1932

Abstract

This article presents a review of the application of blockchain and blockchain-based smart contracts in the chemical and related industries. We introduce the basic concepts of blockchain and smart contracts and explain how some of their features are enabled. We review several typical or novel applications of blockchain and smart contract technologies and their enabling concepts and underlying technologies. We classify the selected literature into five categories and discuss their motivations and technical designs. We recognize that the trend of decentralization creates a need to use blockchain and smart contracts to implement trust and distributed control mechanisms. We also speculate on future applications of blockchain and smart contracts. We believe that, in the future, blockchains with different consensus mechanisms will be studied and applied to achieve more efficient and practical decentralized systems. Also, blockchain-based smart contracts will be more widely applied to enhance autonomous distributed controls in decentralized systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092120-022935
2022-06-07
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092120-022935.html?itemId=/content/journals/10.1146/annurev-chembioeng-092120-022935&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Atzori L, Iera A, Morabito G. 2010. The Internet of Things: a survey. Comput. Netw. 54:152787–805
    [Google Scholar]
  2. 2.
    Sisinni E, Saifullah A, Han S, Jennehag U, Gidlund M. 2018. Industrial Internet of Things: challenges, opportunities, and directions. IEEE Trans. Ind. Inform. 14:114724–34
    [Google Scholar]
  3. 3.
    Xu LD, Xu EL, Li L 2018. Industry 4.0: state of the art and future trends. Int. J. Prod. Res. 56:82941–62
    [Google Scholar]
  4. 4.
    Bodkhe U, Tanwar S, Parekh K, Khanpara P, Tyagi S et al. 2020. Blockchain for Industry 4.0: a comprehensive review. IEEE Access 8:79764–800
    [Google Scholar]
  5. 5.
    Schollmeier R. 2001. A definition of peer-to-peer networking for the classification of peer-to-peer architectures and applications. Proceedings of the 1st International Conference on Peer-to-Peer Computing101–2 Piscataway, NJ: IEEE
    [Google Scholar]
  6. 6.
    Yang T, Guo Q, Tai X, Sun H, Zhang B et al. 2017. Applying blockchain technology to decentralized operation in future Energy Internet. 2017 IEEE Conference on Energy Internet and Energy System Integration1–5 Piscataway, NJ: IEEE
    [Google Scholar]
  7. 7.
    Di Silvestre ML, Gallo P, Guerrero JM, Musca R, Riva Sanseverino E et al. 2020. Blockchain for power systems: current trends and future applications. Renew. Sustain. Energy Rev. 119:109585
    [Google Scholar]
  8. 8.
    Yi S, Li C, Li Q. 2015. A survey of fog computing. Proceedings of the 2015 Workshop on Mobile Big Data37–42 New York: ACM
    [Google Scholar]
  9. 9.
    Lin X, Wu J, Mumtaz S, Garg S, Li J, Guizani M. 2020. Blockchain-based on-demand computing resource trading in IoV-assisted smart city. IEEE Trans. Emerg. Top. Comput. 3:91373–85
    [Google Scholar]
  10. 10.
    Fan X, Liu L, Zhang R, Jing Q, Bi J. 2020. Decentralized trust management. ACM Comput. Surv. 53:11–33
    [Google Scholar]
  11. 11.
    Buterin V. 2013. Ethereum: a next-generation smart contract and decentralized application platform White Pap., Ethereum:
    [Google Scholar]
  12. 12.
    Szabo N. 1997. Formalizing and securing relationships on public networks. First Monday 2:9 https://doi.org/10.5210/fm.v2i9.548
    [Crossref] [Google Scholar]
  13. 13.
    Hao Q, Zhang F, Liu Z, Qin L. 2015. Design of chemical industrial park integrated information management platform based on cloud computing and IOT (the Internet of Things) technologies. Int. J. Smart Home 9:435–46
    [Google Scholar]
  14. 14.
    Mayusda I, Wiratmadja II. 2020. The development of Industry 4.0 Readiness Model. Case study in Indonesia's priority industrial sector of chemical. Proceedings of the 4th International Manufacturing Engineering Conference and the 5th Asia Pacific Conference on Manufacturing Systems140–46 Berlin: Springer
    [Google Scholar]
  15. 15.
    Mohan S, Katakojwala R. 2021. The circular chemistry conceptual framework: a way forward to sustainability in Industry 4.0. Curr. Opin. Green Sustain. Chem. 28:100434
    [Google Scholar]
  16. 16.
    Rogaway P, Shrimpton T. 2004. Cryptographic hash-function basics: definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. Proceedings of the International Workshop on Fast Software Encryption371–88 Berlin: Springer
    [Google Scholar]
  17. 17.
    Wang M, Duan M, Zhu J. 2018. Research on the security criteria of hash functions in the blockchain. Proceedings of the 2nd ACM Workshop on Blockchains, Cryptocurrencies, and Contracts47–55 New York: ACM
    [Google Scholar]
  18. 18.
    Nakamoto S. 2008. Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. Oct.:21260
    [Google Scholar]
  19. 19.
    Aggarwal S, Kumar N 2021. Cryptographic consensus mechanisms. The Blockchain Technology for Secure and Smart Applications Across Industry Verticals S Aggarwal, N Kumar, P Raj 211–26 Adv. Comput . Vol. 21 Amsterdam: Elsevier
    [Google Scholar]
  20. 20.
    Bach LM, Mihaljevic B, Zagar M. 2018. Comparative analysis of blockchain consensus algorithms. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics1545–50 Piscataway, NJ: IEEE
    [Google Scholar]
  21. 21.
    Douceur JR 2002. The Sybil attack. Peer-to-Peer Systems P Druschel, F Kaashoek, A Rowstron 251–60 Lect. Notes Comput. Sci. Vol. 2429 Berlin: Springer
    [Google Scholar]
  22. 22.
    Elrom E. 2019. NEO blockchain and smart contracts. The Blockchain Developer257–98 Berlin: Springer
    [Google Scholar]
  23. 23.
    Dannen C. 2017. Introducing Ethereum and Solidity Berlin: Springer
    [Google Scholar]
  24. 24.
    Vyper 2021. Vyper documentation Software Doc. Revis. 0463ea4c. https://vyper.readthedocs.io/en/stable/
    [Google Scholar]
  25. 25.
    Gallersdörfer U, Klaaßen L, Stoll C. 2020. Energy consumption of cryptocurrencies beyond Bitcoin. Joule 4:91843–46
    [Google Scholar]
  26. 26.
    Digiconomist 2022. Bitcoin Energy Consumption Index. Data Vis. https://digiconomist.net/bitcoin-energy-consumption/
  27. 27.
    Nakamoto S. 2008. Re: Bitcoin P2P e-cash paper Comment, Cryptography Mailing List Novemb.: 13 https://users.encs.concordia.ca/∼clark/biblio/bitcoin/Nakamoto 2008.pdf
    [Google Scholar]
  28. 28.
    Roconnor, ed 2016. Script. Bitcoin Wiki Oct. 14. https://en.bitcoin.it/w/index.php?title=Script&oldid=61707
    [Google Scholar]
  29. 29.
    Jansen M, Hdhili F, Gouiaa R, Qasem Z. 2020. Do smart contract languages need to be Turing complete?. Proceedings of the 2019 International Congress on Blockchain and Applications19–26 Berlin: Springer
    [Google Scholar]
  30. 30.
    Browne R. 2021. Bitcoin's wild ride renews worries about its massive carbon footprint. CNBC Sustainable Energy Blog Febr. 5. https://www.cnbc.com/2021/02/05/bitcoin-btc-surge-renews-worries-about-its-massive-carbon-footprint.html
    [Google Scholar]
  31. 31.
    Allombert V, Bourgoin M, Tesson J. 2019. Introduction to the Tezos blockchain. 2019 International Conference on High Performance Computing and Simulation1–10 Piscataway, NJ: IEEE
    [Google Scholar]
  32. 32.
    Greenspan G. 2015. Multichain private blockchain White Pap., Coin Sci. London: http//www.multichain.com/download/MultiChain-White-Paper.pdf
    [Google Scholar]
  33. 33.
    Zhang Y, Wen J. 2017. The IoT electric business model: using blockchain technology for the Internet of Things. Peer-to-Peer Netw. Appl. 10:4983–94
    [Google Scholar]
  34. 34.
    Dorri A, Kanhere SS, Jurdak R, Gauravaram P. 2017. Blockchain for IoT security and privacy: the case study of a smart home. 2017 IEEE International Conference on Pervasive Computing and Communications Workshops618–23 Piscataway, NJ: IEEE
    [Google Scholar]
  35. 35.
    Teslya N, Ryabchikov I. 2017. Blockchain-based platform architecture for industrial IoT. 2017 21st Conference of Open Innovations Association321–29 Piscataway, NJ: IEEE
    [Google Scholar]
  36. 36.
    Khan MA, Salah K. 2018. IoT security: review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 82:395–411
    [Google Scholar]
  37. 37.
    Hammi MT, Hammi B, Bellot P, Serhrouchni A. 2018. Bubbles of trust: a decentralized blockchain-based authentication system for IoT. Comput. Secur. 78:126–42
    [Google Scholar]
  38. 38.
    Roy S, Ashaduzzaman M, Hassan M, Chowdhury AR. 2018. Blockchain for IoT security and management: current prospects, challenges and future directions. 2018 5th International Conference on Networking, Systems and Security1–9 Piscataway, NJ: IEEE
    [Google Scholar]
  39. 39.
    Tapas N, Merlino G, Longo F. 2018. Blockchain-based IoT-cloud authorization and delegation. 2018 IEEE International Conference on Smart Computing411–16 Piscataway, NJ: IEEE
    [Google Scholar]
  40. 40.
    Machado C, Medeiros Fröhlich AA. 2018. IoT data integrity verification for cyber-physical systems using blockchain. 2018 IEEE 21st International Symposium on Real-Time Distributed Computing83–90 Piscataway, NJ: IEEE
    [Google Scholar]
  41. 41.
    Xu R, Chen Y, Blasch E, Chen G. 2018. BlendCAC: a blockchain-enabled decentralized capability-based access control for IoTs. 2018 IEEE International Conference on Internet of Things, IEEE Green Computing and Communications, IEEE Cyber, Physical and Social Computing, and IEEE Smart Data1027–34 Piscataway, NJ: IEEE
    [Google Scholar]
  42. 42.
    Sharma PK, Chen MY, Park JH. 2018. A software defined fog node based distributed blockchain cloud architecture for IoT. IEEE Access 6:115–24
    [Google Scholar]
  43. 43.
    Muthanna A, Ateya A, Khakimov A, Gudkova I, Abuarqoub A et al. 2019. Secure and reliable IoT networks using fog computing with software-defined networking and blockchain. J. Sens. Actuator Netw. 8:115
    [Google Scholar]
  44. 44.
    Nakamura Y, Zhang Y, Sasabe M, Kasahara S. 2020. Exploiting smart contracts for capability-based access control in the Internet of Things. Sensors 20:61793
    [Google Scholar]
  45. 45.
    Kamran M, Khan HU, Nisar W, Farooq M, Rehman SU. 2020. Blockchain and Internet of Things: a bibliometric study. Comput. Electr. Eng. 81:106525
    [Google Scholar]
  46. 46.
    Yazdinejad A, Parizi RM, Dehghantanha A, Zhang Q, Choo KKR. 2020. An energy-efficient SDN controller architecture for IoT networks with blockchain-based security. IEEE Trans. Serv. Comput. 13:4625–38
    [Google Scholar]
  47. 47.
    Khalid U, Asim M, Baker T, Hung PCK, Tariq MA, Rafferty L. 2020. A decentralized lightweight blockchain-based authentication mechanism for IoT systems. Cluster Comput. 23:32067–87
    [Google Scholar]
  48. 48.
    Tian F. 2016. An agri-food supply chain traceability system for China based on RFID & blockchain technology. 2016 13th International Conference on Service Systems and Service Management1–6 Piscataway, NJ: IEEE
    [Google Scholar]
  49. 49.
    Tian F. 2017. A supply chain traceability system for food safety based on HACCP, blockchain & Internet of Things. 2017 International Conference on Service Systems and Service Management1–6 Piscataway, NJ: IEEE
    [Google Scholar]
  50. 50.
    Tse D, Zhang B, Yang Y, Cheng C, Mu H. 2017. Blockchain application in food supply information security. 2017 IEEE International Conference on Industrial Engineering and Engineering Management1357–61 Piscataway, NJ: IEEE
    [Google Scholar]
  51. 51.
    Kshetri N. 2018. Blockchain's roles in meeting key supply chain management objectives. Int. J. Inf. Manag. 39:80–89
    [Google Scholar]
  52. 52.
    Kuhi K, Kaare K, Koppel O. 2018. Ensuring performance measurement integrity in logistics using blockchain. 2018 IEEE International Conference on Service Operations and Logistics, and Informatics256–61 Piscataway, NJ: IEEE
    [Google Scholar]
  53. 53.
    Mondragon AEC, Mondragon CEC, Coronado ES. 2018. Exploring the applicability of blockchain technology to enhance manufacturing supply chains in the composite materials industry. 2018 IEEE International Conference on Applied System Invention1300–3 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54.
    Ko T, Lee J, Ryu D. 2018. Blockchain technology and manufacturing industry: real-time transparency and cost savings. Sustainability 10:114274
    [Google Scholar]
  55. 55.
    Vatankhah Barenji A, Li Z, Wang WM 2018. Blockchain cloud manufacturing: shop floor and machine level. European Conference on Smart Objects, Systems and Technologies1–6 Piscataway, NJ: IEEE
    [Google Scholar]
  56. 56.
    Angrish A, Craver B, Hasan M, Starly B. 2018. A case study for blockchain in manufacturing. “FabRec”: a prototype for peer-to-peer network of manufacturing nodes. Procedia Manuf. 26:1180–92
    [Google Scholar]
  57. 57.
    Wang S, Li D, Zhang Y, Chen J 2019. Smart contract–based product traceability system in the supply chain scenario. IEEE Access 7:115122–33
    [Google Scholar]
  58. 58.
    Chang SE, Chen YC, Lu MF. 2019. Supply chain re-engineering using blockchain technology: a case of smart contract based tracking process. Technol. Forecast. Soc. Change 144:C1–11
    [Google Scholar]
  59. 59.
    Dolgui A, Ivanov D, Potryasaev S, Sokolov B, Ivanova M, Werner F. 2020. Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain. Int. J. Prod. Res. 58:72184–99
    [Google Scholar]
  60. 60.
    Kurpjuweit S, Schmidt CG, Klöckner M, Wagner SM. 2021. Blockchain in additive manufacturing and its impact on supply chains. J. Bus. Logist. 42:146–70
    [Google Scholar]
  61. 61.
    Rožman N, Diaci J, Corn M. 2021. Scalable framework for blockchain-based shared manufacturing. Robot. Comput. Integr. Manuf. 71:102139
    [Google Scholar]
  62. 62.
    Sikorski JJ, Haughton J, Kraft M. 2017. Blockchain technology in the chemical industry: machine-to-machine electricity market. Appl. Energy 195:234–46
    [Google Scholar]
  63. 63.
    Mannaro K, Pinna A, Marchesi M. 2017. Crypto-trading: blockchain-oriented energy market. 2017 AEIT International Annual Conference1–5 Piscataway, NJ: IEEE
    [Google Scholar]
  64. 64.
    Sabounchi M, Wei J. 2017. Towards resilient networked microgrids: blockchain-enabled peer-to-peer electricity trading mechanism. 2017 IEEE Conference on Energy Internet and Energy System Integration1–5 Piscataway, NJ: IEEE
    [Google Scholar]
  65. 65.
    Peck ME, Wagman D. 2017. Energy trading for fun and profit buy your neighbor's rooftop solar power or sell your own—it'll all be on a blockchain. IEEE Spectr. 54:1056–61
    [Google Scholar]
  66. 66.
    Horta J, Kofman D, Menga D, Silva A. 2017. Novel market approach for locally balancing renewable energy production and flexible demand. 2017 IEEE Int. Conf. Smart Grid Commun.533–39 Piscataway, NJ: IEEE
    [Google Scholar]
  67. 67.
    Laszka A, Dubey A, Walker M, Schmidt D. 2017. Providing privacy, safety, and security in IoT-based transactive energy systems using distributed ledgers. Proceedings of the 7th International Conference on the Internet of Things art. 13 New York: ACM
    [Google Scholar]
  68. 68.
    Hou J, Wang H, Liu P. 2018. Applying the blockchain technology to promote the development of distributed photovoltaic in China. Int. J. Energy Res. 42:62050–69
    [Google Scholar]
  69. 69.
    Aggarwal S, Chaudhary R, Aujla GS, Jindal A, Dua A, Kumar N. 2018. EnergyChain: enabling energy trading for smart homes using blockchains in smart grid ecosystem. Proceedings of the 1st ACM MobiHoc Workshop on Networking and Cybersecurity for Smart Cities art. 1 New York: ACM
    [Google Scholar]
  70. 70.
    Wang S, Taha AF, Wang J. 2018. Blockchain-assisted crowdsourced energy systems. 2018 IEEE Power & Energy Society General Meeting1–6 Piscataway, NJ: IEEE
    [Google Scholar]
  71. 71.
    Noor S, Yang W, Guo M, van Dam KH, Wang X 2018. Energy demand side management within micro-grid networks enhanced by blockchain. Appl. Energy 228:1385–98
    [Google Scholar]
  72. 72.
    Aitzhan NZ, Svetinovic D. 2018. Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secur. Comput. 15:5840–52
    [Google Scholar]
  73. 73.
    Kim SK, Huh JH. 2018. A study on the improvement of smart grid security performance and blockchain smart grid perspective. Energies 11:81973
    [Google Scholar]
  74. 74.
    Huh JH, Kim SK. 2019. The blockchain consensus algorithm for viable management of new and renewable energies. Sustainability 11:113184
    [Google Scholar]
  75. 75.
    Wang X, Yang W, Noor S, Chen C, Guo M, van Dam KH. 2019. Blockchain-based smart contract for energy demand management. Energy Procedia 158:2719–24
    [Google Scholar]
  76. 76.
    Li Y, Yang W, He P, Chen C, Wang X 2019. Design and management of a distributed hybrid energy system through smart contract and blockchain. Appl. Energy 248:390–405
    [Google Scholar]
  77. 77.
    Li M, Hu D, Lal C, Conti M, Zhang Z. 2020. Blockchain-enabled secure energy trading with verifiable fairness in industrial internet of things. IEEE Trans. Ind. Inform. 16:106564–74
    [Google Scholar]
  78. 78.
    Sheikh A, Kamuni V, Urooj A, Wagh S, Singh N, Patel D. 2020. Secured energy trading using Byzantine-based blockchain consensus. IEEE Access 8:8554–71
    [Google Scholar]
  79. 79.
    Teng F, Zhang Q, Wang G, Liu J, Li H. 2021. A comprehensive review of energy blockchain: application scenarios and development trends. Int. J. Energy Res. 45:12017515–31
    [Google Scholar]
  80. 80.
    Al Kawasmi E, Arnautovic E, Svetinovic D 2015. Bitcoin-based decentralized carbon emissions trading infrastructure model. Syst. Eng. 18:2115–30
    [Google Scholar]
  81. 81.
    Macinante J. 2016. Networking carbon markets: key elements of the process Tech. Rep. World Bank Washington, DC:
    [Google Scholar]
  82. 82.
    Jackson A, Lloyd A, Macinante J, Hüwener M. 2017. Networked carbon markets: permissionless innovation with distributed ledgers? Res. Pap. 2018/07 Edinburgh Sch. Law Edinburgh, UK:
    [Google Scholar]
  83. 83.
    Li Z, Shahidehpour M, Aminifar F, Alabdulwahab A, Al-Turki Y. 2017. Networked microgrids for enhancing the power system resilience. Proc. IEEE 105:71289–310
    [Google Scholar]
  84. 84.
    Leonhard RD. 2017. Developing the crypto carbon credit on Ethereum's blockchain Unpubl. Ms. https://doi.org/10.2139/ssrn.3000472
    [Crossref] [Google Scholar]
  85. 85.
    Leonhard RD. 2017. Forget Paris: building a carbon market in the U.S. using blockchain-based smart contracts Unpubl. Ms. https://doi.org/10.2139/ssrn.3082450
    [Crossref] [Google Scholar]
  86. 86.
    Khaqqi KN, Sikorski JJ, Hadinoto K, Kraft M. 2018. Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application. Appl. Energy 209:8–19
    [Google Scholar]
  87. 87.
    Fu B, Shu Z, Liu X. 2018. Blockchain enhanced emission trading framework in fashion apparel manufacturing industry. Sustainability 10:41105
    [Google Scholar]
  88. 88.
    Xpansiv, Collaborase, World Bank Group 2018. Blockchain and emerging digital technologies for enhancing post-2020 climate markets Tech. Rep. World Bank Washington, DC:
    [Google Scholar]
  89. 89.
    Patel D, Britto B, Sharma S, Gaikwad K, Dusing Y, Gupta M. 2020. Carbon credits on blockchain. 2020 International Conference on Innovative Trends in Information Technology1–5 Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90.
    Kim SK, Huh JH. 2020. Blockchain of carbon trading for UN Sustainable Development Goals. Sustainability 12:104021
    [Google Scholar]
  91. 91.
    Richardson A, Xu J 2020. Carbon trading with blockchain. Mathematical Research for Blockchain Economy P Pardalos, I Kotsireas, Y Guo, W Knottenbelt 105–24 Berlin: Springer
    [Google Scholar]
  92. 92.
    Hartmann S, Thomas S 2020. Applying blockchain to the Australian carbon market. Econ. Pap. A 39:2133–51
    [Google Scholar]
  93. 93.
    Du Y, Li F. 2020. A hierarchical real-time balancing market considering multi-microgrids with distributed sustainable resources. IEEE Trans. Sustain. Energy 11:172–83
    [Google Scholar]
  94. 94.
    Hua W, Jiang J, Sun H, Wu J. 2020. A blockchain based peer-to-peer trading framework integrating energy and carbon markets. Appl. Energy 279:115539
    [Google Scholar]
  95. 95.
    He H, Luo Z, Wang Q, Chen M, He H et al. 2020. Joint operation mechanism of distributed photovoltaic power generation market and carbon market based on cross-chain trading technology. IEEE Access 8:66116–30
    [Google Scholar]
  96. 96.
    Parmentola A, Petrillo A, Tutore I, De Felice F. 2021. Is blockchain able to enhance environmental sustainability? A systematic review and research agenda from the perspective of Sustainable Development Goals (SDGs). Bus. Strateg. Environ. 31:1194–217
    [Google Scholar]
  97. 97.
    Saraji S, Borowczak M. 2021. A blockchain-based carbon credit ecosystem White Pap., Univ. Wyo. Laramie:
    [Google Scholar]
  98. 98.
    Yan M, Shahidehpour M, Alabdulwahab A, Abusorrah A, Gurung N et al. 2021. Blockchain for transacting energy and carbon allowance in networked microgrids. IEEE Trans. Smart Grid 12:64702–14
    [Google Scholar]
  99. 99.
    Biswas K, Muthukkumarasamy V. 2016. Securing smart cities using blockchain technology. 2016 IEEE 18th International Conference on High Performance Computing and Communications, IEEE 14th International Conference on Smart City, and IEEE 2nd International Conference on Data Science and Systems1392–93 Piscataway, NJ: IEEE
    [Google Scholar]
  100. 100.
    Rivera R, Robledo JG, Larios VM, Avalos JM. 2017. How digital identity on blockchain can contribute in a smart city environment. 2017 International Smart Cities Conference1–4 Piscataway, NJ: IEEE
    [Google Scholar]
  101. 101.
    Liao DY, Wang X. 2017. Design of a blockchain-based lottery system for smart cities applications. 2017 IEEE 3rd International Conference on Collaboration and Internet Computing275–82 Piscataway, NJ: IEEE
    [Google Scholar]
  102. 102.
    Zhang JJ, Wang FY, Wang X, Xiong G, Zhu F et al. 2018. Cyber-physical-social systems: the state of the art and perspectives. IEEE Trans. Comput. Soc. Syst. 5:3829–40
    [Google Scholar]
  103. 103.
    Ramachandran Gowri S, Radhakrishnan R, Krishnamachari B. 2018. Towards a decentralized data marketplace for smart cities. 2018 IEEE International Smart Cities Conference1–8 Piscataway, NJ: IEEE
    [Google Scholar]
  104. 104.
    Radhakrishnan R, Krishnamachari B. 2018. Streaming data payment protocol (SDPP) for the Internet of Things. 2018 IEEE International Conference on Internet of Things, IEEE Green Computing and Communications, IEEE Cyber, Physical and Social Computing, and IEEE Smart Data1679–84 Piscataway, NJ: IEEE
    [Google Scholar]
  105. 105.
    Shen M, Tang X, Zhu L, Du X, Guizani M. 2019. Privacy-preserving support vector machine training over blockchain-based encrypted IoT data in smart cities. IEEE Internet Things J. 6:57702–12
    [Google Scholar]
  106. 106.
    Yu H, Yang Z, Sinnott RO 2019. Decentralized big data auditing for smart city environments leveraging blockchain technology. IEEE Access 7:6288–96
    [Google Scholar]
  107. 107.
    Alonso A, Pozo A, Choque J, Bueno G, Salvachua J et al. 2019. An identity framework for providing access to FIWARE OAuth 2.0–based services according to the eIDAS European regulation. IEEE Access 7:88435–49
    [Google Scholar]
  108. 108.
    Laufs J, Borrion H, Bradford B. 2020. Security and the smart city: a systematic review. Sustain. Cities Soc. 55:102023
    [Google Scholar]
  109. 109.
    Sun M, Zhang J. 2020. Research on the application of block chain big data platform in the construction of new smart city for low carbon emission and green environment. Comput. Commun. 149:332–42
    [Google Scholar]
  110. 110.
    Makhdoom I, Zhou I, Abolhasan M, Lipman J, Ni W. 2020. PrivySharing: a blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput. Secur. 88:101653
    [Google Scholar]
  111. 111.
    Kirimtat A, Krejcar O, Kertesz A, Tasgetiren MF. 2020. Future trends and current state of smart city concepts: a survey. IEEE Access 8:86448–67
    [Google Scholar]
  112. 112.
    Zahed Benisi N, Aminian M, Javadi B 2020. Blockchain-based decentralized storage networks: a survey. J. Netw. Comput. Appl. 162:102656
    [Google Scholar]
  113. 113.
    Esposito C, Ficco M, Gupta BB. 2021. Blockchain-based authentication and authorization for smart city applications. Inf. Process. Manag. 58:2102468
    [Google Scholar]
  114. 114.
    Soares Ferreira CM, Batista Garrocho CT, Rabelo Oliveira RA, Sà Silva J, da Cunha Cavalcanti CFM. 2021. IoT registration and authentication in smart city applications with blockchain. Sensors 21:41323
    [Google Scholar]
  115. 115.
    Maxeiner LS, Martini JP, Sandner P. 2018. Blockchain in the chemical industry. Work. Pap. Tech. Univ. Dortmund/Frankfurt Sch. Finance Manag.
    [Google Scholar]
  116. 116.
    Schuurmans PK. 2019. Blockchain technology potential in the chemical industry: an exploratory research on the value of blockchain technology for supply chain management of organizations in the chemical industry. Master's Thesis Eindhoven Univ. Technol. Eindhoven, Neth:.
    [Google Scholar]
  117. 117.
    Bai L, Wang J, Wang C, Chen C, Li F 2018. Distribution locational marginal pricing (DLMP) for congestion management and voltage support. IEEE Trans. Power Syst. 33:44061–73
    [Google Scholar]
  118. 118.
    Vivekanandan M, Sastry VN, Reddy US. 2021. BIDAPSCA5G: blockchain based Internet of Things (IoT) device to device authentication protocol for smart city applications using 5G technology. Peer-to-Peer Netw. . Appl. 14:1403–19
    [Google Scholar]
  119. 119.
    Bai J, Geeson R, Farazi F, Mosbach S, Akroyd J et al. 2021. Automated calibration of a poly(oxymethylene) dimethyl ether oxidation mechanism using the knowledge graph technology. J. Chem. Inf. Model. 61:41701–17
    [Google Scholar]
  120. 120.
    Farazi F, Salamanca M, Mosbach S, Akroyd J, Eibeck A et al. 2020. Knowledge graph approach to combustion chemistry and interoperability. ACS Omega 5:2918342–48
    [Google Scholar]
  121. 121.
    Menon A, Krdzavac NB, Kraft M. 2019. From database to knowledge graph—using data in chemistry. Curr. Opin. Chem. Eng. 26:33–37
    [Google Scholar]
  122. 122.
    Auer S, Kovtun V, Prinz M, Kasprzik A, Stocker M, Vidal ME. 2018. Towards a knowledge graph for science. Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics art. 1 New York: ACM
    [Google Scholar]
  123. 123.
    Eibeck A, Lim MQ, Kraft M. 2019. J-Park Simulator: an ontology-based platform for cross-domain scenarios in process industry. Comput. Chem. Eng. 131:106586
    [Google Scholar]
  124. 124.
    Berners-Lee T, Hendler J, Lassila O. 2001. Semantic web. Sci. Am. 284:534–43
    [Google Scholar]
  125. 125.
    Gruber T. 2009. Ontology. Encyclopedia of Database Systems L Liu, MT Özsu Boston: Springer https://doi.org/10.1007/978-0-387-39940-9_1318
    [Crossref] [Google Scholar]
  126. 126.
    Bizer C, Heath T, Berners-Lee T. 2009. Linked data—the story so far. Int. J. Semant. Web Inf. Syst. 5:31–22
    [Google Scholar]
  127. 127.
    Mosbach S, Menon A, Farazi F, Krdzavac N, Zhou X et al. 2020. Multiscale cross-domain thermochemical knowledge graph. J. Chem. Inf. Model. 60:126155–66
    [Google Scholar]
  128. 128.
    Chadzynski A, Krdzavac N, Farazi F, Lim MQ, Li S et al. 2021. Semantic 3D city database—an enabler for a dynamic geospatial knowledge graph. Energy AI 6:100106
    [Google Scholar]
  129. 129.
    Krdzavac N, Mosbach S, Nurkowski D, Buerger P, Akroyd J et al. 2019. An ontology and semantic web service for quantum chemistry calculations. J. Chem. Inf. Model. 59:73154–65
    [Google Scholar]
  130. 130.
    Farazi F, Akroyd J, Mosbach S, Buerger P, Nurkowski D et al. 2020. OntoKin: an ontology for chemical kinetic reaction mechanisms. J. Chem. Inf. Model. 60:1108–20
    [Google Scholar]
  131. 131.
    Devanand A, Karmakar G, Krdzavac N, Rigo-Mariani R, Foo Eddy Y et al. 2020. OntoPowSys: a power system ontology for cross domain interactions in an eco industrial park. Energy AI 1:100008
    [Google Scholar]
  132. 132.
    Zhou X, Eibeck A, Lim MQ, Krdzavac N, Kraft M. 2019. An agent composition framework for the J-Park Simulator—a knowledge graph for the process industry. Comput. Chem. Eng. 130:106577
    [Google Scholar]
  133. 133.
    Menasce D. 2002. QoS issues in Web services. IEEE Internet Comput. 6:672–75
    [Google Scholar]
  134. 134.
    Zhou X, Lim MQ, Kraft M. 2020. A smart contract–based agent marketplace for the J-Park Simulator—a knowledge graph for the process industry. Comput. Chem. Eng. 139:106896
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092120-022935
Loading
/content/journals/10.1146/annurev-chembioeng-092120-022935
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error