1932

Abstract

Scientific and engineering capabilities in hydrocarbon supply chains developed over decades in international oil and gas companies (IOCs) uniquely position these companies to drive rapid scale-up and transition to a net-zero emission economy. Flexible large-scale production of energy carriers such as hydrogen, ammonia, methanol, and other synthetic fuels produced with low- or zero-emission renewable power, nuclear energy, or hydrogen derived from natural gas with carbon capture and storage will enable long-distance transport and permanent storage options for clean energy. Use of energy carriers can overcome the inherent constraints of a fully electrified energy system by providing the energy and power densities, as well as transport and storage capacity, required to achieve energy supply and security in a net-zero emission economy, and over time allow optimization to the lowest cost for a consumer anywhere on the globe.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-030446
2023-06-08
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/14/1/annurev-chembioeng-092220-030446.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-030446&mimeType=html&fmt=ahah

Literature Cited

  1. [Google Scholar]
  2. 2.
    Smil V. 2021.. Grand Transitions: How the Modern World Was Made. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  3. 3.
    Clark G. 2007.. A Farewell to Alms: A Brief Economic History of the World. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  4. 4.
    Deutch J, Karplus V, Majumdar A, Smit D, Sweeney J, Fedor D. 2022.. Making demonstrations effective: report of the Schultz Energy and Climate Task Force's Industry Decarbonization Work Group. Rep. , Hoover Inst., Stanford Univ., Stanford, CA:
    [Google Scholar]
  5. 5.
    Xiao X, Li F, Ye Z, Xi Z, Ma D, Yang S. 2020.. Optimal configuration of energy storage for remotely delivering wind power by ultra-high voltage lines. . J. Energy Storage 31::101571
    [Google Scholar]
  6. 6.
    Alava JJ, Singh GG. 2022.. Changing air pollution and CO2 emissions during the COVID-19 pandemic: lesson learned and future equity concerns of post-COVID recovery. . Environ. Sci. Policy 130::18
    [Google Scholar]
  7. 7.
    Sherpa S. 2022.. Estimated total annual building energy consumption at the block and lot level for NYC. Map , Sustain. Eng. Lab, Columbia Univ., NY:, accessed Oct. 26, 2022. https://qsel.columbia.edu/nycenergy
    [Google Scholar]
  8. 8.
    Borrmann R, Rehfeldt K, Wallasch A-K, Lüers S. 2018.. Capacity densities of European offshore wind farms. Rep. SP18004A1 , Deutsche WindGuard, Varel, Ger.: https://www.windguard.com/publications-wind-energy-statistics.html?file=files/cto_layout/img/unternehmen/veroeffentlichungen/2018/Capacity%20Density%20of%20European%20Offshore%20Windfarmslr.pdf
    [Google Scholar]
  9. 9.
    Ong S, Campbell C, Denholm P, Margolis R, Heath G. 2013.. Land-use requirements for solar power plants in the United States. Tech. Rep., NREL/TP-6A20-56290 , Natl. Renew. Energy Lab. Oak Ridge, TN:. https://www.nrel.gov/docs/fy13osti/56290.pdf
    [Google Scholar]
  10. 10.
    Denholm P, Margolis RM. 2008.. Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States. . Energy Policy 36:(9):353143
    [Google Scholar]
  11. 11.
    Natl. Renew. Energy Lab. 2022.. Land use by system technology. https://www.nrel.gov/analysis/tech-size.html
    [Google Scholar]
  12. 12.
    Antonini EGA, Caldeira K. 2021.. Spatial constraints in large-scale expansion of wind power plants. . PNAS 118:(27):e2103875118
    [Google Scholar]
  13. 13.
    Tollefson J. 2021.. Top climate scientists are skeptical that nations will rein in global warming. . Nature 599::2224
    [Google Scholar]
  14. 14.
    Intergov. Panel Clim. Change. 2022.. Climate change 2022: impacts, adaptation and vulnerability. Rep. , IPCC Work. Group II , Geneva:
    [Google Scholar]
  15. 15.
    Shell. 2014.. The Petroleum Handbook. Saint Louis:: Elsevier Sci, 6th ed.
    [Google Scholar]
  16. 16.
    Mokhatab S, Mak J, Valappil JV, Wood DA. 2014.. Handbook of Liquefied Natural Gas. Amsterdam:: Elsevier/Gulf Prof. Publ
    [Google Scholar]
  17. 17.
    Falk G, Herrmann F, Schmid GB. 1983.. Energy forms or energy carriers?. Am. J. Phys. 51:(12):107477
    [Google Scholar]
  18. 18.
    Schellenberger M. 2020.. Apocalypse Never: Why Environmental Alarmism Hurts Us All. New York:: HarperCollins
    [Google Scholar]
  19. 19.
    ICCA-Chem. 2019.. The global chemical industry: catalyzing growth and addressing our world's sustainability challenges. Rep. , Oxford Econ., Oxford, UK:. https://www.oxfordeconomics.com/resource/the-global-chemical-industry-catalyzing-growth-and-addressing-our-world-sustainability-challenges/
    [Google Scholar]
  20. 20.
    Bellone D, Hall S, Kar J, Olufon D. 2021.. The big choices for oil and gas in navigating the energy transition. . McKinsey, March 10. https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-big-choices-for-oil-and-gas-in-navigating-the-energy-transition
    [Google Scholar]
  21. 21.
    Int. Energy Agency. 2021.. Net zero by 2050: a roadmap for the global energy sector. Rep. , Int. Energy Agency, Paris:. https://www.iea.org/reports/net-zero-by-2050
    [Google Scholar]
  22. 22.
    Int. Energy Agency. 2018.. Share of oil reserves, oil production and oil upstream investment by company type, 2018. Rep. , Int. Energy Agency, Paris:. https://www.iea.org/data-and-statistics/charts/share-of-oil-reserves-oil-production-and-oil-upstream-investment-by-company-type-2018
    [Google Scholar]
  23. 23.
    Wolak F. 2021.. Long-term resource adequacy in wholesale electricity markets with significant intermittent renewables. Doc., Stanford Energy, Stanford Univ., Stanford, CA:. https://web.stanford.edu/group/fwolak/cgi-bin/sites/default/files/NBER_Intermittent_wolak_final.pdf
    [Google Scholar]
  24. 24.
    Ip G. 2021.. Why financing the multi-trillion-dollar transition to net zero isn't that hard. . Wall Street Journal, Novemb. 4. https://www.wsj.com/articles/why-financing-the-multi-trillion-dollar-transition-to-net-zero-isnt-that-hard-11636018200
    [Google Scholar]
  25. 25.
    McKinsey. 2022.. The net zero transition: what it would cost, what it could bring. Rep. , McKinsey, New York:. https://www.mckinsey.com/capabilities/sustainability/our-insights/the-net-zero-transition-what-it-would-cost-what-it-could-bring
    [Google Scholar]
  26. 26.
    Roser M. 2022.. The Our World in Data–Grapher, accessed Jan. 29, 2023. https://ourworldindata.org/owid-grapher
    [Google Scholar]
  27. 27.
    Kharas H. 2017.. The unprecedented expansion of the global middle class: an update. Glob. Econ. Dev. Work. Pap. 100 , Brookings Inst., Washington, DC:. https://www.brookings.edu/wp-content/uploads/2017/02/global_20170228_global-middle-class.pdf
    [Google Scholar]
  28. 28.
    Intergov. Panel Clim. Change. 2007.. Climate change 2007: mitigation of climate change, energy carriers. Rep. AR4 WGIII 4.3.4 , Intergov. Panel Clim. Change, Geneva:. https://www.ipcc.ch/report/ar4/wg3/
    [Google Scholar]
  29. 29.
    US Dep. Energy. 2022.. Hydrogen basics, accessed Sept. 29, 2022. https://www.nrel.gov/research/eds-hydrogen.html
    [Google Scholar]
  30. 30.
    Orecchini F. 2006.. The era of energy vectors. . Int. J. Hydrogen Energy 31:(14):195154
    [Google Scholar]
  31. 31.
    Modisha PM, Ouma CNM, Garidzirai R, Wasserscheid P, Bessarabov D. 2019.. The prospect of hydrogen storage using liquid organic hydrogen carriers. . Energy Fuels 33:(4):277896
    [Google Scholar]
  32. 32.
    Patterson BD, Mo F, Borgschulte A, Hillestad M, Joos F, et al. 2019.. Renewable CO2 recycling and synthetic fuel production in a marine environment. . PNAS 116:(25):1221219
    [Google Scholar]
  33. 33.
    Intergov. Panel Clim. Change. 2007.. Working Group III: Mitigation of Climate Change, 4.3.4 energy carriers. IPCC Fourth Assess. Rep. Clim. Change 2007. https://archive.ipcc.ch/publications_and_data/ar4/wg3/en/ch4s4-3-4.html
    [Google Scholar]
  34. 34.
    de Kleijne K, Hanssen SV, van Dinteren L, Huijbregts MAJ, van Zelm R, de Coninck H. 2022.. Limits to Paris compatibility of CO2 capture and utilization. . One Earth 5:(2):16885
    [Google Scholar]
  35. 35.
    Gür TM. 2018.. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. . Energy Environ. Sci. 11:(10):2696767
    [Google Scholar]
  36. 36.
    Denholm P, Brown P, Cole W, Mai T, Sergi B. 2022.. Examining supply-side options to achieve 100% clean electricity by 2035. Doc., NREL/TP6A40-81644 , Natl. Renew. Energy Lab., Golden, CO:. https://www.nrel.gov/docs/fy22osti/81644.pdf
    [Google Scholar]
  37. 37.
    Fasihi M, Breyer C. 2020.. Baseload electricity and hydrogen supply based on hybrid PV-wind power plants. . J. Clean. Prod. 243::118466
    [Google Scholar]
  38. 38.
    Vidas L, Castro R. 2021.. Recent developments on hydrogen production technologies: state-of-the-art review with a focus on green-electrolysis. . Appl. Sci. 11:(23):11363
    [Google Scholar]
  39. 39.
    Sandalow D, Friedmann J, Aines R, McCormick C, McCoy S, et al. 2019.. ICEF industrial heat decarbonization roadmap. Rep. , Innov. Cool Earth Forum. https://cdrlaw.org/resources/icef-industrial-heat-decarbonization-roadmap/
    [Google Scholar]
  40. 40.
    Int. At. Energy Agency. 2017.. Opportunities for cogeneration with nuclear energy. Nucl. Energy Ser. No. NP-T-4.1 , Int. Atomic Energy Agency, Vienna:. https://www-pub.iaea.org/MTCD/Publications/PDF/P1749_web.pdf
    [Google Scholar]
  41. 41.
    Sepulveda NA, Jennings JD, de Sisternes FJ, Lester RK. 2018.. The role of firm low-carbon electricity resources in deep decarbonization of power generation. . Joule 2::240320
    [Google Scholar]
  42. 42.
    Buongiorno J, Corradini M, Parsons J, Petti D. 2018.. The future of nuclear energy in a carbon-constrained world: an interdisciplinary MIT study. Res., Mass. Inst. Technol., Cambridge, MA:. https://energy.mit.edu/research/future-nuclear-energy-carbon-constrained-world/
    [Google Scholar]
  43. 43.
    R. Soc. 2020.. Nuclear cogeneration: civil nuclear energy in a low-carbon future. Policy Brief., Oct. , R. Soc., London:. https://royalsociety.org/-/media/policy/projects/nuclear-cogeneration/2020-10-7-nuclear-cogeneration-policy-briefing.pdf
    [Google Scholar]
  44. 44.
    ICEF. 2019.. Industrial heat decarbonization roadmap. Roadmap, ICEF, Bonn, Ger:. https://www.icef.go.jp/pdf/2019/roadmap/ICEF_Roadmap_201912.pdf
    [Google Scholar]
  45. 45.
    Revankar ST. 2019.. Nuclear hydrogen production. . In Storage and Hybridization of Nuclear Energy: Techno-Economic Integration of Renewable and Nuclear Energy, ed. H Bindra, ST Revankar , pp. 49117 London:: Academic
    [Google Scholar]
  46. 46.
    Natl. Energy Agency. 2022.. The Role of Nuclear Power in the Hydrogen Economy: Cost and Competitiveness. Paris:: OECD Publ
    [Google Scholar]
  47. 47.
    Ding H, Wu W, Jiang C, Ding Y, Bian W, et al. 2020.. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. . Nat. Commun. 11::1907
    [Google Scholar]
  48. 48.
    Iwatsuki J, Kunitomi K, Mineo H, Nishihara T, Sakaba N, et al. 2021.. Overview of high temperature gas-cooled reactor. . In High Temperature Gas-Cooled Reactors, ed. T Takeda, Y Inagaki , pp. 116 Amsterdam:: Elsevier
    [Google Scholar]
  49. 49.
    Locatelli G, Boarin S, Fiordaliso A, Ricotti ME. 2018.. Load following of small modular reactors (SMR) by cogeneration of hydrogen: a techno-economic analysis. . Energy 148::494505
    [Google Scholar]
  50. 50.
    Zoback M, Smit D. 2023.. Meeting the challenges of large-scale carbon storage and hydrogen production. . PNAS 120::e2202397120
    [Google Scholar]
  51. 51.
    Oh E. 2021.. Responsibly sourced gas (RSG): a primer. . Wood Mackenzie, Oct. 18. https://www.woodmac.com/news/opinion/responsibly-sourced-gas-rsg-a-primer/
    [Google Scholar]
  52. 52.
    Int. Energy Agency. 2017.. Water-energy nexus. Technol. Rep., Int. Energy Agency, Paris:. https://www.iea.org/reports/water-energy-nexus
    [Google Scholar]
  53. 53.
    Yu L, Zhu Q, Song S, McElhenny B, Wang D, et al. 2019.. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. . Nat. Commun. 10::5106
    [Google Scholar]
  54. 54.
    Buongiorno J, Carmichael B, Dunkin B, Parsons J, Smit D. 2021.. Can nuclear batteries be economically competitive in large markets?. Energies 14:(14):4385
    [Google Scholar]
  55. 55.
    Inst. Sustain. Process Technol. 2017.. Power to ammonia: feasibility study for the value chains and business cases to produce CO2-free ammonia suitable for various market applications. Rep. TESI115001 , Inst. Sustain. Process Technol., Amersfoort, Neth:. https://ispt.eu/media/DR-20-09-Power-to-Ammonia-2017-publication.pdf
    [Google Scholar]
  56. 56.
    Randolph JB, Saar MO. 2011.. Combining geothermal energy capture with geologic carbon dioxide sequestration. . Geophys. Res. Lett. 38:(10):L10401
    [Google Scholar]
  57. 57.
    Lankof L, Urbańczyk K, Tarkowski R. 2022.. Assessment of the potential for underground hydrogen storage in salt domes. . Renew. Sustain. Energy Rev. 160::112309
    [Google Scholar]
  58. 58.
    Latham A, Wilson J, Gaylord B. 2022.. Energy super basins: where the renewable, CCS and upstream stars align. . Wood Mackensie Horizons, Aug. 11. https://www.woodmac.com/news/opinion/horizons-live-energy-super-basins/
    [Google Scholar]
  59. 59.
    Ruth M, Jadun P, Gilroy N, Connelly E, Boardman R, et al. 2020.. The technical and economic potential of the H2@Scale concept within the United States. Doc., NREL/TP- 6A20-77610 , Natl. Renew. Energy Lab., Golden, CO:. https://www.nrel.gov/docs/fy21osti/77610.pdf
    [Google Scholar]
  60. 60.
    Farm Energy. 2019.. Corn for biofuel production. https://farm-energy.extension.org/corn-for-biofuel-production/
    [Google Scholar]
  61. 61.
    BloombergNEF. 2020.. Hydrogen economy outlook: key messages. Doc., BloombergNEF, New York:. https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen-Economy-Outlook-Key-Messages-30-Mar-2020.pdf
    [Google Scholar]
  62. 62.
    Ritchie H, Roser M. 2017.. A sense of units and scale for electrical energy production and consumption. . Our World in Data, Novemb. 22. https://ourworldindata.org/scale-for-electricity
    [Google Scholar]
  63. 63.
    MIT Energy Initiat. 2015.. The future of solar energy: an interdisciplinary MIT study. Rep. , MIT Energy Initiat., Cambridge, MA:. https://energy.mit.edu/wp-content/uploads/2015/05/MITEI-The-Future-of-Solar-Energy.pdf
    [Google Scholar]
  64. 64.
    Lane J. 2012.. Cool planet. . Biofuels Digest, March 5. https://www.biofuelsdigest.com/bdigest/2012/03/05/ll-cool-planet-rocks-the-bells/
    [Google Scholar]
  65. 65.
    Derr E. 2022.. Nuclear needs small amounts of land to deliver big amounts of electricity. . NEI, April 29. https://www.nei.org/news/2022/nuclear-brings-more-electricity-with-less-land
    [Google Scholar]
  66. 66.
    Nicholas M. 2019.. Estimating electric vehicle charging infrastructure costs across major U.S. metropolitan areas. Work. Pap. 2019-14 , Int. Counc. Clean Transport., Washington, DC:. https://theicct.org/sites/default/files/publications/ICCT_EV_Charging_Cost_20190813.pdf
    [Google Scholar]
  67. 67.
    Saygin D, Gielen D. 2021.. Zero-emission pathway for the global chemical and petrochemical sector. . Energies 14:(13):3772
    [Google Scholar]
  68. [Google Scholar]
  69. 69.
    Int. Energy Agency. 2018.. The future of petrochemicals: towards a more sustainable chemical industry. Rep. , Int. Energy Agency, Paris:. https://www.iea.org/reports/the-future-of-petrochemicals
    [Google Scholar]
  70. 70.
    Soler A. 2019.. Role of e-fuels in the European transport system: literature review. Rep. 14/19 , Concawe, Brussels:. https://www.concawe.eu/wp-content/uploads/Rpt_19-14.pdf
    [Google Scholar]
  71. 71.
    Forsberg C, Dale B, Jones D, Wendt L. 2022.. Can a nuclear-assisted biofuels system enable liquid biofuels as the economic low-carbon replacement for all liquid fossil fuels and hydrocarbon feedstocks and enable negative carbon emissions? Rep. NES-TR-023 , Cent. Adv. Nucl. Energy Syst., Mass. Inst. Technol., Cambridge, MA:
    [Google Scholar]
  72. 72.
    Enkvist P, Klevnäs P, Westerdahl R, Åhlén A. 2022.. How a ‘materials transition’ can support the net-zero agenda. . McKinsey Sustainability, July 20. https://www.mckinsey.com/capabilities/sustainability/our-insights/how-a-materials-transition-can-support-the-net-zero-agenda
    [Google Scholar]
  73. 73.
    Sabat KC. 2019.. Iron production by hydrogen plasma. . J. Phys. Conf. Ser. 1172::012043
    [Google Scholar]
  74. 74.
    Karakaya E, Nuur C, Assbring L. 2018.. Potential transitions in the iron and steel industry in Sweden: Towards a hydrogen-based future?. J. Clean. Prod. 195::65163
    [Google Scholar]
  75. 75.
    Int. Energy Agency. 2022.. Iron and steel. Track. Rep. , Int. Energy Agency, Paris:. https://www.iea.org/reports/iron-and-steel
    [Google Scholar]
  76. 76.
    Migliaccio G, Des Roches R, Royer-Carfagni G. 2022.. Theoretical mechanical properties of strands and cables made of wound carbon nanotube fibers. . Int. J. Mech. Sci. 236::107706
    [Google Scholar]
  77. 77.
    Gogoi R, Maurya AK, Manik G. 2022.. A review on recent development in carbon fiber reinforced polyolefin composites. . Composites C 8::100279
    [Google Scholar]
  78. 78.
    Int. Energy Agency. 2022.. Cement. Rep. , Int. Energy Agency, Paris:. https://www.iea.org/reports/cement
    [Google Scholar]
  79. 79.
    Singh MS, O'Neill ME. 2022.. The climate system and the second law of thermodynamics. . Rev. Mod. Phys. 94:(1):015001
    [Google Scholar]
  80. 80.
    Kleidon A, Miller L, Gans F. 2015.. Physical limits of solar energy conversion in the Earth system. . In Solar Energy for Fuels, ed. H Tüysüz, CK Chan , pp. 122 Top. Curr. Chem. 371 . Cham, Switz:.: Springer Int. Publ
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092220-030446
Loading
/content/journals/10.1146/annurev-chembioeng-092220-030446
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error