1932

Abstract

Designing functional materials requires a deep search through multidimensional spaces for system parameters that yield desirable material properties. For cases where conventional parameter sweeps or trial-and-error sampling are impractical, inverse methods that frame design as a constrained optimization problem present an attractive alternative. However, even efficient algorithms require time- and resource-intensive characterization of material properties many times during optimization, imposing a design bottleneck. Approaches that incorporate machine learning can help address this limitation and accelerate the discovery of materials with targeted properties. In this article, we review how to leverage machine learning to reduce dimensionality in order to effectively explore design space, accelerate property evaluation, and generate unconventional material structures with optimal properties. We also discuss promising future directions, including integration of machine learning into multiple stages of a design algorithm and interpretation of machine learning models to understand how design parameters relate to material properties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-024340
2022-06-07
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092220-024340.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-024340&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gurkan B, Goodrich BF, Mindrup EM, Ficke LE, Massel M et al. 2010. Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture. J. Phys. Chem. Lett. 1:243494–99
    [Google Scholar]
  2. 2.
    Zhu Y, Peng L, Fang Z, Yan C, Zhang X, Yu G 2018. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 30:151706347
    [Google Scholar]
  3. 3.
    Shi X, Zheng S, Wu Z-S, Bao X 2018. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J. Energy Chem. 27:125–42
    [Google Scholar]
  4. 4.
    Yan Y, Zhao YS. 2014. Organic nanophotonics: from controllable assembly of functional molecules to low-dimensional materials with desired photonic properties. Chem. Soc. Rev. 43:134325–40
    [Google Scholar]
  5. 5.
    Chen Z, Li P, Anderson R, Wang X, Zhang X et al. 2020. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368:6488297–303
    [Google Scholar]
  6. 6.
    Burschka J, Kessler F, Nazeeruddin MK, Grätzel M. 2013. Co(III) complexes as p-dopants in solid-state dye-sensitized solar cells. Chem. Mater. 25:152986–90
    [Google Scholar]
  7. 7.
    Wang S, Sina M, Parikh P, Uekert T, Shahbazian B et al. 2016. Role of 4-tert-butylpyridine as a hole transport layer morphological controller in perovskite solar cells. Nano Lett. 16:95594–600
    [Google Scholar]
  8. 8.
    Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L 2015. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115:2312666–731
    [Google Scholar]
  9. 9.
    Song J, Zhang M, Yuan M, Qian Y, Sun Y, Liu F. 2018. Morphology characterization of bulk heterojunction solar cells. Small Methods 2:31700229
    [Google Scholar]
  10. 10.
    Fang Y, Wang X, Wang Q, Huang J, Wu T. 2014. Impact of annealing on spiro-OMeTAD and corresponding solid-state dye sensitized solar cells. Phys. Status Solidi A 211:122809–16
    [Google Scholar]
  11. 11.
    Bu T, Wu L, Liu X, Yang X, Zhou P et al. 2017. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Adv. Energy Mater. 7:201700576
    [Google Scholar]
  12. 12.
    Pham T-L, Nguyen N-D, Nguyen V-D, Kino H, Miyake T, Dam H-C. 2018. Learning structure–property relationship in crystalline materials: a study of lanthanide–transition metal alloys. J. Chem. Phys. 148:204106
    [Google Scholar]
  13. 13.
    Phillip WA, Dorin RM, Werner J, Hoek EMV, Wiesner U, Elimelech M. 2011. Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Lett. 11:72892–900
    [Google Scholar]
  14. 14.
    Pendergast MM, Dorin RM, Phillip WA, Wiesner U, Hoek EMV. 2013. Understanding the structure and performance of self-assembled triblock terpolymer membranes. J. Membr. Sci. 444:461–68
    [Google Scholar]
  15. 15.
    Shen K-H, Brown JR, Hall LM. 2018. Diffusion in lamellae, cylinders, and double gyroid block copolymer nanostructures. ACS Macro Lett. 7:91092–98
    [Google Scholar]
  16. 16.
    Alshammasi MS, Escobedo FA. 2018. Correlation between ionic mobility and microstructure in block copolymers: a coarse-grained modeling study. Macromolecules 51:229213–21
    [Google Scholar]
  17. 17.
    Schneider LY, Müller M. 2019. Engineering scale simulation of nonequilibrium network phases for battery electrolytes. Macromolecules 52:52050–62
    [Google Scholar]
  18. 18.
    Aryal D, Howard MP, Samanta R, Antoine S, Segalman R et al. 2020. Influence of pore morphology on the diffusion of water in triblock copolymer membranes. J. Chem. Phys. 152:014904
    [Google Scholar]
  19. 19.
    Torquato S. 2009. Inverse optimization techniques for targeted self-assembly. Soft Matter 5:1157–73
    [Google Scholar]
  20. 20.
    Jain A, Bollinger JA, Truskett TM. 2014. Inverse methods for material design. AIChE J. 60:2732–40
    [Google Scholar]
  21. 21.
    Jaeger HM. 2015. Celebrating Soft Matter's 10th anniversary: toward jamming by design. Soft Matter 11:12–27
    [Google Scholar]
  22. 22.
    Ferguson AL. 2017. Machine learning and data science in soft materials engineering. J. Phys. Condens. Matter 30:043002
    [Google Scholar]
  23. 23.
    Murugan A, Jaeger HM. 2019. Bioinspired nonequilibrium search for novel materials. MRS Bull. 44:96–105
    [Google Scholar]
  24. 24.
    Jackson NE, Webb MA, de Pablo JJ. 2019. Recent advances in machine learning towards multiscale soft materials design. Curr. Opin. Chem. Eng. 23:106–14
    [Google Scholar]
  25. 25.
    Sherman ZM, Howard MP, Lindquist BA, Jadrich RB, Truskett TM. 2020. Inverse methods for design of soft materials. J. Chem. Phys. 152:140902
    [Google Scholar]
  26. 26.
    Liu Y, Zhao T, Ju W, Shi S. 2017. Materials discovery and design using machine learning. J. Materiomics 3:3159–77
    [Google Scholar]
  27. 27.
    Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C. 2017. Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3:154
    [Google Scholar]
  28. 28.
    Guo K, Yang Z, Yu C-H, Buehler MJ. 2021. Artificial intelligence and machine learning in design of mechanical materials. Mater. Horiz. 8:41153–72
    [Google Scholar]
  29. 29.
    Jain A, Hautier G, Ong SP, Persson K. 2016. New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J. Mater. Res. 31:8977–94
    [Google Scholar]
  30. 30.
    Suh C, Fare C, Warren JA, Pyzer-Knapp EO. 2020. Evolving the materials genome: how machine learning is fueling the next generation of materials discovery. Annu. Rev. Mater. Res. 50:1–25
    [Google Scholar]
  31. 31.
    Chen G, Shen Z, Iyer A, Ghumman UF, Tang S et al. 2020. Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges. Polymers 12:1163
    [Google Scholar]
  32. 32.
    Moosavi SM, Jablonka KM, Smit B. 2020. The role of machine learning in the understanding and design of materials. J. Am. Chem. Soc. 142:4820273–87
    [Google Scholar]
  33. 33.
    Hegde RS. 2020. Deep learning: a new tool for photonic nanostructure design. Nanoscale Adv. 2:31007–23
    [Google Scholar]
  34. 34.
    Liu Z, Zhu D, Raju L, Cai W. 2021. Tackling photonic inverse design with machine learning. Adv. Sci. 8:52002923
    [Google Scholar]
  35. 35.
    So S, Badloe T, Noh J, Bravo-Abad J, Rho J. 2020. Deep learning enabled inverse design in nanophotonics. Nanophotonics 5:91041–57
    [Google Scholar]
  36. 36.
    Schwalbe-Koda D, Gómez-Bombarelli R. 2020. Generative models for automatic chemical design. arXiv:1907.01632 [cs.LG]
  37. 37.
    Sanchez-Lengeling B, Aspuru-Guzik A. 2018. Inverse molecular design using machine learning: generative models for matter engineering. Science 361:6400360–65
    [Google Scholar]
  38. 38.
    Elton DC, Boukouvalas Z, Fuge MD, Chung PW. 2019. Deep learning for molecular design—a review of the state of the art. Mol. Syst. Des. Eng. 4:4828–49
    [Google Scholar]
  39. 39.
    Eyke NS, Koscher BA, Jensen KF. 2021. Toward machine learning–enhanced high-throughput experimentation. Trends Chem. 3:2120–32
    [Google Scholar]
  40. 40.
    Xu Y, Lin K, Wang S, Wang L, Cai C et al. 2019. Deep learning for molecular generation. Future Med. Chem. 11:6567–97
    [Google Scholar]
  41. 41.
    Jørgensen PB, Schmidt MN, Winther O. 2018. Deep generative models for molecular science. Mol. Inform. 37:1/21700133
    [Google Scholar]
  42. 42.
    Kullback S, Leibler RA. 1951. On information and sufficiency. Ann. Math. Stat. 22:179–86
    [Google Scholar]
  43. 43.
    Kingma DP, Welling M. 2014. Auto-encoding variational Bayes. arXiv:1312.6114 [stat.ML]
  44. 44.
    Xue T, Wallin TJ, Menguc Y, Adriaenssens S, Chiaramonte M. 2020. Machine learning generative models for automatic design of multi-material 3D printed composite solids. Extreme Mech. Lett. 41:100992
    [Google Scholar]
  45. 45.
    Kim Y, Park HK, Jung J, Asghari-Rad P, Lee S et al. 2021. Exploration of optimal microstructure and mechanical properties in continuous microstructure space using a variational autoencoder. Mater. Des. 202:109544
    [Google Scholar]
  46. 46.
    Griffiths R-R, Hernández-Lobato JM 2020. Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chem. Sci. 11:2577–86
    [Google Scholar]
  47. 47.
    Lim J, Hwang S-Y, Moon S, Kim S, Kim WY 2020. Scaffold-based molecular design with a graph generative model. Chem. Sci. 11:41153–64
    [Google Scholar]
  48. 48.
    Ren Z, Noh J, Tian S, Oviedo F, Xing G et al. 2020. Inverse design of crystals using generalized invertible crystallographic representation. arXiv:2005.07609 [physics.comp-ph]
  49. 49.
    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D et al. 2014. Generative adversarial networks. arXiv:1406.2661 [stat.ML]
  50. 50.
    Kudyshev ZA, Kildishev AV, Shalaev VM, Boltasseva A. 2021. Machine-learning-assisted global optimization of photonic devices. Nanophotonics 10:1371–83
    [Google Scholar]
  51. 51.
    Kudyshev ZA, Kildishev AV, Shalaev VM, Boltasseva A. 2020. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Appl. Phys. Rev. 7:021407
    [Google Scholar]
  52. 52.
    Wang L, Chan Y-C, Ahmed F, Liu Z, Zhu P, Chen W 2020. Deep generative modeling for mechanistic-based learning and design of metamaterial systems. Comput. Methods Appl. Mech. Eng. 372:113377
    [Google Scholar]
  53. 53.
    Yao Z, Sánchez-Lengeling B, Bobbitt NS, Bucior BJ, Kumar SGH et al. 2021. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3:176–86
    [Google Scholar]
  54. 54.
    Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B et al. 2018. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4:2268–76
    [Google Scholar]
  55. 55.
    Visaria D, Jain A. 2020. Machine-learning-assisted space-transformation accelerates discovery of high thermal conductivity alloys. Appl. Phys. Lett. 117:202107
    [Google Scholar]
  56. 56.
    Stoll A, Benner P. 2021. Machine learning for material characterization with an application for predicting mechanical properties. GAMM Mitt. 44:1e202100003
    [Google Scholar]
  57. 57.
    Oo MCM, Thein T. 2022. An efficient predictive analytics system for high dimensional big data. J. King Saud Univ. Comput. Inf. Sci. 34:11521–32
    [Google Scholar]
  58. 58.
    Wan Z, Xu Y, Šavija B. 2021. On the use of machine learning models for prediction of compressive strength of concrete: influence of dimensionality reduction on the model performance. Materials 14:4713
    [Google Scholar]
  59. 59.
    Zhang X, Cui J, Zhang K, Wu J, Lee Y. 2019. Machine learning prediction on properties of nanoporous materials utilizing pore geometry barcodes. J. Chem. Inf. Model. 59:114636–44
    [Google Scholar]
  60. 60.
    Wu K, Sukumar N, Lanzillo NA, Wang C, Ramprasad R et al. 2016. Prediction of polymer properties using infinite chain descriptors (ICD) and machine learning: toward optimized dielectric polymeric materials. J. Polym. Sci. B 54:202082–91
    [Google Scholar]
  61. 61.
    Bucior BJ, Bobbitt NS, Islamoglu T, Goswami S, Gopalan A et al. 2019. Energy-based descriptors to rapidly predict hydrogen storage in metal-organic frameworks. Mol. Syst. Des. Eng. 4:1162–74
    [Google Scholar]
  62. 62.
    Chi W, Chen J, Liu W, Wang C, Qi Q et al. 2020. A general descriptor ΔE enables the quantitative development of luminescent materials based on photoinduced electron transfer. J. Am. Chem. Soc. 142:146777–85
    [Google Scholar]
  63. 63.
    Anatole von Lilienfeld O, Ramakrishnan R, Rupp M, Knoll A 2015. Fourier series of atomic radial distribution functions: a molecular fingerprint for machine learning models of quantum chemical properties. Int. J. Quantum Chem. 115:161084–93
    [Google Scholar]
  64. 64.
    Breneman CM, Brinson LC, Schadler LS, Natarajan B, Krein M et al. 2013. Stalking the materials genome: a data-driven approach to the virtual design of nanostructured polymers. Adv. Funct. Mater. 23:465746–52
    [Google Scholar]
  65. 65.
    Pilania G, Iverson CN, Lookman T, Marrone BL. 2019. Machine-learning-based predictive modeling of glass transition temperatures: a case of polyhydroxyalkanoate homopolymers and copolymers. J. Chem. Inf. Model. 59:125013–25
    [Google Scholar]
  66. 66.
    Dai D, Liu Q, Hu R, Wei X, Ding G et al. 2020. Method construction of structure–property relationships from data by machine learning assisted mining for materials design applications. Mater. Des. 196:109194
    [Google Scholar]
  67. 67.
    Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM. 2018. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2:083802
    [Google Scholar]
  68. 68.
    Weng B, Song Z, Zhu R, Yan Q, Sun Q et al. 2020. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nat. Commun. 11:3513
    [Google Scholar]
  69. 69.
    Lee EY, Wong GCL, Ferguson AL. 2018. Machine learning–enabled discovery and design of membrane-active peptides. Bioorg. Med. Chem. 26:102708–18
    [Google Scholar]
  70. 70.
    Tibshirani R. 2011. Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc. B 73:3273–82
    [Google Scholar]
  71. 71.
    Zhang Y, Wen C, Wang C, Antonov S, Xue D et al. 2020. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater. 185:528–39
    [Google Scholar]
  72. 72.
    Melati D, Grinberg Y, Kamandar Dezfouli M, Janz S, Cheben P et al. 2019. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun. 10:4775
    [Google Scholar]
  73. 73.
    Yucel B, Yucel S, Ray A, Duprez L, Kalidindi SR. 2020. Mining the correlations between optical micrographs and mechanical properties of cold-rolled HSLA steels using machine learning approaches. Integr. Mater. Manuf. Innov. 9:3240–56
    [Google Scholar]
  74. 74.
    Kadulkar S, Howard MP, Truskett TM, Ganesan V. 2021. Prediction and optimization of ion transport characteristics in nanoparticle-based electrolytes using convolutional neural networks. J. Phys. Chem. B 125:184838–49
    [Google Scholar]
  75. 75.
    Fung V, Zhang J, Hu G, Ganesh P, Sumpter BG. 2021. Inverse design of two-dimensional material with invertible neural networks. arXiv:2106.03013 [cond-mat.mtrl-sci]
  76. 76.
    Yuan Q, Santana-Bonilla A, Zwijnenburg MA, Jelfs KE. 2020. Molecular generation targeting desired electronic properties via deep generative models. Nanoscale 12:6744–58
    [Google Scholar]
  77. 77.
    Jung J, Yoon JI, Park HK, Kim JY, Kim HS. 2019. An efficient machine learning approach to establish structure–property linkages. Comput. Mater. Sci. 156:17–25
    [Google Scholar]
  78. 78.
    Zhao Z-W, del Cueto M, Geng Y, Troisi A. 2020. Effect of increasing the descriptor set on machine learning prediction of small molecule–based organic solar cells. Chem. Mater. 32:187777–87
    [Google Scholar]
  79. 79.
    Zhu M-X, Yu Q-C, Song H-G, Chen T-X, Chen J-M 2021. Rational design of high-energy-density polymer composites by machine learning approach. ACS Appl. Energy Mater. 4:21449–58
    [Google Scholar]
  80. 80.
    Kojima T, Washio T, Hara S, Koishi M. 2020. Synthesis of computer simulation and machine learning for achieving the best material properties of filled rubber. Sci. Rep. 10:18127
    [Google Scholar]
  81. 81.
    Goh GB, Siegel C, Vishnu A, Hodas NO, Baker N. 2017. Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models. arXiv:1706.06689 [stat.ML]
  82. 82.
    Wang Y, Zhang M, Lin A, Iyer A, Prasad AS et al. 2020. Mining structure–property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks. Mol. Syst. Des. Eng. 5:5962–75
    [Google Scholar]
  83. 83.
    Yang Z, Yabansu YC, Al-Bahrani R, Liao W-K, Choudhary AN et al. 2018. Deep learning approaches for mining structure–property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 151:278–87
    [Google Scholar]
  84. 84.
    Rosen AS, Iyer SM, Ray D, Yao Z, Aspuru-Guzik A et al. 2021. Machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery. Matter 4:51578–97
    [Google Scholar]
  85. 85.
    Coley CW, Barzilay R, Green WH, Jaakkola TS, Jensen KF. 2017. Convolutional embedding of attributed molecular graphs for physical property prediction. J. Chem. Inf. Model. 57:81757–72
    [Google Scholar]
  86. 86.
    Wallach I, Dzamba M, Heifets A. 2015. AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv:1510.02855 [cs.LG]
  87. 87.
    Peng Y, Zhang Z, Jiang Q, Guan J, Zhou S. 2019. TOP: towards better toxicity prediction by deep molecular representation learning. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)318–25 Piscataway, NJ: IEEE
    [Google Scholar]
  88. 88.
    Karimpouli S, Tahmasebi P. 2019. Image-based velocity estimation of rock using convolutional neural networks. Neural Netw. 111:89–97
    [Google Scholar]
  89. 89.
    Wu H, Fang W-Z, Kang Q, Tao W-Q, Qiao R. 2019. Predicting effective diffusivity of porous media from images by deep learning. Sci. Rep. 9:20387
    [Google Scholar]
  90. 90.
    Wu Z, Yang T, Deng Z, Huang B, Liu H et al. 2019. Predicting automatic crack detection and analysis for biological cellular materials in X-ray in situ tomography measurements. Integr. Mater. Manuf. Innov. 8:4559–69
    [Google Scholar]
  91. 91.
    Kondo R, Yamakawa S, Masuoka Y, Tajima S, Asahi R. 2017. Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics. Acta Mater. 141:29–38
    [Google Scholar]
  92. 92.
    Xie T, Grossman JC. 2018. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120:145301
    [Google Scholar]
  93. 93.
    Rahaman O, Gagliardi A. 2020. Deep learning total energies and orbital energies of large organic molecules using hybridization of molecular fingerprints. J. Chem. Inf. Model. 60:125971–83
    [Google Scholar]
  94. 94.
    Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. 2016. Molecular graph convolutions: moving beyond fingerprints. J. Comput.-Aided Mol. Des. 30:8595–608
    [Google Scholar]
  95. 95.
    Xu Y, Pei J, Lai L 2017. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model. 57:112672–85
    [Google Scholar]
  96. 96.
    Ryu S, Lim J, Hong SH, Kim WY. 2018. Deeply learning molecular structure–property relationships using attention- and gate-augmented graph convolutional network. arXiv:1805.10988 [cs.LG]
  97. 97.
    Frazier P. 2018. A tutorial on Bayesian optimization. arXiv:1807.02811 [stat.ML]
  98. 98.
    Moriconi R, Deisenroth MP, Kumar KSS. 2020. High-dimensional Bayesian optimization using low-dimensional feature spaces. Mach. Learn. 109:91925–43
    [Google Scholar]
  99. 99.
    Wang Z, Hutter F, Zoghi M, Matheson D, De Freitas N. 2016. Bayesian optimization in a billion dimensions via random embeddings. J. Artif. Intell. Res. 55:1361–87
    [Google Scholar]
  100. 100.
    Cao B, Adutwum LA, Oliynyk AO, Luber EJ, Olsen BC et al. 2018. How to optimize materials and devices via design of experiments and machine learning: demonstration using organic photovoltaics. ACS Nano 12:87434–44
    [Google Scholar]
  101. 101.
    MacLeod BP, Parlane FGL, Morrissey TD, Häse F, Roch LM et al. 2020. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6:20eaaz8867
    [Google Scholar]
  102. 102.
    Dave A, Mitchell J, Kandasamy K, Wang H, Burke S et al. 2020. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning. Cell Rep. Phys. Sci. 1:12100264
    [Google Scholar]
  103. 103.
    Wang B, Cai J, Liu C, Yang J, Ding X 2020. Harnessing a novel machine-learning-assisted evolutionary algorithm to co-optimize three characteristics of an electrospun oil sorbent. ACS Appl. Mater. Interfaces 12:3842842–49
    [Google Scholar]
  104. 104.
    Wen C, Zhang Y, Wang C, Xue D, Bai Y et al. 2019. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 170:109–17
    [Google Scholar]
  105. 105.
    Munshi J, Chen W, Chien T, Balasubramanian G. 2021. Machine learned metaheuristic optimization of the bulk heterojunction morphology in P3HT:PCBM thin films. Comput. Mater. Sci. 187:110119
    [Google Scholar]
  106. 106.
    Zhang W, Wang B, Zhao C. 2021. Selective thermophotovoltaic emitter with aperiodic multilayer structures designed by machine learning. ACS Appl. Energy Mater. 4:22004–13
    [Google Scholar]
  107. 107.
    Wheatle BK, Fuentes EF, Lynd NA, Ganesan V. 2020. Design of polymer blend electrolytes through a machine learning approach. Macromolecules 53:219449–59
    [Google Scholar]
  108. 108.
    Wang Y, Xie T, France-Lanord A, Berkley A, Johnson JA et al. 2020. Toward designing highly conductive polymer electrolytes by machine learning assisted coarse-grained molecular dynamics. Chem. Mater. 32:104144–51
    [Google Scholar]
  109. 109.
    Khatamsaz D, Molkeri A, Couperthwaite R, James J, Arróyave R et al. 2021. Adaptive active subspace-based efficient multifidelity materials design. Mater. Des. 209:110001
    [Google Scholar]
  110. 110.
    Batra R, Song L, Ramprasad R. 2021. Emerging materials intelligence ecosystems propelled by machine learning. Nat. Rev. Mater. 6:8655–78
    [Google Scholar]
  111. 111.
    Lookman T, Balachandran PV, Xue D, Yuan R. 2019. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput. Mater. 5:121
    [Google Scholar]
  112. 112.
    Zou H, Hastie T. 2005. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67:2301–20
    [Google Scholar]
  113. 113.
    Smola AJ, Schölkopf B. 2004. A tutorial on support vector regression. Stat. Comput. 14:3199–222
    [Google Scholar]
  114. 114.
    Chang Y-W, Hsieh C-J, Chang K-W, Ringgaard M, Lin C-J. 2010. Training and testing low-degree polynomial data mappings via linear SVM. J. Mach. Learn. Res. 11:481471–90
    [Google Scholar]
  115. 115.
    Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T. 2016. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7:11241
    [Google Scholar]
  116. 116.
    Xue D, Xue D, Yuan R, Zhou Y, Balachandran PV et al. 2017. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater. 125:532–41
    [Google Scholar]
  117. 117.
    Storn R, Price K. 1997. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11:4341–59
    [Google Scholar]
  118. 118.
    Yang X-S, Deb S 2010. Cuckoo search via Levy flights. arXiv:1003.1594 [math.OC]
  119. 119.
    Liu D, Tan Y, Khoram E, Yu Z 2018. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 5:41365–69
    [Google Scholar]
  120. 120.
    Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H. 2018. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl. 7:160
    [Google Scholar]
  121. 121.
    Harper ES, Coyle EJ, Vernon JP, Mills MS. 2020. Inverse design of broadband highly reflective metasurfaces using neural networks. Phys. Rev. B 101:195104
    [Google Scholar]
  122. 122.
    Harper ES, Weber MN, Mills MS. 2019. Machine accelerated nano-targeted inhomogeneous structures. 2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)1–5 Piscataway, NJ: IEEE
    [Google Scholar]
  123. 123.
    Roberts NB, Keshavarz Hedayati M 2021. A deep learning approach to the forward prediction and inverse design of plasmonic metasurface structural color. Appl. Phys. Lett. 119:061101
    [Google Scholar]
  124. 124.
    So S, Mun J, Rho J. 2019. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core-shell nanoparticles. ACS Appl. Mater. Interfaces 11:2724264–68
    [Google Scholar]
  125. 125.
    Qiu C, Wu X, Luo Z, Yang H, Wang G et al. 2021. Simultaneous inverse design continuous and discrete parameters of nanophotonic structures via back-propagation inverse neural network. Opt. Commun. 483:126641
    [Google Scholar]
  126. 126.
    Phan AD, Nguyen CV, Linh PT, Huynh TV, Lam VD et al. 2020. Deep learning for the inverse design of mid-infrared graphene plasmons. Crystals 10:2125
    [Google Scholar]
  127. 127.
    Unni R, Yao K, Zheng Y. 2020. Deep convolutional mixture density network for inverse design of layered photonic structures. ACS Photonics 7:102703–12
    [Google Scholar]
  128. 128.
    Sanchez-Lengeling B, Outeiral C, Guimaraes G, Aspuru-Guzik A. 2017. Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC). ChemRxiv 5309668. https://doi.org/10.26434/chemrxiv.5309668
    [Crossref]
  129. 129.
    Liu Z, Zhu D, Rodrigues SP, Lee K-T, Cai W. 2018. Generative model for the inverse design of metasurfaces. Nano Lett. 18:106570–76
    [Google Scholar]
  130. 130.
    So S, Rho J. 2019. Designing nanophotonic structures using conditional deep convolutional generative adversarial networks. Nanophotonics 8:71255–61
    [Google Scholar]
  131. 131.
    Jiang J, Sell D, Hoyer S, Hickey J, Yang J, Fan JA 2019. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13:88872–78
    [Google Scholar]
  132. 132.
    Kim B, Lee S, Kim J. 2020. Inverse design of porous materials using artificial neural networks. Sci. Adv. 6:eaax9324
    [Google Scholar]
  133. 133.
    Jiang J, Fan JA. 2019. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett. 19:85366–72
    [Google Scholar]
  134. 134.
    Kiarashinejad Y, Abdollahramezani S, Adibi A. 2020. Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures. npj Comput. Mater. 6:112
    [Google Scholar]
  135. 135.
    Ma J, Huang Y, Pu M, Xu D, Luo J et al. 2020. Inverse design of broadband metasurface absorber based on convolutional autoencoder network and inverse design network. J. Phys. D 53:464002
    [Google Scholar]
  136. 136.
    Maulana Kusdhany MI, Lyth SM 2021. New insights into hydrogen uptake on porous carbon materials via explainable machine learning. Carbon 179:190–201
    [Google Scholar]
  137. 137.
    Chen Y, Cheng A, Zhang C, Chen S, Ren Z 2021. Rapid mechanical evaluation of the engine hood based on machine learning. J. Braz. Soc. Mech. Sci. Eng. 43:7345
    [Google Scholar]
  138. 138.
    Howard MP, Lequieu J, Delaney KT, Ganesan V, Fredrickson GH, Truskett TM. 2020. Connecting solute diffusion to morphology in triblock copolymer membranes. Macromolecules 53:72336–43
    [Google Scholar]
  139. 139.
    Sabando MV, Ponzoni I, Soto AJ. 2019. Neural-based approaches to overcome feature selection and applicability domain in drug-related property prediction. Appl. Soft Comput. 85:105777
    [Google Scholar]
  140. 140.
    Lee SY, Byeon S, Kim HS, Jin H, Lee S 2021. Deep learning–based phase prediction of high-entropy alloys: optimization, generation, and explanation. Mater. Des. 197:109260
    [Google Scholar]
  141. 141.
    Jadrich RB, Lindquist BA, Truskett TM. 2018. Unsupervised machine learning for detection of phase transitions in off-lattice systems. I. Foundations.. J. Chem. Phys. 149:194109
    [Google Scholar]
  142. 142.
    Jadrich RB, Lindquist BA, Piñeros WD, Banerjee D, Truskett TM. 2018. Unsupervised machine learning for detection of phase transitions in off-lattice systems. II. Applications.. J. Chem. Phys. 149:194110
    [Google Scholar]
  143. 143.
    Simonyan K, Vedaldi A, Zisserman A. 2014. Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:1312.6034 [cs.CV]
  144. 144.
    Pokuri BSS, Ghosal S, Kokate A, Sarkar S, Ganapathysubramanian B. 2019. Interpretable deep learning for guided microstructure–property explorations in photovoltaics. npj Comput. Mater. 5:195
    [Google Scholar]
  145. 145.
    Sundararajan M, Taly A, Yan Q. 2017. Axiomatic attribution for deep networks. arXiv:1703.01365 [cs.LG]
  146. 146.
    Dai M, Demirel MF, Liang Y, Hu J-M. 2021. Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials. npj Comput. Mater. 7:1103
    [Google Scholar]
  147. 147.
    Desai S, Strachan A. 2021. Parsimonious neural networks learn interpretable physical laws. Sci. Rep. 11:12761
    [Google Scholar]
  148. 148.
    Iwasaki Y, Sawada R, Stanev V, Ishida M, Kirihara A et al. 2019. Materials development by interpretable machine learning. arXiv:1903.02175 [cond-mat.mtrl-sci]
/content/journals/10.1146/annurev-chembioeng-092220-024340
Loading
/content/journals/10.1146/annurev-chembioeng-092220-024340
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error