1932

Abstract

The bottom-up approach in synthetic biology aims to create molecular ensembles that reproduce the organization and functions of living organisms and strives to integrate them in a modular and hierarchical fashion toward the basic unit of life—the cell—and beyond. This young field stands on the shoulders of fundamental research in molecular biology and biochemistry, next to synthetic chemistry, and, augmented by an engineering framework, has seen tremendous progress in recent years thanks to multiple technological and scientific advancements. In this timely review of the research over the past decade, we focus on three essential features of living cells: the ability to self-reproduce via recursive cycles of growth and division, the harnessing of energy to drive cellular processes, and the assembly of metabolic pathways. In addition, we cover the increasing efforts to establish multicellular systems via different communication strategies and critically evaluate the potential applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-085918
2021-06-07
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-092220-085918.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-085918&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Rollié S, Mangold M, Sundmacher K. 2012. Designing biological systems: systems engineering meets synthetic biology. Chem. Eng. Sci. 69:1–29
    [Google Scholar]
  2. 2. 
    Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL et al. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–43
    [Google Scholar]
  3. 3. 
    Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD. 2012. Microbial engineering for the production of advanced biofuels. Nature 488:320–28
    [Google Scholar]
  4. 4. 
    Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y et al. 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56
    [Google Scholar]
  5. 5. 
    Hutchison CA, Chuang R-Y, Noskov VN, Assad-Garcia N, Deerinck TJ et al. 2016. Design and synthesis of a minimal bacterial genome. Science 351:aad6253
    [Google Scholar]
  6. 6. 
    Schwille P, Spatz J, Landfester K, Bodenschatz E, Herminghaus S et al. 2018. MaxSynBio: avenues towards creating cells from the bottom up. Angew. Chem. Int. Ed. 57:13382–92
    [Google Scholar]
  7. 7. 
    Ivanov I, Lira RB, Tang T-YD, Franzmann T, Klosin A et al. 2019. Directed growth of biomimetic microcompartments. Adv. Biosystems 3:1800314
    [Google Scholar]
  8. 8. 
    Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. 2018. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47:8572–610
    [Google Scholar]
  9. 9. 
    Marušič N, Otrin L, Zhao Z, Lira RB, Kyrilis FL et al. 2020. Constructing artificial respiratory chain in polymer compartments: insights into the interplay between bo3 oxidase and the membrane. PNAS 117:15006–17
    [Google Scholar]
  10. 10. 
    Li M, Huang X, Tang T-YD, Mann S. 2014. Synthetic cellularity based on non-lipid micro-compartments and protocell models. Curr. Opin. Chem. Biol. 22:1–11
    [Google Scholar]
  11. 11. 
    Deshpande S, Caspi Y, Meijering AEC, Dekker C. 2016. Octanol-assisted liposome assembly on chip. Nat. Commun. 7:10447
    [Google Scholar]
  12. 12. 
    Beneyton T, Krafft D, Bednarz C, Kleineberg C, Woelfer C et al. 2018. Out-of-equilibrium microcompartments for the bottom-up integration of metabolic functions. Nat. Commun. 9:2391
    [Google Scholar]
  13. 13. 
    Taylor JW, Eghtesadi SA, Points LJ, Liu T, Cronin L. 2017. Autonomous model protocell division driven by molecular replication. Nat. Commun. 8:237
    [Google Scholar]
  14. 14. 
    Hyman AA, Weber CA, Jülicher F. 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  15. 15. 
    Tang T-YD, Rohaida Che Hak C, Thompson AJ, Kuimova MK, Williams DS et al. 2014. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6:527–33
    [Google Scholar]
  16. 16. 
    Mason AF, Buddingh’ BC, Williams DS, van Hest JCM 2017. Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. J. Am. Chem. Soc. 139:17309–12
    [Google Scholar]
  17. 17. 
    Elani Y, Law RV, Ces O. 2014. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat. Commun. 5:5305
    [Google Scholar]
  18. 18. 
    Deng N-N, Yelleswarapu M, Zheng L, Huck WTS. 2017. Microfluidic assembly of monodisperse vesosomes as artificial cell models. J. Am. Chem. Soc. 139:587–90
    [Google Scholar]
  19. 19. 
    Wong CK, Mason AF, Stenzel MH, Thordarson P. 2017. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions. Nat. Commun. 8:1240
    [Google Scholar]
  20. 20. 
    Rikken RS, Engelkamp H, Nolte RJ, Maan JC, van Hest JC et al. 2016. Shaping polymersomes into predictable morphologies via out-of-equilibrium self-assembly. Nat. Commun. 7:12606
    [Google Scholar]
  21. 21. 
    Garenne D, Libchaber A, Noireaux V 2020. Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods. PNAS 117:1902–9
    [Google Scholar]
  22. 22. 
    Exterkate M, Caforio A, Stuart MCA, Driessen AJM. 2018. Growing membranes in vitro by continuous phospholipid biosynthesis from free fatty acids. ACS Synth. Biol. 7:153–65
    [Google Scholar]
  23. 23. 
    Scott A, Noga MJ, de Graaf P, Westerlaken I, Yildirim E, Danelon C 2016. Cell-free phospholipid biosynthesis by gene-encoded enzymes reconstituted in liposomes. PLOS ONE 11:e0163058
    [Google Scholar]
  24. 24. 
    Bhattacharya A, Brea RJ, Devaraj NK. 2017. De novo vesicle formation and growth: an integrative approach to artificial cells. Chem. Sci. 8:7912–22
    [Google Scholar]
  25. 25. 
    Bhattacharya A, Brea RJ, Niederholtmeyer H, Devaraj NK. 2019. A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nat. Commun. 10:300
    [Google Scholar]
  26. 26. 
    Caire da Silva L, Rideau E, Landfester K 2019. Self-assembly of giant polymer vesicles by light-assisted solid hydration. Macromol. Rapid Commun. 40:e1900027
    [Google Scholar]
  27. 27. 
    Vogele K, Frank T, Gasser L, Goetzfried MA, Hackl MW et al. 2018. Towards synthetic cells using peptide-based reaction compartments. Nat. Commun. 9:3862
    [Google Scholar]
  28. 28. 
    Lira RB, Robinson T, Dimova R, Riske KA. 2019. Highly efficient protein-free membrane fusion: a giant vesicle study. Biophys. J. 116:79–91
    [Google Scholar]
  29. 29. 
    Deshpande S, Wunnava S, Hueting D, Dekker C. 2019. Membrane tension-mediated growth of liposomes. Small 15:1902898
    [Google Scholar]
  30. 30. 
    Blom T, Somerharju P, Ikonen E. 2011. Synthesis and biosynthetic trafficking of membrane lipids. Cold Spring Harb. Perspect. Biol. 3:a004713
    [Google Scholar]
  31. 31. 
    Kurisu M, Aoki H, Jimbo T, Sakuma Y, Imai M et al. 2019. Reproduction of vesicles coupled with a vesicle surface-confined enzymatic polymerisation. Commun. Chem. 2:117
    [Google Scholar]
  32. 32. 
    Varlas S, Keogh R, Xie Y, Horswell SL, Foster JC, O'Reilly RK. 2019. Polymerization-induced polymersome fusion. J. Am. Chem. Soc. 141:20234–48
    [Google Scholar]
  33. 33. 
    Andes-Koback M, Keating CD 2011. Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. J. Am. Chem. Soc. 133:9545–55
    [Google Scholar]
  34. 34. 
    Terasawa H, Nishimura K, Suzuki H, Matsuura T, Yomo T 2012. Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. PNAS 109:5942–47
    [Google Scholar]
  35. 35. 
    Steinkühler J, Knorr RL, Zhao Z, Bhatia T, Bartelt SM et al. 2020. Controlled division of cell-sized vesicles by low densities of membrane-bound proteins. Nat. Commun. 11:905
    [Google Scholar]
  36. 36. 
    Deshpande S, Spoelstra WK, van Doorn M, Kerssemakers J, Dekker C. 2018. Mechanical division of cell-sized liposomes. ACS Nano 12:2560–68
    [Google Scholar]
  37. 37. 
    Kurihara K, Okura Y, Matsuo M, Toyota T, Suzuki K, Sugawara T. 2015. A recursive vesicle-based model protocell with a primitive model cell cycle. Nat. Commun. 6:8352
    [Google Scholar]
  38. 38. 
    Chien AC, Hill NS, Levin PA. 2012. Cell size control in bacteria. Curr. Biol. 22:R340–49
    [Google Scholar]
  39. 39. 
    Osawa M, Erickson HP 2013. Liposome division by a simple bacterial division machinery. PNAS 110:11000–4
    [Google Scholar]
  40. 40. 
    Hürtgen D, Härtel T, Murray SM, Sourjik V, Schwille P. 2019. Functional modules of minimal cell division for synthetic biology. Adv. Biosyst. 3:1800315
    [Google Scholar]
  41. 41. 
    Hardy MD, Yang J, Selimkhanov J, Cole CM, Tsimring LS, Devaraj NK. 2015. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. PNAS 112:8187–92
    [Google Scholar]
  42. 42. 
    Kurihara K, Tamura M, Shohda K, Toyota T, Suzuki K, Sugawara T. 2011. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem. 3:775–81
    [Google Scholar]
  43. 43. 
    Andexer JN, Richter M. 2015. Emerging enzymes for ATP regeneration in biocatalytic processes. ChemBioChem 16:380–86
    [Google Scholar]
  44. 44. 
    Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR. 2008. An integrated cell-free metabolic platform for protein production and synthetic biology. Mol. Syst. Biol. 4:220
    [Google Scholar]
  45. 45. 
    Xu D, Kleineberg C, Vidaković-Koch T, Wegner VS. 2020. Multistimuli sensing adhesion unit for the self-positioning of minimal synthetic cells. Small 16:e2002440
    [Google Scholar]
  46. 46. 
    Jeong S, Nguyen HT, Kim CH, Ly MN, Shin K. 2020. Toward artificial cells: novel advances in energy conversion and cellular motility. Adv. Funct. Mater. 30:1907182
    [Google Scholar]
  47. 47. 
    Jia Y, Li J. 2019. Reconstitution of FoF1-ATPase-based biomimetic systems. Nat. Rev. Chem. 3:361–74
    [Google Scholar]
  48. 48. 
    Otrin L, Kleineberg C, Caire da Silva L, Landfester K, Ivanov I et al. 2019. Artificial organelles for energy regeneration. Adv. Biosyst. 3:1800323
    [Google Scholar]
  49. 49. 
    Lee KY, Park S-J, Lee KA, Kim S-H, Kim H et al. 2018. Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nat. Biotechnol. 36:530–35
    [Google Scholar]
  50. 50. 
    Berhanu S, Ueda T, Kuruma Y. 2019. Artificial photosynthetic cell producing energy for protein synthesis. Nat. Commun. 10:1325
    [Google Scholar]
  51. 51. 
    Miller TE, Beneyton T, Schwander T, Diehl C, Girault M et al. 2020. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science 368:649–54
    [Google Scholar]
  52. 52. 
    Pols T, Sikkema HR, Gaastra BF, Frallicciardi J, Śmigiel WM et al. 2019. A synthetic metabolic network for physicochemical homeostasis. Nat. Commun. 10:4239
    [Google Scholar]
  53. 53. 
    Biner O, Fedor JG, Yin Z, Hirst J. 2020. Bottom-up construction of a minimal system for cellular respiration and energy regeneration. ACS Synth. Biol. 9:1450–59
    [Google Scholar]
  54. 54. 
    Kuruma Y. 2019. Light-driven artificial cell: How artificial cells assembled from molecules and genes become autotrophic cells?. Behind the Paper March 25. https://bioengineeringcommunity.nature.com/posts/45933-light-driven-artificial-cell
    [Google Scholar]
  55. 55. 
    Ahmad R, Kleineberg C, Nasirimarekani V, Su Y, Goli Pzveh Set al 2021. Light-powered reactivation of flagella and contraction of microtubule networks: toward building an artificial cell. ACS Synth. Biol In press https://doi.org/10.1021/acssynbio.1c00071
    [Crossref] [Google Scholar]
  56. 56. 
    Choi H-J, Montemagno CD. 2005. Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett 5:2538–42
    [Google Scholar]
  57. 57. 
    Kleineberg C, Wölfer C, Abbasnia A, Pischel D, Bednarz C et al. 2020. Light-driven ATP regeneration in diblock/grafted hybrid vesicles. ChemBioChem 21:2149–60
    [Google Scholar]
  58. 58. 
    Altamura E, Albanese P, Marotta R, Milano F, Fiore M et al. 2021. Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells. PNAS 118:e2012170118
    [Google Scholar]
  59. 59. 
    Opgenorth PH, Korman TP, Iancu L, Bowie JU. 2017. A molecular rheostat maintains ATP levels to drive a synthetic biochemistry system. Nat. Chem. Biol. 13:938–42
    [Google Scholar]
  60. 60. 
    Otrin L, Marušič N, Bednarz C, Vidaković-Koch T, Lieberwirth I et al. 2017. Toward artificial mitochondrion: mimicking oxidative phosphorylation in polymer and hybrid membranes. Nano Lett 17:6816–21
    [Google Scholar]
  61. 61. 
    Erb TJ, Jones PR, Bar-Even A. 2017. Synthetic metabolism: Metabolic engineering meets enzyme design. Curr. Opin. Chem. Biol. 37:56–62
    [Google Scholar]
  62. 62. 
    Claassens NJ, Burgener S, Vogeli B, Erb TJ, Bar-Even A. 2019. A critical comparison of cellular and cell-free bioproduction systems. Curr. Opin. Biotechnol. 60:221–29
    [Google Scholar]
  63. 63. 
    Dudley QM, Karim AS, Jewett MC. 2015. Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol. J. 10:69–82
    [Google Scholar]
  64. 64. 
    Burgener S, Luo S, McLean R, Miller TE, Erb TJ. 2020. A roadmap towards integrated catalytic systems of the future. Nat. Catal. 3:186–92
    [Google Scholar]
  65. 65. 
    Bogorad IW, Lin TS, Liao JC. 2013. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:693–97
    [Google Scholar]
  66. 66. 
    Bogorad IW, Chen CT, Theisen MK, Wu TY, Schlenz AR et al. 2014. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. PNAS 111:15928–33
    [Google Scholar]
  67. 67. 
    Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A et al. 2015. Computational protein design enables a novel one-carbon assimilation pathway. PNAS 112:3704–9
    [Google Scholar]
  68. 68. 
    Lee Y, Rivera JGL, Liao JC. 2014. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab. Eng. 25:63–71
    [Google Scholar]
  69. 69. 
    François JM, Lachaux C, Morin N. 2020. Synthetic biology applied to carbon conservative and carbon dioxide recycling pathways. Front. Bioeng. Biotechnol. 7:446
    [Google Scholar]
  70. 70. 
    Opgenorth PH, Korman TP, Bowie JU. 2016. A synthetic biochemistry module for production of bio-based chemicals from glucose. Nat. Chem. Biol. 12:393–95
    [Google Scholar]
  71. 71. 
    Schwander T, von Borzyskowski LS, Burgener S, Cortina NS, Erb TJ. 2016. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354:900–4
    [Google Scholar]
  72. 72. 
    Theisen MK, Lafontaine Rivera JG, Liao JC 2016. Stability of ensemble models predicts productivity of enzymatic systems. PLOS Comput. Biol. 12:e1004800
    [Google Scholar]
  73. 73. 
    Hold C, Billerbeck S, Panke S. 2016. Forward design of a complex enzyme cascade reaction. Nat. Commun. 7:12971
    [Google Scholar]
  74. 74. 
    Maglia G, Heron AJ, Hwang WL, Holden MA, Mikhailova E et al. 2009. Droplet networks with incorporated protein diodes show collective properties. Nat. Nanotechnol. 4:437–40
    [Google Scholar]
  75. 75. 
    Aufinger L, Simmel FC. 2019. Establishing communication between artificial cells. Chemistry 25:12659–70
    [Google Scholar]
  76. 76. 
    Joesaar A, Yang S, Bögels B, van der Linden A, Pieters P et al. 2019. DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 14:369–78
    [Google Scholar]
  77. 77. 
    Yang S, Pieters PA, Joesaar A, Bögels BWA, Brouwers R et al. 2020. Light-activated signaling in DNA-encoded sender-receiver architectures. ACS Nano 14:15992–6002
    [Google Scholar]
  78. 78. 
    Dubuc E, Pieters PA, van der Linden AJ, van Hest JC, Huck WT, de Greef TF. 2019. Cell-free microcompartmentalised transcription-translation for the prototyping of synthetic communication networks. Curr. Opin. Biotechnol. 58:72–80
    [Google Scholar]
  79. 79. 
    Adamala KP, Martin-Alarcon DA, Guthrie-Honea KR, Boyden ES. 2017. Engineering genetic circuit interactions within and between synthetic minimal cells. Nat. Chem. 9:431–39
    [Google Scholar]
  80. 80. 
    Dupin A, Simmel FC. 2019. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat. Chem. 11:32–39
    [Google Scholar]
  81. 81. 
    Wang XJ, Tian LF, Du H, Li M, Mu W et al. 2019. Chemical communication in spatially organized protocell colonies and protocell/living cell micro-arrays. Chem. Sci. 10:9446–53
    [Google Scholar]
  82. 82. 
    Buddingh’ BC, Elzinga J, van Hest JCM 2020. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nat. Commun. 11:1652
    [Google Scholar]
  83. 83. 
    Rodriguez-Arco L, Li M, Mann S 2017. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nat. Mater. 16:857–63
    [Google Scholar]
  84. 84. 
    Hindley JW, Zheleva DG, Elani Y, Charalambous K, Barter LMC et al. 2019. Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. PNAS 116:16711–16
    [Google Scholar]
  85. 85. 
    Niederholtmeyer H, Chaggan C, Devaraj NK. 2018. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat. Commun. 9:5027
    [Google Scholar]
  86. 86. 
    Ding Y, Contreras-Llano LE, Morris E, Mao M, Tan C 2018. Minimizing context dependency of gene networks using artificial cells. ACS Appl. Mater. Interfaces 10:30137–46
    [Google Scholar]
  87. 87. 
    Rampioni G, D'Angelo F, Messina M, Zennaro A, Kuruma Y et al. 2018. Synthetic cells produce a quorum sensing chemical signal perceived by Pseudomonas aeruginosa. Chem. Commun. 54:2090–93
    [Google Scholar]
  88. 88. 
    Simmel FC. 2019. Synthetic organelles. Emerg. Top. Life Sci. 3:587–95
    [Google Scholar]
  89. 89. 
    Thamboo S, Najer A, Belluati A, von Planta C, Wu DL et al. 2019. Mimicking cellular signaling pathways within synthetic multicompartment vesicles with triggered enzyme activity and induced ion channel recruitment. Adv. Funct. Mater. 29:1904267
    [Google Scholar]
  90. 90. 
    Krafft D, López Castellanos S, Lira RB, Dimova R, Ivanov I, Sundmacher K 2019. Compartments for synthetic cells: osmotically assisted separation of oil from double emulsions in a microfluidic chip. ChemBioChem 20:2604–8
    [Google Scholar]
  91. 91. 
    Qiao Y, Li M, Qiu D, Mann S. 2019. Response-retaliation behavior in synthetic protocell communities. Angew. Chem. Int. Ed. 58:17758–63
    [Google Scholar]
  92. 92. 
    Wang L, Song SD, van Hest J, Abdelmohsen L, Huang X, Sanchez S. 2020. Biomimicry of cellular motility and communication based on synthetic soft-architectures. Small 16:e1907680
    [Google Scholar]
  93. 93. 
    Bayley H, Cazimoglu I, Hoskin CEG. 2019. Synthetic tissues. Emerg. Top. Life Sci. 3:615–22
    [Google Scholar]
  94. 94. 
    Santos-Moreno J, Schaerli Y 2019. Using synthetic biology to engineer spatial patterns. Adv. Biosyst. 3:1800280
    [Google Scholar]
  95. 95. 
    Gorochowski TE, Hauert S, Kreft JU, Marucci L, Stillman NR et al. 2020. Toward engineering biosystems with emergent collective functions. Front. Bioeng. Biotechnol. 8:705
    [Google Scholar]
  96. 96. 
    Solé R, Ollé-Vila A, Vidiella B, Duran-Nebreda S, Conde-Pueyo N. 2018. The road to synthetic multicellularity. Curr. Opin. Syst. Biol. 7:60–67
    [Google Scholar]
  97. 97. 
    West SA, Fisher RM, Gardner A, Kiers ET 2015. Major evolutionary transitions in individuality. PNAS 112:10112–19
    [Google Scholar]
  98. 98. 
    Xu C, Hu S, Chen X 2016. Artificial cells: from basic science to applications. Mater. Today 19:516–32
    [Google Scholar]
  99. 99. 
    Fletcher D. 2018. Which biological systems should be engineered?. Nature 563:177–79
    [Google Scholar]
  100. 100. 
    Chang TM. 2005. Therapeutic applications of polymeric artificial cells. Nat. Rev. Drug Discov. 4:221–35
    [Google Scholar]
  101. 101. 
    Zhang Y, Ruder WC, LeDuc PR. 2008. Artificial cells: building bioinspired systems using small-scale biology. Trends Biotechnol 26:14–20
    [Google Scholar]
  102. 102. 
    Reinkemeier CD, Girona GE, Lemke EA. 2019. Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes. Science 363:eaaw2644
    [Google Scholar]
  103. 103. 
    Kurokawa C, Fujiwara K, Morita M, Kawamata I, Kawagishi Y et al. 2017. DNA cytoskeleton for stabilizing artificial cells. PNAS 114:7228–33
    [Google Scholar]
  104. 104. 
    Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. 2011. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc. Chem. Res. 44:1039–49
    [Google Scholar]
  105. 105. 
    Danchin A, Fang G. 2016. Unknown unknowns: essential genes in quest for function. Microb. Biotechnol. 9:530–40
    [Google Scholar]
  106. 106. 
    Sheldon RA. 2011. Cross-linked enzyme aggregates as industrial biocatalysts. Org. Process Res. Dev. 15:213–23
    [Google Scholar]
  107. 107. 
    Pohorille A, Deamer D. 2002. Artificial cells: prospects for biotechnology. Trends Biotechnol 20:123–28
    [Google Scholar]
  108. 108. 
    Krinsky N, Kaduri M, Zinger A, Shainsky-Roitman J, Goldfeder M et al. 2018. Synthetic cells synthesize therapeutic proteins inside tumors. Adv. Healthc. Mater. 7:e1701163
    [Google Scholar]
  109. 109. 
    Silverman AD, Karim AS, Jewett MC. 2020. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21:151–70
    [Google Scholar]
  110. 110. 
    Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC et al. 2010. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. PNAS 107:4004
    [Google Scholar]
  111. 111. 
    Meng FH, Zhong ZY, Feijen J. 2009. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 10:197–209
    [Google Scholar]
  112. 112. 
    Fujii S, Matsuura T, Sunami T, Kazuta Y, Yomo T 2013. In vitro evolution of α-hemolysin using a liposome display. PNAS 110:16796–801
    [Google Scholar]
  113. 113. 
    Slomovic S, Pardee K, Collins JJ. 2015. Synthetic biology devices for in vitro and in vivo diagnostics. PNAS 112:14429–35
    [Google Scholar]
  114. 114. 
    Joseph A, Contini C, Cecchin D, Nyberg S, Ruiz-Perez L et al. 2017. Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci. Adv. 3:e1700362
    [Google Scholar]
  115. 115. 
    Arrabito G, Ferrara V, Bonasera A, Pignataro B. 2020. Artificial biosystems by printing biology. Small 16:e1907691
    [Google Scholar]
  116. 116. 
    Lentini R, Martín NY, Forlin M, Belmonte L, Fontana J et al. 2017. Two-way chemical communication between artificial and natural cells. ACS Cent. Sci. 3:117–23
    [Google Scholar]
  117. 117. 
    Justus KB, Hellebrekers T, Lewis DD, Wood A, Ingham C et al. 2019. A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci. Robot. 4:eaax0765
    [Google Scholar]
  118. 118. 
    Loose M, Fischer-Friedrich E, Ries J, Kruse K, Schwille P. 2008. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–92
    [Google Scholar]
  119. 119. 
    Weiss M, Frohnmayer JP, Benk LT, Haller B, Janiesch J-W et al. 2018. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17:89–96
    [Google Scholar]
  120. 120. 
    Gaut NJ, Gomez-Garcia J, Heili JM, Cash B, Han Q et al. 2019. Differentiation of pluripotent synthetic minimal cells via genetic circuits and programmable mating. bioRxiv. https://doi.org/10.1101/712968
    [Crossref]
  121. 121. 
    Marucci L, Barberis M, Karr J, Ray O, Race PR et al. 2020. Computer-aided whole-cell design: taking a holistic approach by integrating synthetic with systems biology. Front. Bioeng. Biotechnol. 8:942
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092220-085918
Loading
/content/journals/10.1146/annurev-chembioeng-092220-085918
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error