    [Google Scholar]
  145. 145. 
    Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ et al. 2009. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27:8753–59
    [Google Scholar]
  146. 146. 
    Zhao EM, Suek N, Wilson MZ, Dine E, Pannucci NL et al. 2019. Light-based control of metabolic flux through assembly of synthetic organelles. Nat. Chem. Biol. 15:6589–97
    [Google Scholar]
  147. 147. 
    Kang W, Ma T, Liu M, Qu JJ, Liu Z et al. 2019. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nat. Commun. 10:4248
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-091720-125738
Loading
/content/journals/10.1146/annurev-chembioeng-091720-125738
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error