1932

Abstract

T cells engineered to express chimeric antigen receptors (CARs) have shown remarkable success in treating B-cell malignancies, reflected by multiple US Food and Drug Administration–approved CAR-T cell products currently on the market. However, various obstacles have thus far limited the use of approved products and constrained the efficacy of CAR-T cell therapy against solid tumors. Overcoming these obstacles will necessitate multidimensional CAR-T cell engineering approaches and better understanding of the intricate tumor microenvironment (TME). Key challenges include treatment-related toxicity, antigen escape and heterogeneity, and the highly immunosuppressive profile of the TME. Notably, the hypoxic and nutrient-deprived nature of the TME severely attenuates CAR-T cell fitness and efficacy, highlighting the need for more sophisticated engineering strategies. In this review, we examine recent advances in protein- and cell-engineering strategies to improve CAR-T cell safety and efficacy, with an emphasis on overcoming immunosuppression induced by tumor metabolism and hypoxia.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092120-092914
2022-06-07
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092120-092914.html?itemId=/content/journals/10.1146/annurev-chembioeng-092120-092914&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mu W, Carrillo MA, Kitchen SG. 2020. Engineering CAR T cells to target the HIV reservoir. Front. Cell. Infect. Microbiol. 10:410
    [Google Scholar]
  2. 2.
    Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X et al. 2016. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353:6295179–84
    [Google Scholar]
  3. 3.
    O'Leary MC, Lu X, Huang Y, Lin X, Mahmood I et al. 2019. FDA Approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin. Cancer Res. 25:41142–46
    [Google Scholar]
  4. 4.
    Bouchkouj N, Kasamon YL, de Claro RA, George B, Lin X et al. 2019. FDA approval summary: axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin. Cancer Res. 25:61702–8
    [Google Scholar]
  5. 5.
    Wang M, Munoz J, Goy A, Locke FL, Jacobson CA et al. 2020. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382:141331–42
    [Google Scholar]
  6. 6.
    Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M et al. 2020. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396:10254839–52
    [Google Scholar]
  7. 7.
    Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J et al. 2021. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384:8705–16
    [Google Scholar]
  8. 8.
    Murad JM, Graber DJ, Sentman CL. 2018. Advances in the use of natural receptor- or ligand-based chimeric antigen receptors (CARs) in haematologic malignancies. Best Pract. Res. Clin. Haematol. 31:2176–83
    [Google Scholar]
  9. 9.
    De Munter S, Ingels J, Goetgeluk G, Bonte S, Pille M et al. 2018. Nanobody based dual specific CARs. Int. J. Mol. Sci. 19:2403
    [Google Scholar]
  10. 10.
    Rataj F, Jacobi SJ, Stoiber S, Asang F, Ogonek J et al. 2019. High-affinity CD16-polymorphism and Fc-engineered antibodies enable activity of CD16-chimeric antigen receptor-modified T cells for cancer therapy. Br. J. Cancer 120:179–87
    [Google Scholar]
  11. 11.
    Maus MV, Plotkin J, Jakka G, Stewart-Jones G, Rivière I et al. 2016. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Mol. Ther. 3:16023
    [Google Scholar]
  12. 12.
    Walseng E, Köksal H, Sektioglu IM, Fåne A, Skorstad G et al. 2017. A TCR-based chimeric antigen receptor. Sci. Rep 7:110713
    [Google Scholar]
  13. 13.
    Debets R, Donnadieu E, Chouaib S, Coukos G. 2016. TCR-engineered T cells to treat tumors: Seeing but not touching?. Semin. Immunol. 28:110–21
    [Google Scholar]
  14. 14.
    Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC et al. 2013. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin. Cancer Res. 19:123153–64
    [Google Scholar]
  15. 15.
    Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J et al. 2005. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J. Immunother. 28:3203–11
    [Google Scholar]
  16. 16.
    Alabanza L, Pegues M, Geldres C, Shi V, Wiltzius JJW et al. 2017. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol. Ther. 25:112452–65
    [Google Scholar]
  17. 17.
    Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE. 2010. The optimal antigen response of chimeric antigen receptors harboring the CD3ζ transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J. Immunol. 184:126938–49
    [Google Scholar]
  18. 18.
    Dwivedi A, Karulkar A, Ghosh S, Rafiq A, Purwar R. 2019. Lymphocytes in cellular therapy: functional regulation of CAR T cells. Front. Immunol. 9:3180
    [Google Scholar]
  19. 19.
    Eshhar Z, Waks T, Gross G, Schindler DG. 1993. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. PNAS 90:2720–24
    [Google Scholar]
  20. 20.
    Moritz D, Wels W, Mattern J, Groner B. 1994. Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells. PNAS 91:104318–22
    [Google Scholar]
  21. 21.
    Haynes NM, Trapani JA, Teng MWL, Jackson JT, Cerruti L et al. 2002. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood 100:93155–63
    [Google Scholar]
  22. 22.
    Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH et al. 2004. Chimeric receptors with 4–1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18:4676–84
    [Google Scholar]
  23. 23.
    Weinkove R, George P, Dasyam N, McLellan AD. 2019. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin. Transl. Immunol. 8:5e1049
    [Google Scholar]
  24. 24.
    Chmielewski M, Abken H. 2012. CAR T cells transform to trucks: Chimeric antigen receptor-redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunol. Immunother. 61:81269–77
    [Google Scholar]
  25. 25.
    Rafiq S, Hackett CS, Brentjens RJ. 2020. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17:3147–67
    [Google Scholar]
  26. 26.
    Labanieh L, Majzner RG, Mackall CL. 2018. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2:6377–91
    [Google Scholar]
  27. 27.
    Awasthi R, Pacaud L, Waldron E, Tam CS, Jäger U et al. 2020. Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv. 4:3560–72
    [Google Scholar]
  28. 28.
    Eur. Med. Agency 2018. Yescarta/axicabtagene ciloleucel Assess. Rep. Eur. Med. Agency London: https://www.ema.europa.eu/en/documents/assessment-report/yescarta-epar-public-assessment-report_en.pdf
    [Google Scholar]
  29. 29.
    Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M et al. 2010. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant. 9:1245–56
    [Google Scholar]
  30. 30.
    Turtle CJ, Hanafi L, Berger C, Gooley TA, Cherian S et al. 2016. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 126:62123–38
    [Google Scholar]
  31. 31.
    Wagner DL, Fritsche E, Pulsipher MA, Ahmed N, Hamieh M et al. 2021. Immunogenicity of CAR T cells in cancer therapy. Nat. Rev. Clin. Oncol. 18:379–93
    [Google Scholar]
  32. 32.
    Gorovits B, Koren E 2019. Immunogenicity of chimeric antigen receptor T-cell therapeutics. BioDrugs 33:3275–84
    [Google Scholar]
  33. 33.
    Brudno JN, Kochenderfer JN. 2019. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev 34:45–55
    [Google Scholar]
  34. 34.
    Weber E, Lynn R, Parker K, Anbunathan H, Lattin J et al. 2020. Transient “rest” induces functional reinvigoration and epigenetic remodeling in exhausted CAR-T cells.. bioRxiv. 920496. https://doi.org/10.1101/2020.01.26.920496
    [Crossref]
  35. 35.
    Juillerat A, Tkach D, Busser BW, Temburni S, Valton J et al. 2019. Modulation of chimeric antigen receptor surface expression by a small molecule switch. BMC Biotechnol 19:144
    [Google Scholar]
  36. 36.
    Juillerat A, Marechal A, Filhol JM, Valogne Y, Valton J et al. 2017. An oxygen sensitive self-decision making engineered CAR T-cell. Sci. Rep. 7:39833
    [Google Scholar]
  37. 37.
    Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. 2015. Remote control of therapeutic T cells through a small molecule gated chimeric receptor. Science 350:6258aab4077
    [Google Scholar]
  38. 38.
    Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA et al. 2016. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164:4770–79
    [Google Scholar]
  39. 39.
    Srivastava S, Salter AI, Liggitt D, Yechan-Gunja S, Sarvothama M et al. 2019. Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer Cell 35:3489–503.e8
    [Google Scholar]
  40. 40.
    Cho JH, Okuma A, Al-Rubaye D, Intisar E, Junghans RP, Wong WW. 2018. Engineering Axl specific CAR and SynNotch receptor for cancer therapy. Sci. Rep. 8:13846
    [Google Scholar]
  41. 41.
    Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW et al. 2021. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci. Transl. Med. 13:591eabe7378
    [Google Scholar]
  42. 42.
    Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. 2013. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31:171–75
    [Google Scholar]
  43. 43.
    Fedorov VD, Themeli M, Sadelain M. 2013. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 5:215215ra172
    [Google Scholar]
  44. 44.
    Tao L, Farooq MA, Gao Y, Zhang L, Niu C et al. 2020. CD19-CAR-T cells bearing a KIR/PD-1-based inhibitory CAR eradicate CD19+HLA-C1 malignant B cells while sparing CD19+HLA-C1+ healthy B cells. Cancers 12:92612
    [Google Scholar]
  45. 45.
    Yu H, Sotillo E, Harrington C, Wertheim G, Paessler M et al. 2017. Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. Am. J. Hematol. 92:1E11–13
    [Google Scholar]
  46. 46.
    Maude SL, Teachey DT, Porter DL, Grupp SA. 2015. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125:264017–23
    [Google Scholar]
  47. 47.
    Lee D, Stetler-Stevenson M, Yuan C, Fry T, Shah N, Delbrook C et al. 2015. Safety and response of incorporating CD19 chimeric antigen receptor T cell therapy in typical salvage regimens for children and young adults with acute lymphoblastic leukemia. Blood 126:23684
    [Google Scholar]
  48. 48.
    Zhang X, Lu XA, Yang J, Zhang G, Li J et al. 2020. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv 4:102325–38
    [Google Scholar]
  49. 49.
    Xu X, Sun Q, Liang X, Chen Z, Zhang X et al. 2019. Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies. Front. Immunol. 10:2664
    [Google Scholar]
  50. 50.
    Zah E, Lin MY, Anne SB, Jensen MC, Chen YY. 2016. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol. Res. 4:6498–508
    [Google Scholar]
  51. 51.
    Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM et al. 2018. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24:20–28
    [Google Scholar]
  52. 52.
    Zhang Y, Wang Y, Liu Y, Tong C, Wang C et al. 2022. Long-term activity of tandem CD19/CD20 CAR therapy in refractory/relapsed B-cell lymphoma: a single-arm, phase 1–2 trial. Leukemia 36:189–96
    [Google Scholar]
  53. 53.
    Spiegel JY, Patel S, Muffly L, Hossain NM, Oak J et al. 2021. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 27:1419–31
    [Google Scholar]
  54. 54.
    Ghafouri SN, Walthers C, Roshandell M, Ji B, Trent J et al. 2021. Abstract CT007: CD19/CD20 bispecific chimeric antigen receptor (CAR) in naive/memory T-cells for the treatment of relapsed or refractory B-cell lymphomas. Cancer Res 81:13 SupplCT007
    [Google Scholar]
  55. 55.
    Feng K-c, Guo Y-l, Liu Y, Dai H-r, Wang Y et al. 2017. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J. Hematol. Oncol. 10:4
    [Google Scholar]
  56. 56.
    Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A et al. 2013. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol. Ther. 21:112087–101
    [Google Scholar]
  57. 57.
    Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D et al. 2016. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J. Clin. Investig. 126:83036–52
    [Google Scholar]
  58. 58.
    Zah E, Nam E, Bhuvan V, Tran U, Ji BY et al. 2020. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat. Commun. 11:2283
    [Google Scholar]
  59. 59.
    Urbanska K, Lanitis E, Poussin M, Lynn RC, Gavin BP et al. 2012. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res 72:71844–52
    [Google Scholar]
  60. 60.
    Tamada K, Geng D, Sakoda Y, Bansal N, Srivastava R et al. 2012. Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin. Cancer Res. 18:236436–45
    [Google Scholar]
  61. 61.
    Kudo K, Imai C, Lorenzini P, Kamiya T, Kono K et al. 2014. T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res 74:193–103
    [Google Scholar]
  62. 62.
    Cho JH, Collins JJ, Wong WW. 2018. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173:61426–38.e11
    [Google Scholar]
  63. 63.
    Di Stasi A, Tey S-K, Dotti G, Fujita Y, Kennedy-Nasser A et al. 2011. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365:181673–83
    [Google Scholar]
  64. 64.
    Paszkiewicz PJ, Fräßle SP, Srivastava S, Sommermeyer D, Hudecek M et al. 2016. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J. Clin. Investig. 126:114262–72
    [Google Scholar]
  65. 65.
    Philip B, Kokalaki E, Mekkaoui L, Thomas S, Straathof K et al. 2014. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124:81277–87
    [Google Scholar]
  66. 66.
    Casucci M, Falcone L, Camisa B, Norelli M, Porcellini S et al. 2018. Extracellular NGFR spacers allow efficient tracking and enrichment of fully functional CAR-T cells co-expressing a suicide gene. Front. Immunol. 9:507
    [Google Scholar]
  67. 67.
    Sakemura R, Terakura S, Watanabe K, Julamanee J, Takagi E et al. 2016. A Tet-On inducible system for controlling CD19-chimeric antigen receptor expression upon drug administration. Cancer Immunol. Res. 4:8658–68
    [Google Scholar]
  68. 68.
    Mamonkin M, Mukherjee M, Srinivasan M, Sharma S, Gomes-Silva D et al. 2018. Reversible transgene expression reduces fratricide and permits 4–1BB costimulation of CAR T cells directed to T-cell malignancies. Cancer Immunol. Res. 6:147–58
    [Google Scholar]
  69. 69.
    Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC et al. 2014. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2:2112–20
    [Google Scholar]
  70. 70.
    Wiesinger M, März J, Kummer M, Schuler G, Dörrie J et al. 2019. Clinical-scale production of CAR-T cells for the treatment of melanoma patients by mRNA transfection of a CSPG4-specific CAR under full GMP compliance. Cancers 11:81198
    [Google Scholar]
  71. 71.
    Kvaratskhelia M, Sharma A, Larue RC, Serrao E, Engelman A. 2014. Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res 42:1610209–25
    [Google Scholar]
  72. 72.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N et al. 2003. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348:3255–56
    [Google Scholar]
  73. 73.
    Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A et al. 2008. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Investig. 118:93132–42
    [Google Scholar]
  74. 74.
    Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G et al. 2012. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4:132132ra53
    [Google Scholar]
  75. 75.
    Marcucci KT, Jadlowsky JK, Hwang WT, Suhoski-Davis M, Gonzalez VE et al. 2018. Retroviral and lentiviral safety analysis of gene-modified T cell products and infused HIV and oncology patients. Mol. Ther. 26:1269–79
    [Google Scholar]
  76. 76.
    Milone MC, O'Doherty U 2018. Clinical use of lentiviral vectors. Leukemia 32:71529–41
    [Google Scholar]
  77. 77.
    Chen YY. 2015. Efficient gene editing in primary human T cells. Trends Immunol 36:11667–69
    [Google Scholar]
  78. 78.
    Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M et al. 2017. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543:113–17
    [Google Scholar]
  79. 79.
    Wang Z, Li N, Feng K, Chen M, Zhang Y et al. 2021. Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cell. Mol. Immunol. 18:2188–98
    [Google Scholar]
  80. 80.
    Sather BD, Ibarra GSR, Sommer K, Curinga G, Hale M et al. 2015. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci. Transl. Med. 7:307307ra156
    [Google Scholar]
  81. 81.
    Wang J, DeClercq JJ, Hayward SB, Li PWL, Shivak DA et al. 2016. Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Res 44:3e30
    [Google Scholar]
  82. 82.
    Hubbard N, Hagin D, Sommer K, Song Y, Khan I et al. 2016. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood 127:212513–22
    [Google Scholar]
  83. 83.
    Ho P, Chen YY. 2017. Mammalian synthetic biology in the age of genome editing and personalized medicine. Curr. Opin. Chem. Biol. 40:57–64
    [Google Scholar]
  84. 84.
    Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. 2020. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct. Target. Ther. 5:1
    [Google Scholar]
  85. 85.
    Ashmore-Harris C, Fruhwirth GO 2020. The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clin. Transl. Med. 9:15
    [Google Scholar]
  86. 86.
    Robert C. 2020. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 11:3801
    [Google Scholar]
  87. 87.
    He X, Xu C. 2020. Immune checkpoint signaling and cancer immunotherapy. Cell Res 30:8660–69
    [Google Scholar]
  88. 88.
    Wang H, Kaur G, Sankin AI, Chen F, Guan F, Zang X. 2019. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J. Hematol. Oncol. 12:59
    [Google Scholar]
  89. 89.
    Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ et al. 2017. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7:737
    [Google Scholar]
  90. 90.
    Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL et al. 2020. CRISPR-engineered T cells in patients with refractory cancer. Science 367:6481eaba7365
    [Google Scholar]
  91. 91.
    Li S, Siriwon N, Zhang X, Yang S, Jin T et al. 2017. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin. Cancer Res. 23:226982–92
    [Google Scholar]
  92. 92.
    Gorelik L, Flavell RA. 2002. Transforming growth factor-β in T-cell biology. Nat. Rev. Immunol. 2:146–53
    [Google Scholar]
  93. 93.
    Quatromoni JG, Wang Y, Vo DD, Morris LF, Jazirehi AR et al. 2012. T cell receptor (TCR)-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ) signaling mediate superior tumor regression in an animal model of adoptive cell therapy. J. Transl. Med. 10:127
    [Google Scholar]
  94. 94.
    Hou AJ, Chang ZL, Lorenzini MH, Zah E, Chen YY. 2018. TGF-β-responsive CAR-T cells promote anti-tumor immune function. Bioeng. Transl. Med. 3:275–86
    [Google Scholar]
  95. 95.
    Chang ZL, Lorenzini MH, Chen X, Tran U, Bangayan NJ, Chen YY. 2018. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14:3317–24
    [Google Scholar]
  96. 96.
    Liu X, Zhang Y, Cheng C, Cheng AW, Zhang X et al. 2017. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res 27:154–57
    [Google Scholar]
  97. 97.
    Ren J, Zhang X, Liu X, Fang C, Jiang S et al. 2017. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8:1017002–11
    [Google Scholar]
  98. 98.
    Stephan MT, Ponomarev V, Brentjens RJ, Chang AH, Dobrenkov KV et al. 2007. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat. Med. 13:121440–49
    [Google Scholar]
  99. 99.
    Collinson-Pautz MR, Chang WC, Lu A, Khalil M, Crisostomo JW et al. 2019. Constitutively active MyD88/CD40 costimulation enhances expansion and efficacy of chimeric antigen receptor T cells targeting hematological malignancies. Leukemia 33:92195–207
    [Google Scholar]
  100. 100.
    Shum T, Omer B, Tashiro H, Kruse RL, Wagner DL et al. 2017. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov 7:111238–47
    [Google Scholar]
  101. 101.
    Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. 2018. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36:4346–51
    [Google Scholar]
  102. 102.
    Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. 2018. The hypoxic tumour microenvironment. Oncogenesis 7:10
    [Google Scholar]
  103. 103.
    Berahovich R, Liu X, Zhou H, Tsadik E, Xu S et al. 2019. Hypoxia selectively impairs CAR-T cells in vitro. Cancers 11:5602
    [Google Scholar]
  104. 104.
    Chang CH, Pearce EL 2016. Emerging concepts of T cell metabolism as a target of immunotherapy. Nat. Immunol. 17:4364–68
    [Google Scholar]
  105. 105.
    Jain RK. 2014. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26:5605–22
    [Google Scholar]
  106. 106.
    Weidemann A, Johnson RS. 2008. Biology of HIF-1α. Cell Death Differ 15:621–27
    [Google Scholar]
  107. 107.
    Goda N, Kanai M. 2012. Hypoxia-inducible factors and their roles in energy metabolism. Int. J. Hematol. 95:5457–63
    [Google Scholar]
  108. 108.
    Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. 2019. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 20:4840
    [Google Scholar]
  109. 109.
    Vaupel P, Kelleher DK, Höckel M. 2001. Oxygenation status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin. Oncol. 28:2 Suppl. 829–35
    [Google Scholar]
  110. 110.
    Hong M, Clubb JD, Chen YY. 2020. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38:4473–88
    [Google Scholar]
  111. 111.
    Hou AJ, Chen LC, Chen YY. 2021. Navigating CAR-T cells through the solid-tumour microenvironment. Nat. Rev. Drug Discov. 20:531–50
    [Google Scholar]
  112. 112.
    Lau EYT, Ho NPY, Lee TKW. 2017. Cancer stem cells and their microenvironment: biology and therapeutic implications. Stem Cells Int 2017:3714190
    [Google Scholar]
  113. 113.
    Salem ML, El-Badawy AS, Li Z 2015. Immunobiology and signaling pathways of cancer stem cells: implication for cancer therapy. Cytotechnology 67:5749–59
    [Google Scholar]
  114. 114.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L et al. 2005. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:7069820–27
    [Google Scholar]
  115. 115.
    Sceneay J, Smyth MJ, Möller A. 2013. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 32:3–4449–64
    [Google Scholar]
  116. 116.
    Hunter FW, Wouters BG, Wilson WR. 2016. Hypoxia-activated prodrugs: paths forward in the era of personalised medicine. Br. J. Cancer 114:101071–77
    [Google Scholar]
  117. 117.
    Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T et al. 2018. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J. Clin. Investig. 128:115137–49
    [Google Scholar]
  118. 118.
    Benito J, Ramirez MS, Millward NZ, Velez J, Harutyunyan KG et al. 2016. Hypoxia-activated prodrug TH-302 targets hypoxic bone marrow niches in preclinical leukemia models. Clin. Cancer Res. 22:71687–98
    [Google Scholar]
  119. 119.
    Schaaf MB, Garg AD, Agostinis P. 2018. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 9:2115
    [Google Scholar]
  120. 120.
    Jain RK. 2005. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:570658–62
    [Google Scholar]
  121. 121.
    Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. 2010. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70:156171–80
    [Google Scholar]
  122. 122.
    Chung AS, Kowanetz M, Wu X, Zhuang G, Ngu H et al. 2012. Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J. Pathol. 227:4404–16
    [Google Scholar]
  123. 123.
    Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M et al. 2012. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. PNAS 109:4317561–66
    [Google Scholar]
  124. 124.
    Gropper Y, Feferman T, Shalit T, Salame TM, Porat Z, Shakhar G. 2017. Culturing CTLs under hypoxic conditions enhances their cytolysis and improves their anti-tumor function. Cell Rep 20:112547–55
    [Google Scholar]
  125. 125.
    Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M et al. 2001. Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J. Immunol. 167:116140–49
    [Google Scholar]
  126. 126.
    Roman J, Rangasamy T, Guo J, Sugunan S, Meednu N et al. 2010. T-cell activation under hypoxic conditions enhances IFN-γ secretion. Am. J. Respir. Cell Mol. Biol. 42:1123–28
    [Google Scholar]
  127. 127.
    Haase V. 2009. The VHL tumor suppressor: master regulator of HIF. Curr. Pharm. Des. 15:333895–903
    [Google Scholar]
  128. 128.
    Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. 2002. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:121466–71
    [Google Scholar]
  129. 129.
    Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV et al. 2013. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14:111173–82
    [Google Scholar]
  130. 130.
    Clever D, Roychoudhuri R, Constantinides MG, Askenase MH, Sukumar M et al. 2016. Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell 166:51117–31.e14
    [Google Scholar]
  131. 131.
    Veliça P, Cunha PP, Vojnovic N, Foskolou IP, Bargiela D et al. 2021. Modified hypoxia-inducible factor expression in CD8+ T cells increases antitumor efficacy. Cancer Immunol. Res. 9:4401–14
    [Google Scholar]
  132. 132.
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:5646–74
    [Google Scholar]
  133. 133.
    Heiden MGV, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:59301029–33
    [Google Scholar]
  134. 134.
    Jiang S, Yan W 2016. T-cell immunometabolism against cancer. Cancer Lett 382:2255–58
    [Google Scholar]
  135. 135.
    Jacobs SR, Herman CE, MacIver NJ, Wofford JA, Wieman HL et al. 2008. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180:74476–86
    [Google Scholar]
  136. 136.
    Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G et al. 2015. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:141–54
    [Google Scholar]
  137. 137.
    Dumauthioz N, Tschumi B, Wenes M, Marti B, Wang H et al. 2020. Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cell. Mol. Immunol. 18:1761–71
    [Google Scholar]
  138. 138.
    Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X et al. 2015. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162:61217–28
    [Google Scholar]
  139. 139.
    Chen X, Khericha M, Lakhani A, Meng X, Salvestrini E et al. 2020. Rational tuning of CAR tonic signaling yields superior T-cell therapy for cancer. bioRxiv. 322990. https://doi.org/10.1101/2020.10.01.322990
    [Crossref]
  140. 140.
    Kawalekar OU, O'Connor RS, Fraietta JA, Guo L, McGettigan SE et al. 2016. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44:2380–90
    [Google Scholar]
  141. 141.
    Kaartinen T, Luostarinen A, Maliniemi P, Keto J, Arvas M et al. 2017. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion. Cytotherapy 19:6689–702 Erratum. 2017. Cytotherapy 19(9):1130
    [Google Scholar]
  142. 142.
    Hinrichs CS, Borman ZA, Cassard L, Gattinoni L, Spolski R et al. 2009. Adoptively transferred effector cells derived from naïve rather than central memory CD8+ T cells mediate superior antitumor immunity. PNAS 106:4117469–74
    [Google Scholar]
  143. 143.
    Nicoletta C, Barbara C, Fabienne C, Mattia F, Giacomo O et al. 2013. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121:4573–84
    [Google Scholar]
  144. 144.
    Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG et al. 2013. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Investig. 123:104479–88
    [Google Scholar]
  145. 145.
    Mellor AL, Munn DH. 2004. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4:10762–74
    [Google Scholar]
  146. 146.
    Sharma MD, Baban B, Chandler P, Hou DY, Singh N et al. 2007. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J. Clin. Investig. 117:92570–82
    [Google Scholar]
  147. 147.
    Nayak-Kapoor A, Hao Z, Sadek R, Dobbins R, Marshall L et al. 2018. Phase Ia study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) in patients with recurrent advanced solid tumors. J. Immunother. Cancer 6:61
    [Google Scholar]
  148. 148.
    Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH et al. 2014. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. Immunity 41:5802–14
    [Google Scholar]
  149. 149.
    Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y et al. 2016. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167:3829–42.e13
    [Google Scholar]
  150. 150.
    Guerra L, Bonetti L, Brenner D. 2020. Metabolic modulation of immunity: a new concept in cancer immunotherapy. Cell Rep 32:1107848
    [Google Scholar]
  151. 151.
    Byun JK, Park M, Lee S, Yun JW, Lee J et al. 2020. Inhibition of glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor immunity. Mol. Cell 80:4592–606.e8
    [Google Scholar]
  152. 152.
    Leone RD, Zhao L, Englert JM, Sun IM, Oh MH et al. 2019. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366:64681013–21
    [Google Scholar]
  153. 153.
    Kempkes RWM, Joosten I, Koenen HJPM, He X. 2019. Metabolic pathways involved in regulatory T cell functionality. Front. Immunol. 10:2839
    [Google Scholar]
  154. 154.
    Crompton JG, Sukumar M, Roychoudhuri R, Clever D, Gros A et al. 2015. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res 75:2296–305
    [Google Scholar]
  155. 155.
    Mousset CM, Hobo W, Ji Y, Fredrix H, De Giorgi V et al. 2018. Ex vivo AKT-inhibition facilitates generation of polyfunctional stem cell memory-like CD8+ T cells for adoptive immunotherapy. Oncoimmunology 7:10e1488565
    [Google Scholar]
  156. 156.
    Chowdhury PS, Chamoto K, Kumar A, Honjo T. 2018. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy. Cancer Immunol. Res. 6:111375–87
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092120-092914
Loading
/content/journals/10.1146/annurev-chembioeng-092120-092914
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error