1932

Abstract

Single-use technologies have transformed conventional biopharmaceutical manufacturing, and their adoption is increasing rapidly for emerging applications like antibody–drug conjugates and cell and gene therapy products. These disruptive technologies have also had a significant impact during the coronavirus disease 2019 pandemic, helping to advance process development to enable the manufacturing of new monoclonal antibody therapies and vaccines. Single-use systems provide closed plug-and-play solutions and enable process intensification and continuous processing. Several challenges remain, providing opportunities to advance single-use sensors and their integration with single-use systems, to develop novel plastic materials, and to standardize design for interchangeability. Because the industry is changing rapidly, a holistic analysis of the current single-use technologies is required, with a summary of the latest advancements in materials science and the implementation of these technologies in end-to-end bioprocesses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-030223
2022-06-07
2024-07-13
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092220-030223.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-030223&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Singh V. 1999. Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:1–3149–58
    [Google Scholar]
  2. 2.
    Shukla AA, Gottschalk U. 2013. Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol 31:3147–54
    [Google Scholar]
  3. 3.
    Rader RA. 2021. Top bioprocessing trends. BioProcess Int 19:1–226–29
    [Google Scholar]
  4. 4.
    Fisher AC, Kamga MH, Agarabi C, Brorson K, Lee SL, Yoon S. 2019. The current scientific and regulatory landscape in advancing integrated continuous biopharmaceutical manufacturing. Trends Biotechnol 37:3253–67
    [Google Scholar]
  5. 5.
    Smith MT, Madsen B, Hsiao TW, Jones N. 2018. Single-use bioreactors: performance and usability considerations part 1: performance for process control. BioProcess Int 16:615–19
    [Google Scholar]
  6. 6.
    Allison N, Richards J 2014. Current status and future trends for disposable technology in the biopharmaceutical industry. J. Chem. Technol. Biotechnol. 89:91283–87
    [Google Scholar]
  7. 7.
    Langer ES, Rader RA. 2014. Single-use technologies in biopharmaceutical manufacturing: a 10-year review of trends and the future. Eng. Life Sci 14:3238–43
    [Google Scholar]
  8. 8.
    Ravisé A, Cameau E, De Abreu G, Pralong A. 2009. Hybrid and disposable facilities for manufacturing of biopharmaceuticals: pros and cons. Disposable Bioreactors R Eibl, D Eibl 185–219 Heidelberg, Berlin: Springer
    [Google Scholar]
  9. 9.
    Klutz S, Magnus J, Lobedann M, Schwan P, Maiser B et al. 2015. Developing the biofacility of the future based on continuous processing and single-use technology. J. Biotechnol. 213:120–30
    [Google Scholar]
  10. 10.
    Roizman I, Langer E. 2019. CMOs leading the way on single-use systems adoption. BioPharm Int 32:310–14
    [Google Scholar]
  11. 11.
    Morrow JK, Langer ES. 2020. Rise of single-use bioprocessing technologies: dominating most R&D and clinical manufacture. Am. Pharm. Rev. 23:138–41
    [Google Scholar]
  12. 12.
    Langer ES, Rader RA. 2018. Biopharmaceutical manufacturing is shifting to single-use systems. Are the dinosaurs, the large stainless steel facilities, becoming extinct?. Am. Pharm. Rev. 21:6114–19
    [Google Scholar]
  13. 13.
    van Riel D, de Wit E. 2020. Next-generation vaccine platforms for COVID-19. Nat. Mater. 19:8810–12
    [Google Scholar]
  14. 14.
    Frank GT. 2018. Transformation of biomanufacturing by single-use systems and technology. Curr. Opin. Chem. Eng. 22:62–70
    [Google Scholar]
  15. 15.
    Rao G, Moreira A, Brorson K. 2009. Disposable bioprocessing: The future has arrived. Biotechnol. Bioeng. 102:2348–56
    [Google Scholar]
  16. 16.
    Rudge SR. 2017. Single-use systems for biotechnology products. Eur. Pharm. Rev. 2:34–40
    [Google Scholar]
  17. 17.
    Nadar S, Shooter G, Somasundaram B, Shave E, Baker K, Lua LHL. 2021. Intensified downstream processing of monoclonal antibodies using membrane technology. Biotechnol. J. 16:32000309
    [Google Scholar]
  18. 18.
    Shukla AA, Mostafa S, Wilson M, Lange D 2012. Vertical integration of disposables in biopharmaceutical drug substance manufacturing. BioProcess Int 10:634–47
    [Google Scholar]
  19. 19.
    Madsen B, Smith M, Jones N. 2019. Introducing the Enhanced and DynaDrive S.U.B.s: meeting the demands of intensifying upstream in single-use Poster, Thermo Fisher Sci. Waltham, MA: https://assets.thermofisher.com/TFS-Assets/BPD/posters/enhanced-dynadrive-subs-scientific-poster.pdf
    [Google Scholar]
  20. 20.
    Madsen B, Cobia J, Jones N. 2019. S.U.B. enhancements for high-density perfusion cultures: design improvements, performance characterization, modeling, and cell culture Appl. note, Thermo Fisher Sci Waltham, MA: https://assets.thermofisher.com/TFS-Assets/BPD/Application-Notes/sub-enhancements-perfusion-cultures-app-note.pdf
    [Google Scholar]
  21. 21.
    Thermo Fisher Sci 2020. HyPerforma DynaDrive Single-Use Bioreactor: 500 liters HyPerforma DynaDrive Single-Use Bioreactor Data sheet, Thermo Fisher Sci. Waltham, MA: http://assets.thermofisher.com/TFS-Assets/BPD/Datasheets/500l-dynadrive-sub-data-sheet.pdf
    [Google Scholar]
  22. 22.
    Thermo Fisher Sci 2021. HyPerforma DynaDrive Single-Use Bioreactor: 3,000 and 5,000 liters HyPerforma DynaDrive Single-Use Bioreactors Data sheet, Thermo Fisher Sci. Waltham, MA: http://assets.thermofisher.com/TFS-Assets/BPD/Datasheets/3000-and-5000l-dynadrive-sub-data-sheet.pdf
    [Google Scholar]
  23. 23.
    Phanse P, Sattler A, Mauro H, Cobia J. 2021. Process performance comparison between the 50 liters HyPerforma DynaDrive S.U.B. and legacy S.U.B. platforms: evaluation across multiple production cell lines Appl. note, Thermo Fisher Sci. Waltham, MA: http://assets.thermofisher.com/TFS-Assets/BPD/Application-Notes/process-performance-comparison-50l-hyperforma-dynadrive-sub-legacy-subs.pdf
    [Google Scholar]
  24. 24.
    Jones N. 2015. Single-use processing for microbial fermentations. BioProcess Int 13:456–62
    [Google Scholar]
  25. 25.
    Nienow AW, Isailovic B, Barrett TA. 2016. Design and performance of single-use, stirred-tank bioreactors. BioProcess Int 14:1012–21
    [Google Scholar]
  26. 26.
    Pall Corp 2016. Cultivation of Chinese hamster ovary (CHO) cells in Allegro STR 1000 single-use stirred tank bioreactor system Appl. note, Pall Corp. New York: https://www.pall.com/content/dam/pall/biopharm/lit-library/non-gated/application-notes/16.6487_USD3135_Allegro_STR1000_CHO_Cells_AN_EN.pdf
    [Google Scholar]
  27. 27.
    WuXi Biol 2021. The world's largest 36,000L biomanufacturing line using single-use bioreactors launches GMP operation at WuXi Biologics. ABEC News Feb. 9. https://www.abec.com/2021/02/11/the-worlds-largest-36000l-biomanufacturing-line-using-single-use-bioreactors-launches-gmp-operation-at-wuxi-biologics/
    [Google Scholar]
  28. 28.
    ABEC 2021. Custom single run—ABEC Scalable Single-Use Broch., ABEC Bethlehem, PA: https://www.abec.com/b_a_goals/brochure/
    [Google Scholar]
  29. 29.
    Ding Y, Zeck B, Allen SP. 2019. Comparative study of single-use and reusable fermentors: production of recombinant proteins through bacterial fermentation. BioProcess Int 17:1024–31
    [Google Scholar]
  30. 30.
    Schmidt SR, Wieschalka S, Wagner R. 2017. Single-use depth filters: application in clarifying industrial cell cultures. BioProcess Int 14:16–11
    [Google Scholar]
  31. 31.
    Terumo BCT. 2021. Quantum: automated cell culture Prod., Terumo BCT Lakewood, CO: https://www.terumobct.com/quantum
    [Google Scholar]
  32. 32.
    Hanley PJ, Mei Z, Durett AG, da Graca Cabreira-Harrison M, Klis M et al. 2014. Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System. Cytotherapy 16:81048–58
    [Google Scholar]
  33. 33.
    Tirughana R, Metz MZ, Li Z, Hall C, Hsu D et al. 2018. GMP production and scale-up of adherent neural stem cells with a Quantum Cell Expansion System. Mol. Ther. Meth. Clin. Dev. 10:48–56
    [Google Scholar]
  34. 34.
    Bettinardi IW, Castan A, Medronho RA, Castilho LR. 2020. Hydrocyclones as cell retention device for CHO perfusion processes in single-use bioreactors. Biotechnol. Bioeng. 117:71915–28
    [Google Scholar]
  35. 35.
    Pall Corp 2021. iCELLis® Single-Use Fixed-Bed Bioreactor Systems Data sheet, Pall Corp. New York: https://www.pall.com/content/dam/pall/biopharm/lit-library/non-gated/Datasheets/icellis-bioreactor-ds-en.pdf
    [Google Scholar]
  36. 36.
    Lesch HP, Valonen P, Karhinen M. 2021. Evaluation of the single-use fixed-bed bioreactors in scalable virus production. Biotechnol. J. 16:12000020
    [Google Scholar]
  37. 37.
    Berrie DM, Waters RC, Montoya C, Chatel A, Vela EM. 2020. Development of a high-yield live-virus vaccine production platform using a novel fixed-bed bioreactor. Vaccine 38:203639–45
    [Google Scholar]
  38. 38.
    Zhang Y, Stobbe P, Silvander CO, Chotteau V. 2015. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor. J. Biotechnol. 213:28–41
    [Google Scholar]
  39. 39.
    Miltenyi Biotec 2021. Automated cell processing with the CliniMACS Prodigy Prod., Miltenyi Biotec., Bergisch Gladbach, Ger https://www.miltenyibiotec.com/GB-en/products/clinimacs-prodigy.html
    [Google Scholar]
  40. 40.
    Mock U, Nickolay L, Philip B, Cheung GWK, Zhan H et al. 2016. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy. Cytotherapy 18:81002–11
    [Google Scholar]
  41. 41.
    Lonza 2021. The Cocoon: the next step in personalized therapy manufacturing Technol. prod., Lonza Basel, Switz: https://pharma.lonza.com/technologies-products/cocoon-platform/cocoon
    [Google Scholar]
  42. 42.
    Stanton D. 2020. Automation: ‘The only way to truly scale cell therapy manufacture’ says Lonza. BioProcess Insider Sept. 9. https://bioprocessintl.com/bioprocess-insider/therapeutic-class/automation-the-only-way-to-truly-scale-cell-therapy-manufacture-says-lonza/
    [Google Scholar]
  43. 43.
    Zydney AL. 2021. New developments in membranes for bioprocessing—a review. J. Membr. Sci. 620:118804
    [Google Scholar]
  44. 44.
    Sartorius Stedim Biotech 2021. Ksep Systems: advanced, scalable, single-use automated centrifugation systems Prod. datasheet, Sartorius Stedim Biotech., Goettingen, Ger. https://www.sartorius.com/download/9112/data-ksep-systems-s-2010-e-data.pdf
    [Google Scholar]
  45. 45.
    Kelly W, Rubin J, Scully J, Kamaraju H, Wnukowski P, Bhatia R. 2016. Understanding and modeling retention of mammalian cells in fluidized bed centrifuges. Biotechnol. Prog. 32:61520–30
    [Google Scholar]
  46. 46.
    Mehta S 2014. Automated single-use centrifugation solution for diverse biomanufacturing process. Continuous Processing in Pharmaceutical Manufacturing G Subramanian 385–400 Weinheim, Berlin: Wiley-VCH
    [Google Scholar]
  47. 47.
    Saballus M, Nisser L, Kampmann M, Greller G. 2021. A novel clarification approach for intensified monoclonal antibody processes with 100 million cells/mL using a single-use fluidized bed centrifuge. Biochem. Eng. J. 167:107887
    [Google Scholar]
  48. 48.
    Pneumatic Scale Angelus 2021. Single-use centrifuge machines Prod., Pneumatic Scale Angelus, Stow, OH https://www.psangelus.com/models/centrifuge-separation-systems/single-use
    [Google Scholar]
  49. 49.
    Hundley R, Königsson S. 2020. Development of a single-use, hermetic centrifuge system for mammalian harvests with moderate to high cell content. BioProcess Int 18:1026–34
    [Google Scholar]
  50. 50.
    Thermo Fisher Sci 2020. CentriPAK BioProcess Container (BPC): next generation centrifuge container providing a single-use, sterilized, closed system for cell culture separations Broch., Thermo Fisher Sci. Waltham, MA: https://assets.thermofisher.com/TFS-Assets/LPD/Product-Information/CentriPAK-BioProcess-Container-Brochure-BRCENTRIPAK-EN.pdf
    [Google Scholar]
  51. 51.
    Casey C, Gallos T, Alekseev Y, Ayturk E, Pearl S 2011. Protein concentration with single-pass tangential flow filtration (SPTFF). J. Membr. Sci. 384:1–282–88
    [Google Scholar]
  52. 52.
    Yehl CJ, Zydney AL. 2020. Single-use, single-pass tangential flow filtration using low-cost hollow fiber modules. J. Membr. Sci. 595:117517
    [Google Scholar]
  53. 53.
    Yehl CJ, Jabra MG, Zydney AL. 2019. Hollow fiber countercurrent dialysis for continuous buffer exchange of high-value biotherapeutics. Biotechnol. Prog. 35:2e2763
    [Google Scholar]
  54. 54.
    Scharl T, Jungreuthmayer C, Dürauer A, Schweiger S, Schröder T, Jungbauer A. 2016. Trend analysis of performance parameters of pre-packed columns for protein chromatography over a time span of ten years. J. Chromatogr. A 1465:63–70
    [Google Scholar]
  55. 55.
    Schweiger S, Hinterberger S, Jungbauer A. 2017. Column-to-column packing variation of disposable pre-packed columns for protein chromatography. J. Chromatogr. A 1527:70–79
    [Google Scholar]
  56. 56.
    Ishihara T, Miyahara M, Yamada T, Yamamoto K. 2019. Innovative next-generation monoclonal antibody purification using activated carbon: a challenge for flow-through and column-free processes. J. Chromatogr. B 1121:72–81
    [Google Scholar]
  57. 57.
    Gjoka X, Gantier R, Schofield M. 2017. Transfer of a three step mAb chromatography process from batch to continuous: optimizing productivity to minimize consumable requirements. J. Biotechnol. 242:11–18
    [Google Scholar]
  58. 58.
    Ötes O, Bernhardt C, Brandt K, Flato H, Klingler O et al. 2020. Moving to CoPACaPAnA: implementation of a continuous protein A capture process for antibody applications within an end-to-end single-use GMP manufacturing downstream process. Biotechnol. Rep. 26:e00465
    [Google Scholar]
  59. 59.
    Frerix A. 2019. New features for single-use pumps in biopharmaceutical manufacturing. BioProcess Int 10:1–4
    [Google Scholar]
  60. 60.
    Absolute Rep 2021. Global single use pumps market report, history and forecast 20162027 Market anal. insights, Absolute Rep Maharashtra, India: https://www.absolutereports.com/global-single-use-pumps-market-18681692
    [Google Scholar]
  61. 61.
    Watson Marlow Fluid Technol. Group 2019. Biotech overview brochure Broch., Watson Marlow Fluid Technol. Group Marlow, UK: https://www.wmfts.com/globalassets/literature/brochures/b-biotech-pharmaceutical-overview-en.pdf
    [Google Scholar]
  62. 62.
    PDS Sandbox LLC 2018. Comparative testing of single use pump technologies used in downstream processing for Watson-Marlow Fluid Technology Group White pap., PDS Sandbox LLC Salem, NH: https://www.wmftg.com/globalassets/literature/wp-single-use-pump-technologies-in-downstream-processing.pdf
    [Google Scholar]
  63. 63.
    Mirasol F. 2020. Single-use sensors increase process understanding. BioPharm Int 33:1125–26
    [Google Scholar]
  64. 64.
    Biechele P, Busse C, Solle D, Scheper T, Reardon K. 2015. Sensor systems for bioprocess monitoring. Eng. Life Sci. 15:5469–88
    [Google Scholar]
  65. 65.
    Diehl BH, LaPack MA, Wang TY, Brandenstein MC, Kaneshiro SM et al. 2015. A biopharmaceutical industry perspective on single-use sensors for biological process applications. BioPharm Int 28:428–31
    [Google Scholar]
  66. 66.
    Busse C, Biechele P, de Vries I, Reardon KF, Solle D, Scheper T. 2017. Sensors for disposable bioreactors. Eng. Life Sci 17:8940–52
    [Google Scholar]
  67. 67.
    Trace Anal 2021. Single-use dialysis sampling Sampl. syst., Trace Anal. Braunschweig, Ger: https://www.trace.de/en/products/sampling-systems/single-use-dialysis-sampling/
    [Google Scholar]
  68. 68.
    Potyrailo RA, Surman C, Monk D, Morris WG, Wortley T et al. 2011. RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing. Meas. Sci. Technol. 22:8082001
    [Google Scholar]
  69. 69.
    Madsen B, Jones N, Bhat A, Jones R. 2020. Measuring cell density in HyPerforma S.U.B.s with ABER FUTURA neotf single-use sensors Appl. note, ABER, Inst. Aberystwyth, UK: https://aberinstruments.com/content/uploads/2021/03/neo-application-note-001.pdf
    [Google Scholar]
  70. 70.
    Bisgaard J, Muldbak M, Cornelissen S, Tajsoleiman T, Huusom JK et al. 2020. Flow-following sensor devices: a tool for bridging data and model predictions in large-scale fermentations. Comput. Struct. Biotechnol. J. 18:2908–19
    [Google Scholar]
  71. 71.
    O'Mara P, Farrell A, Bones J, Twomey K. 2018. Staying alive! Sensors used for monitoring cell health in bioreactors. Talanta 176:130–39
    [Google Scholar]
  72. 72.
    Kelly PS, McSweeney S, Coleman O, Carillo S, Henry M et al. 2016. Process-relevant concentrations of the leachable bDtBPP impact negatively on CHO cell production characteristics. Biotechnol. Prog. 32:61547–58
    [Google Scholar]
  73. 73.
    Blanck E, Parma H, Ganguli P, Lindskog E, Carter J et al. 2015. Implementation of raw material control strategies in the manufacture of single-use bioprocessing containers. BioPharm Int 28:122–29
    [Google Scholar]
  74. 74.
    Jurkiewicz E, Husemann U, Greller G, Barbaroux M, Fenge C. 2014. Verification of a new biocompatible single-use film formulation with optimized additive content for multiple bioprocess applications. Biotechnol. Prog. 30:51171–76
    [Google Scholar]
  75. 75.
    Thermo Fisher Sci 2018. BPC materials of construction: Critical performance attributes White pap., Thermo Fisher Sci. Waltham, MA: https://assets.thermofisher.com/TFS-Assets/BPD/Reference-Materials/bpc-construction-materials-white-paper.pdf
    [Google Scholar]
  76. 76.
    Hartzel WJ. 2007. Materials of construction for single-use bioprocessing systems. Innov. Pharm. Technol. 22:46–48
    [Google Scholar]
  77. 77.
    Maitz MF. 2015. Applications of synthetic polymers in clinical medicine. Biosurface Biotribology 1:3161–76
    [Google Scholar]
  78. 78.
    Walker TW, Frelka N, Shen Z, Chew AK, Banick J et al. 2020. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 6:47eaba7599
    [Google Scholar]
  79. 79.
    Gao Y, Allison N 2016. Extractables and leachables issues with the application of single use technology in the biopharmaceutical industry. J. Chem. Technol. Biotechnol. 91:289–95
    [Google Scholar]
  80. 80.
    Kadarusman J, Bhatia R, McLaughlin J, Lin WLR. 2005. Growing cholesterol-dependent NSO myeloma cell line in the wave bioreactor system: overcoming cholesterol-polymer interaction by using pretreated polymer or inert fluorinated ethylene propylene. Biotechnol. Prog. 21:41341–46
    [Google Scholar]
  81. 81.
    Jere D, Sediq AS, Huwyler J, Vollrath I, Kardorff M, Mahler HC. 2021. Challenges for cell-based medicinal products from a pharmaceutical product perspective. J. Pharm. Sci. 110:51900–8
    [Google Scholar]
  82. 82.
    Goldstein A, Pohlscheidt M, Loesch J, Mazzarella K, Bieger B et al. 2012. Disposable freeze systems in the pharmaceutical industry. Am. Pharm. Rev. 15:753–58
    [Google Scholar]
  83. 83.
    Wood J, Mahajan E, Shiratori M. 2013. Strategy for selecting disposable bags for cell culture media applications based on a root-cause investigation. Biotechnol. Prog. 29:61535–49
    [Google Scholar]
  84. 84.
    Sargent B. 2017. Fortem: a platform film built for bioprocess. Cell Culture Dish March 22. https://cellculturedish.com/video-fortem-a-platform-built-for-bioprocess/
    [Google Scholar]
  85. 85.
    Dorival-García N, Carillo S, Ta C, Roberts D, Comstock K et al. 2018. Large-scale assessment of extractables and leachables in single-use bags for biomanufacturing. Anal. Chem. 90:9006–15
    [Google Scholar]
  86. 86.
    Audran G, Dorey S, Dupuy N, Gaston F, Marque SRA 2015. Degradation of γ-irradiated polyethylene-ethylene vinyl alcohol-polyethylene multilayer films: an ESR study. Polym. Degrad. Stab. 122:169–79
    [Google Scholar]
  87. 87.
    Driffield M, Bradley EL, Leon I, Lister L, Speck DR et al. 2014. Analytical screening studies on irradiated food packaging. Food Addit. Contam. A 31:3556–65
    [Google Scholar]
  88. 88.
    Suarez JCM, Mano EB. 2001. Characterization of degradation on gamma-irradiated recycled polyethylene blends by scanning electron microscopy. Polym. Degrad. Stab. 72:2217–21
    [Google Scholar]
  89. 89.
    Stoffers NH, Linssen JPH, Franz R, Welle F. 2004. Migration and sensory evaluation of irradiated polymers. Radiat. Phys. Chem. 71:1–2205–8
    [Google Scholar]
  90. 90.
    Demertzis PG, Franz R, Welle F. 1999. Effects of γ-irradiation on compositional changes in plastic packaging films. Packag. Technol. Sci. 12:3119–30
    [Google Scholar]
  91. 91.
    Dorey S, Gaston F, Dupuy N, Barbaroux M, Marque SRA. 2018. Reconciliation of pH, conductivity, total organic carbon with carboxylic acids detected by ion chromatography in solution after contact with multilayer films after γ-irradiation. Eur. J. Pharm. Sci. 117:216–26
    [Google Scholar]
  92. 92.
    Gaston F, Dupuy N, Marque SRA, Barbaroux M, Dorey S 2016. FTIR study of ageing of γ-irradiated biopharmaceutical EVA based film. Polym. Degrad. Stab. 129:19–25
    [Google Scholar]
  93. 93.
    Gaston F, Dupuy N, Marque SRA, Barbaroux M, Dorey S 2017. Impact of γ-irradiation, ageing and their interactions on multilayer films followed by AComDim. Anal. Chim. Acta 981:11–23
    [Google Scholar]
  94. 94.
    Hauk A, Pahl I, Dorey S, Menzel R. 2021. Using extractables data from single-use components for extrapolation to process equipment-related leachables: the toolbox and justifications. Eur. J. Pharm. Sci. 163:105841
    [Google Scholar]
  95. 95.
    Fouyer K, Lavastre O, Rondeau D. 2012. Direct monitoring of the role played by a stabilizer in a solid sample of polymer using direct analysis in real time mass spectrometry: the case of Irgafos 168 in polyethylene. Anal. Chem. 84:208642–49
    [Google Scholar]
  96. 96.
    Jenke D. 2020. Materials in manufacturing and packaging systems as sources of elemental impurities in packaged drug products: an updated literature review. PDA J. Pharm. Sci. Technol. 74:3324–47
    [Google Scholar]
  97. 97.
    Xiao NJ, Medley CD, Shieh IC, Downing G, Pizarro S et al. 2016. A small-scale model to assess the risk of leachables from single-use bioprocess containers through protein quality characterization. PDA J. Pharm. Sci. Technol. 70:6533–46
    [Google Scholar]
  98. 98.
    Ding W. 2013. Determination of extractables and leachables from single-use systems. Chem. Ing. Tech. 85:1–2186–96
    [Google Scholar]
  99. 99.
    Scherer N, Marcseková K, Posset T, Winter G. 2019. New studies on leachables in commercial scale protein drug filling lines using stir bar sorptive extraction coupled with TD-GC-MS and UPLC/QTOF- MS/MS analytics. Int. J. Pharm. 555:404–19
    [Google Scholar]
  100. 100.
    Paudel K, Hauk A, Maier TV, Menzel R. 2020. Quantitative characterization of leachables sinks in biopharmaceutical downstream processing. Eur. J. Pharm. Sci. 143:105069
    [Google Scholar]
  101. 101.
    Ding W, Martin J. 2010. Implementation of single-use technology in biopharmaceutical manufacturing. An approach to extractables and leachables studies, part three—single-use systems. BioProcess Tech 8:1052–59
    [Google Scholar]
  102. 102.
    Magarian N, Lee K, Nagpal K, Skidmore K, Mahajan E. 2016. Clearance of extractables and leachables from single-use technologies via ultrafiltration/diafiltration operations. Biotechnol. Prog. 32:3718–24
    [Google Scholar]
  103. 103.
    Hauk A, Jurkiewicz E, Pahl I, Loewe T, Menzel R. 2018. Filtration membranes—Scavengers for leachables?. Eur. J. Pharm. Sci. 120:191–98
    [Google Scholar]
  104. 104.
    Shea J, Goodrich E, Killian P, Becket P, Broschard T 2015. Adopting a fully single-use process: a leachables and patient safety evaluation case study. Single-Use Technologies II: Bridging Polymer Science to Biotechnology Applications E Mahajan, GJ Lye 37 ECI Sympos. Ser New York: BioProcess Int.
    [Google Scholar]
  105. 105.
    Ding W, Madsen G, Mahajan E, O'Connor S, Wong K 2014. Standardized extractables testing protocol for single-use systems in biomanufacturing. Pharm. Eng. 34:61–11
    [Google Scholar]
  106. 106.
    Scott B, Ullsten S, Wang P, Madsen GL, Dale G, Wong KM. 2020. BioPhorum best practice guide for: extractables testing of polymeric single-use components used in manufacturing Rep., BioPhorum, London https://www.biophorum.com/wp-content/uploads/Best-practices-guide-for-extractables-testing-April-2020.pdf
    [Google Scholar]
  107. 107.
    Pall Corp 2020. 2020 Advances in single-use technology standardization. Pall Biotech Blog Aug. 28. https://www.pall.co.uk/uk/en/biotech/blog/2020-advances-single-use-technology-standardization.html
    [Google Scholar]
  108. 108.
    US Pharmacopeia 2021. 〈665〉 Plastic Components and Systems Used to Manufacture Pharmaceutical Drug Products and Biopharmaceutical Drug Substances and Products Rockville, MD: US Pharmacopeia
    [Google Scholar]
  109. 109.
    Hammond M, Nunn H, Rogers G, Lee H, Marghitoiu AL et al. 2013. Identification of a leachable compound detrimental to cell growth in single-use bioprocess containers. PDA J. Pharm. Sci. Technol. 67:2123–34
    [Google Scholar]
  110. 110.
    Hammond M, Marghitoiu L, Lee H, Perez L, Rogers G et al. 2014. A cytotoxic leachable compound from single-use bioprocess equipment that causes poor cell growth performance. Biotechnol. Prog. 30:2332–37
    [Google Scholar]
  111. 111.
    Peng J, Zhao Y, Hong Y, Burkhalter RS, Hogue CL et al. 2018. Chemical identity and mechanism of action and formation of a cell growth inhibitory compound from polycarbonate flasks. Anal. Chem. 90:4603–10
    [Google Scholar]
  112. [Google Scholar]
  113. 113.
    Burke S. 2017. The many strengths of one film: Fortem single-use platform film built for bioprocess. BioProcess International: Industry Yearbook 2016–201786–87 New York: BioProcess Int.
    [Google Scholar]
  114. 114.
    Jachuck JR, Krishnathu SM, Landau JE, Ko HF, Bhatia R. 2020. Sensitivity of a PER.C6® cell line to bis(2,4-di-tert-butylphenyl)phosphate and evaluation of a new, biocompatible single-use film. Biotechnol. Prog. 36:6e3060
    [Google Scholar]
  115. 115.
    Eibl R, Steiger N, Fritz C, Eisenkrätzer D, Bär J et al. 2014. Recommendation for leachables studies: standardized cell culture test for the early identification of critical films Posit. pap., DECHEMA Biotechnol., Frankfurt am Main, Ger. https://dechema.de/dechema_media/Downloads/Positionspapiere/SingleUse_Empfehlung_Leachables_2014-called_by-dechema-original_page-136200-original_site-dechema_eV-view_image-1.pdf
    [Google Scholar]
  116. 116.
    Whitford WG, Scott C. 2014. Single-use and sustainability. BioProcess Int 12:4S12–17
    [Google Scholar]
  117. 117.
    Jobin JC, Krishnan M. 2012. Reducing the environmental impact of single-use systems. BioProcess Int 10:566–68
    [Google Scholar]
  118. 118.
    Pietrzykowski M, Flanagan W, Pizzi V, Brown A, Sinclair A, Monge M. 2013. An environmental life cycle assessment comparison of single-use and conventional process technology for the production of monoclonal antibodies. J. Clean. Prod. 41:150–62
    [Google Scholar]
  119. 119.
    Flanagan B. 2016. Single-use technology and sustainability: Cytiva quantifies the environmental impact Appl. note, BioProcess Online https://www.bioprocessonline.com/doc/single-use-technology-and-sustainability-quantifying-the-environmental-impact-0001
    [Google Scholar]
  120. 120.
    Whiting A, Costelloe T, Mwangi W, Collins M 2020. LCA of single-use technology in a generic biologics process Streamlined LCA rep., Am. Chem. Soc. Washington, DC:
    [Google Scholar]
  121. 121.
    Sinclair A, Leveen L, Monge M, Lim J, Cox S. 2008. The environmental impact of disposable technologies. Can disposables reduce your facility's environmental footprint?. BioPharm Int 6:4–15
    [Google Scholar]
  122. 122.
    Campbell J. 2020. Prioritizing product integrity: innovative liquid handling solutions for bulk drug substance management White pap., Thermo Fisher Sci. Waltham, MA: https://assets.thermofisher.com/TFS-Assets/BPD/Reference-Materials/prioritizing-product-integrity-liquid-handling-article.pdf
    [Google Scholar]
  123. 123.
    Barbaroux M, Horowski B, Mokuolu S, Petrich MA, Snyder M, Whitford W. 2021. The green imperative: part two—engineering for sustainability in single-use technologies. Bioprocess Int 19:1–218–25
    [Google Scholar]
  124. 124.
    Barbaroux M, Horowski B, Mokuolu S, Petrich MA, Whitford W, Flanagan B. 2020. The green imperative part one: life-cycle assessment and sustainability for single-use technologies in the biopharmaceutical industry. BioProcess Int 18:612–19
    [Google Scholar]
  125. 125.
    Liu S, Kots PA, Vance BC, Danielson A, Vlachos DG. 2021. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 7:17eabf8283
    [Google Scholar]
  126. 126.
    Ding W, Liang J, Anderson LL. 1997. Hydrocracking and hydroisomerization of high-density polyethylene and waste plastic over zeolite and silica–alumina-supported Ni and Ni–Mo sulfides. Energy Fuels 11:61219–23
    [Google Scholar]
  127. 127.
    Chen Y, Kumar A, Wei F, Tan Q, Li J. 2021. Single-use plastics: production, usage, disposal, and adverse impacts. Sci. Total Environ. 752:141772
    [Google Scholar]
  128. 128.
    Narancic T, Cerrone F, Beagan N, O'Connor KE. 2020. Recent advances in bioplastics: application and biodegradation. Polymers 12:4920
    [Google Scholar]
  129. [Google Scholar]
  130. 130.
    Weiss M, Haufe J, Carus M, Brandão M, Bringezu S et al. 2012. A review of the environmental impacts of biobased materials. J. Ind. Ecol. 16:S1S169–81
    [Google Scholar]
  131. 131.
    Chen L, Pelton REO, Smith TM. 2016. Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. J. Clean. Prod. 137:667–76
    [Google Scholar]
  132. 132.
    Noreen A, Zia KM, Zuber M, Ali M, Mujahid M 2016. A critical review of algal biomass: a versatile platform of bio-based polyesters from renewable resources. Int. J. Biol. Macromol. 86:937–49
    [Google Scholar]
  133. 133.
    Lu W, Ness JE, Xie W, Zhang X, Liu F et al. 2010. Biosynthesis of monomers for plastics from renewable oils. J. Am. Chem. Soc. 132:4315451–55
    [Google Scholar]
  134. 134.
    Lambert S, Wagner M. 2017. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem. Soc. Rev. 46:226855–71
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092220-030223
Loading
/content/journals/10.1146/annurev-chembioeng-092220-030223
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error