Scientific and engineering capabilities in hydrocarbon supply chains developed over decades in international oil and gas companies (IOCs) uniquely position these companies to drive rapid scale-up and transition to a net-zero emission economy. Flexible large-scale production of energy carriers such as hydrogen, ammonia, methanol, and other synthetic fuels produced with low- or zero-emission renewable power, nuclear energy, or hydrogen derived from natural gas with carbon capture and storage will enable long-distance transport and permanent storage options for clean energy. Use of energy carriers can overcome the inherent constraints of a fully electrified energy system by providing the energy and power densities, as well as transport and storage capacity, required to achieve energy supply and security in a net-zero emission economy, and over time allow optimization to the lowest cost for a consumer anywhere on the globe.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 2.
    Smil V. 2021. Grand Transitions: How the Modern World Was Made Oxford, UK: Oxford Univ. Press
  2. 3.
    Clark G. 2007. A Farewell to Alms: A Brief Economic History of the World Princeton, NJ: Princeton Univ. Press
  3. 4.
    Deutch J, Karplus V, Majumdar A, Smit D, Sweeney J, Fedor D. 2022. Making demonstrations effective: report of the Schultz Energy and Climate Task Force's Industry Decarbonization Work Group Rep. Hoover Inst., Stanford Univ. Stanford, CA:
  4. 5.
    Xiao X, Li F, Ye Z, Xi Z, Ma D, Yang S 2020. Optimal configuration of energy storage for remotely delivering wind power by ultra-high voltage lines. J. Energy Storage 31:101571
    [Google Scholar]
  5. 6.
    Alava JJ, Singh GG. 2022. Changing air pollution and CO2 emissions during the COVID-19 pandemic: lesson learned and future equity concerns of post-COVID recovery. Environ. Sci. Policy 130:1–8
    [Google Scholar]
  6. 7.
    Sherpa S. 2022. Estimated total annual building energy consumption at the block and lot level for NYC Map Sustain. Eng. Lab, Columbia Univ. NY: accessed Oct. 26, 2022. https://qsel.columbia.edu/nycenergy
  7. 8.
    Borrmann R, Rehfeldt K, Wallasch A-K, Lüers S. 2018. Capacity densities of European offshore wind farms Rep. SP18004A1 Deutsche WindGuard Varel, Ger.: https://www.windguard.com/publications-wind-energy-statistics.html?file=files/cto_layout/img/unternehmen/veroeffentlichungen/2018/Capacity%20Density%20of%20European%20Offshore%20Windfarmslr.pdf
  8. 9.
    Ong S, Campbell C, Denholm P, Margolis R, Heath G. 2013. Land-use requirements for solar power plants in the United States Tech. Rep., NREL/TP-6A20-56290 Natl. Renew. Energy Lab. Oak Ridge TN: https://www.nrel.gov/docs/fy13osti/56290.pdf
  9. 10.
    Denholm P, Margolis RM. 2008. Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States. Energy Policy 36:93531–43
    [Google Scholar]
  10. 11.
    Natl. Renew. Energy Lab 2022. Land use by system technology https://www.nrel.gov/analysis/tech-size.html
  11. 12.
    Antonini EGA, Caldeira K. 2021. Spatial constraints in large-scale expansion of wind power plants. PNAS 118:27e2103875118
    [Google Scholar]
  12. 13.
    Tollefson J. 2021. Top climate scientists are skeptical that nations will rein in global warming. Nature 599:22–24
    [Google Scholar]
  13. 14.
    Intergov. Panel Clim. Change 2022. Climate change 2022: impacts, adaptation and vulnerability Rep. IPCC Work Group II Geneva:
  14. 15.
    Shell 2014. The Petroleum Handbook Saint Louis: Elsevier Sci. , 6th ed..
  15. 16.
    Mokhatab S, Mak J, Valappil JV, Wood DA. 2014. Handbook of Liquefied Natural Gas Amsterdam: Elsevier/Gulf Prof. Publ.
  16. 17.
    Falk G, Herrmann F, Schmid GB. 1983. Energy forms or energy carriers?. Am. J. Phys. 51:121074–77
    [Google Scholar]
  17. 18.
    Schellenberger M. 2020. Apocalypse Never: Why Environmental Alarmism Hurts Us All New York: HarperCollins
  18. 19.
    ICCA-Chem 2019. The global chemical industry: catalyzing growth and addressing our world's sustainability challenges Rep. Oxford Econ. Oxford, UK: https://www.oxfordeconomics.com/resource/the-global-chemical-industry-catalyzing-growth-and-addressing-our-world-sustainability-challenges/
  19. 20.
    Bellone D, Hall S, Kar J, Olufon D. 2021. The big choices for oil and gas in navigating the energy transition. McKinsey March 10. https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-big-choices-for-oil-and-gas-in-navigating-the-energy-transition
    [Google Scholar]
  20. 21.
    Int. Energy Agency 2021.. Net zero by 2050: a roadmap for the global energy sector Rep. Int. Energy Agency Paris: https://www.iea.org/reports/net-zero-by-2050
  21. 22.
    Int. Energy Agency 2018. Share of oil reserves, oil production and oil upstream investment by company type, 2018 Rep. Int. Energy Agency Paris: https://www.iea.org/data-and-statistics/charts/share-of-oil-reserves-oil-production-and-oil-upstream-investment-by-company-type-2018
  22. 23.
    Wolak F. 2021. Long-term resource adequacy in wholesale electricity markets with significant intermittent renewables Doc., Stanford Energy, Stanford Univ. Stanford, CA: https://web.stanford.edu/group/fwolak/cgi-bin/sites/default/files/NBER_Intermittent_wolak_final.pdf
  23. 24.
    Ip G. 2021. Why financing the multi-trillion-dollar transition to net zero isn't that hard. Wall Street Journal Novemb. 4. https://www.wsj.com/articles/why-financing-the-multi-trillion-dollar-transition-to-net-zero-isnt-that-hard-11636018200
    [Google Scholar]
  24. 25.
    McKinsey 2022. The net zero transition: what it would cost, what it could bring Rep. McKinsey New York: https://www.mckinsey.com/capabilities/sustainability/our-insights/the-net-zero-transition-what-it-would-cost-what-it-could-bring
  25. 26.
    Roser M. 2022. The Our World in Data–Grapher accessed Jan. 29, 2023. https://ourworldindata.org/owid-grapher
  26. 27.
    Kharas H. 2017. The unprecedented expansion of the global middle class: an update. Glob. Econ. Dev. Work. Pap. 100 Brookings Inst. Washington, DC: https://www.brookings.edu/wp-content/uploads/2017/02/global_20170228_global-middle-class.pdf
  27. 28.
    Intergov. Panel Clim. Change 2007. Climate change 2007: mitigation of climate change, energy carriers Rep. AR4 WGIII 4.3.4 Intergov. Panel Clim. Change Geneva: https://www.ipcc.ch/report/ar4/wg3/
  28. 29.
    US Dep. Energy 2022. Hydrogen basics accessed Sept. 29, 2022. https://www.nrel.gov/research/eds-hydrogen.html
  29. 30.
    Orecchini F. 2006. The era of energy vectors. Int. J. Hydrogen Energy 31:141951–54
    [Google Scholar]
  30. 31.
    Modisha PM, Ouma CNM, Garidzirai R, Wasserscheid P, Bessarabov D. 2019. The prospect of hydrogen storage using liquid organic hydrogen carriers. Energy Fuels 33:42778–96
    [Google Scholar]
  31. 32.
    Patterson BD, Mo F, Borgschulte A, Hillestad M, Joos F et al. 2019. Renewable CO2 recycling and synthetic fuel production in a marine environment. PNAS 116:2512212–19
    [Google Scholar]
  32. 33.
    Intergov. Panel Clim. Change 2007. Working Group III: Mitigation of Climate Change, 4.3.4 energy carriers IPCC Fourth Assess. Rep. Clim. Change 2007 https://archive.ipcc.ch/publications_and_data/ar4/wg3/en/ch4s4-3-4.html
  33. 34.
    de Kleijne K, Hanssen SV, van Dinteren L, Huijbregts MAJ, van Zelm R, de Coninck H. 2022. Limits to Paris compatibility of CO2 capture and utilization. One Earth 5:2168–85
    [Google Scholar]
  34. 35.
    Gür TM. 2018. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11:102696–767
    [Google Scholar]
  35. 36.
    Denholm P, Brown P, Cole W, Mai T, Sergi B. 2022. Examining supply-side options to achieve 100% clean electricity by 2035 Doc., NREL/TP6A40-81644 Natl. Renew. Energy Lab. Golden, CO: https://www.nrel.gov/docs/fy22osti/81644.pdf
  36. 37.
    Fasihi M, Breyer C. 2020. Baseload electricity and hydrogen supply based on hybrid PV-wind power plants. J. Clean. Prod. 243:118466
    [Google Scholar]
  37. 38.
    Vidas L, Castro R. 2021. Recent developments on hydrogen production technologies: state-of-the-art review with a focus on green-electrolysis. Appl. Sci. 11:2311363
    [Google Scholar]
  38. 39.
    Sandalow D, Friedmann J, Aines R, McCormick C, McCoy S et al. 2019. ICEF industrial heat decarbonization roadmap. Rep. Innov. Cool Earth Forum https://cdrlaw.org/resources/icef-industrial-heat-decarbonization-roadmap/
  39. 40.
    Int. At. Energy Agency 2017. Opportunities for cogeneration with nuclear energy Nucl. Energy Ser. No. NP-T-4.1 Int. Atomic Energy Agency Vienna: https://www-pub.iaea.org/MTCD/Publications/PDF/P1749_web.pdf
  40. 41.
    Sepulveda NA, Jennings JD, de Sisternes FJ, Lester RK. 2018. The role of firm low-carbon electricity resources in deep decarbonization of power generation. Joule 2:2403–20
    [Google Scholar]
  41. 42.
    Buongiorno J, Corradini M, Parsons J, Petti D. 2018. The future of nuclear energy in a carbon-constrained world: an interdisciplinary MIT study Res., Mass. Inst. Technol. Cambridge, MA: https://energy.mit.edu/research/future-nuclear-energy-carbon-constrained-world/
  42. 43.
    R. Soc 2020. Nuclear cogeneration: civil nuclear energy in a low-carbon future Policy Brief., Oct. R. Soc. London: https://royalsociety.org/-/media/policy/projects/nuclear-cogeneration/2020-10-7-nuclear-cogeneration-policy-briefing.pdf
  43. 44.
    ICEF 2019. Industrial heat decarbonization roadmap Roadmap, ICEF Bonn, Ger: https://www.icef.go.jp/pdf/2019/roadmap/ICEF_Roadmap_201912.pdf
  44. 45.
    Revankar ST 2019. Nuclear hydrogen production. Storage and Hybridization of Nuclear Energy: Techno-Economic Integration of Renewable and Nuclear Energy H Bindra, ST Revankar 49–117. London: Academic
    [Google Scholar]
  45. 46.
    Natl. Energy Agency 2022. The Role of Nuclear Power in the Hydrogen Economy: Cost and Competitiveness Paris: OECD Publ.
  46. 47.
    Ding H, Wu W, Jiang C, Ding Y, Bian W et al. 2020. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat. Commun. 11:1907
    [Google Scholar]
  47. 48.
    Iwatsuki J, Kunitomi K, Mineo H, Nishihara T, Sakaba N et al. 2021. Overview of high temperature gas-cooled reactor. High Temperature Gas-Cooled Reactors T Takeda, Y Inagaki 1–16. Amsterdam: Elsevier
    [Google Scholar]
  48. 49.
    Locatelli G, Boarin S, Fiordaliso A, Ricotti ME. 2018. Load following of small modular reactors (SMR) by cogeneration of hydrogen: a techno-economic analysis. Energy 148:494–505
    [Google Scholar]
  49. 50.
    Zoback M, Smit D 2023. Meeting the challenges of large-scale carbon storage and hydrogen production. PNAS 120:e2202397120
    [Google Scholar]
  50. 51.
    Oh E. 2021. Responsibly sourced gas (RSG): a primer. Wood Mackenzie Oct. 18. https://www.woodmac.com/news/opinion/responsibly-sourced-gas-rsg-a-primer/
    [Google Scholar]
  51. 52.
    Int. Energy Agency 2017. Water-energy nexus Technol. Rep., Int. Energy Agency Paris: https://www.iea.org/reports/water-energy-nexus
  52. 53.
    Yu L, Zhu Q, Song S, McElhenny B, Wang D et al. 2019. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10:5106
    [Google Scholar]
  53. 54.
    Buongiorno J, Carmichael B, Dunkin B, Parsons J, Smit D. 2021. Can nuclear batteries be economically competitive in large markets?. Energies 14:144385
    [Google Scholar]
  54. 55.
    Inst. Sustain. Process Technol 2017. Power to ammonia: feasibility study for the value chains and business cases to produce CO2-free ammonia suitable for various market applications Rep. TESI115001 Inst. Sustain. Process Technol. Amersfoort, Neth: https://ispt.eu/media/DR-20-09-Power-to-Ammonia-2017-publication.pdf
  55. 56.
    Randolph JB, Saar MO. 2011. Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys. Res. Lett. 38:10L10401
    [Google Scholar]
  56. 57.
    Lankof L, Urbańczyk K, Tarkowski R. 2022. Assessment of the potential for underground hydrogen storage in salt domes. Renew. Sustain. Energy Rev. 160:112309
    [Google Scholar]
  57. 58.
    Latham A, Wilson J, Gaylord B. 2022. Energy super basins: where the renewable, CCS and upstream stars align. Wood Mackensie Horizons Aug. 11. https://www.woodmac.com/news/opinion/horizons-live-energy-super-basins/
    [Google Scholar]
  58. 59.
    Ruth M, Jadun P, Gilroy N, Connelly E, Boardman R et al. 2020.. The technical and economic potential of the H2@Scale concept within the United States Doc., NREL/TP- 6A20-77610 Natl. Renew. Energy Lab. Golden, CO: https://www.nrel.gov/docs/fy21osti/77610.pdf
  59. 60.
    Farm Energy 2019. Corn for biofuel production https://farm-energy.extension.org/corn-for-biofuel-production/
  60. 61.
    BloombergNEF 2020. Hydrogen economy outlook: key messages Doc., BloombergNEF New York: https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf
  61. 62.
    Ritchie H, Roser M. 2017. A sense of units and scale for electrical energy production and consumption. Our World in Data Novemb. 22. https://ourworldindata.org/scale-for-electricity
    [Google Scholar]
  62. 63.
    MIT Energy Initiat 2015. The future of solar energy: an interdisciplinary MIT study Rep. MIT Energy Initiat. Cambridge, MA: https://energy.mit.edu/wp-content/uploads/2015/05/MITEI-The-Future-of-Solar-Energy.pdf
  63. 64.
    Lane J. 2012. Cool planet. Biofuels Digest March 5. https://www.biofuelsdigest.com/bdigest/2012/03/05/ll-cool-planet-rocks-the-bells/
    [Google Scholar]
  64. 65.
    Derr E. 2022. Nuclear needs small amounts of land to deliver big amounts of electricity. NEI April 29. https://www.nei.org/news/2022/nuclear-brings-more-electricity-with-less-land
    [Google Scholar]
  65. 66.
    Nicholas M. 2019. Estimating electric vehicle charging infrastructure costs across major U.S. metropolitan areas Work. Pap. 2019-14 Int. Counc. Clean Transport. Washington, DC: https://theicct.org/sites/default/files/publications/ICCT_EV_Charging_Cost_20190813.pdf
  66. 67.
    Saygin D, Gielen D. 2021. Zero-emission pathway for the global chemical and petrochemical sector. Energies 14:133772
    [Google Scholar]
  67. 69.
    Int. Energy Agency 2018. The future of petrochemicals: towards a more sustainable chemical industry Rep. Int. Energy Agency Paris: https://www.iea.org/reports/the-future-of-petrochemicals
  68. 70.
    Soler A. 2019. Role of e-fuels in the European transport system: literature review Rep. 14/19 Concawe Brussels: https://www.concawe.eu/wp-content/uploads/Rpt_19-14.pdf
  69. 71.
    Forsberg C, Dale B, Jones D, Wendt L. 2022. Can a nuclear-assisted biofuels system enable liquid biofuels as the economic low-carbon replacement for all liquid fossil fuels and hydrocarbon feedstocks and enable negative carbon emissions? Rep. NES-TR-023 Cent. Adv. Nucl. Energy Syst., Mass. Inst. Technol. Cambridge, MA:
  70. 72.
    Enkvist P, Klevnäs P, Westerdahl R, Åhlén A. 2022. How a ‘materials transition’ can support the net-zero agenda. McKinsey Sustainability July 20. https://www.mckinsey.com/capabilities/sustainability/our-insights/how-a-materials-transition-can-support-the-net-zero-agenda
    [Google Scholar]
  71. 73.
    Sabat KC. 2019. Iron production by hydrogen plasma. J. Phys. Conf. Ser. 1172:012043
    [Google Scholar]
  72. 74.
    Karakaya E, Nuur C, Assbring L. 2018. Potential transitions in the iron and steel industry in Sweden: Towards a hydrogen-based future?. J. Clean. Prod. 195:651–63
    [Google Scholar]
  73. 75.
    Int. Energy Agency 2022. Iron and steel Track. Rep. Int. Energy Agency Paris: https://www.iea.org/reports/iron-and-steel
  74. 76.
    Migliaccio G, Des Roches R, Royer-Carfagni G. 2022. Theoretical mechanical properties of strands and cables made of wound carbon nanotube fibers. . Int. J. Mech. Sci. 236:107706
    [Google Scholar]
  75. 77.
    Gogoi R, Maurya AK, Manik G. 2022. A review on recent development in carbon fiber reinforced polyolefin composites. Composites C 8:100279
    [Google Scholar]
  76. 78.
    Int. Energy Agency 2022. Cement. Rep. Int. Energy Agency Paris: https://www.iea.org/reports/cement
  77. 79.
    Singh MS, O'Neill ME 2022. The climate system and the second law of thermodynamics. Rev. Mod. Phys. 94:1015001
    [Google Scholar]
  78. 80.
    Kleidon A, Miller L, Gans F 2015. Physical limits of solar energy conversion in the Earth system. Solar Energy for Fuels H Tüysüz, CK Chan 1–22. Top. Curr. Chem. 371 Cham, Switz: Springer Int. Publ.
    [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error