1932

Abstract

The storage of electric energy in a safe and environmentally friendly way is of ever-growing importance for a modern, technology-based society. With future pressures predicted for batteries that contain strategic metals, there is increasing interest in metal-free electrode materials. Among candidate materials, nonconjugated redox-active polymers (NC-RAPs) have advantages in terms of cost-effectiveness, good processability, unique electrochemical properties, and precise tuning for different battery chemistries. Here, we review the current state of the art regarding the mechanisms of redox kinetics, molecular design, synthesis, and application of NC-RAPs in electrochemical energy storage and conversion. Different redox chemistries are compared, including polyquinones, polyimides, polyketones, sulfur-containing polymers, radical-containing polymers, polyphenylamines, polyphenazines, polyphenothiazines, polyphenoxazines, and polyviologens. We close with cell design principles considering electrolyte optimization and cell configuration. Finally, we point to fundamental and applied areas of future promise for designer NC-RAPs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-111121
2023-06-08
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/14/1/annurev-chembioeng-092220-111121.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-111121&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Muench S, Wild A, Friebe C, Haupler B, Janoschka T, Schubert US. 2016. Polymer-based organic batteries. Chem. Rev. 116:9438–84
    [Google Scholar]
  2. 2.
    Wang S, Easley AD, Lutkenhaus JL. 2020. 100th Anniversary of Macromolecular Science Viewpoint: fundamentals for the future of macromolecular nitroxide radicals. ACS Macro Lett. 9:358–70
    [Google Scholar]
  3. 3.
    Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y, Yao Y 2020. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120:6490–557
    [Google Scholar]
  4. 4.
    Goujon N, Casado N, Patil N, Marcilla R, Mecerreyes D. 2021. Organic batteries based on just redox polymers. Prog. Polym. Sci. 122:101449
    [Google Scholar]
  5. 5.
    Esser B. 2019. Redox polymers as electrode-active materials for batteries. Org. Mater. 1:63–70
    [Google Scholar]
  6. 6.
    Rohland P, Schröter E, Nolte O, Newkome GR, Hager MD, Schubert US. 2022. Redox-active polymers: the magic key towards energy storage—a polymer design guideline progress in polymer science. Prog. Polym. Sci. 125:101474
    [Google Scholar]
  7. 7.
    Ruff I, Friedrich VJ. 1971. Transfer diffusion. I. Theoretical. J. Phys. Chem. 75:3297–302
    [Google Scholar]
  8. 8.
    Dahms H. 1968. Electronic conduction in aqueous solution. J. Phys. Chem. 72:362–64
    [Google Scholar]
  9. 9.
    Sato K, Ichinoi R, Mizukami R, Serikawa T, Sasaki Y et al. 2018. Diffusion-cooperative model for charge transport by redox-active nonconjugated polymers. J. Am. Chem. Soc. 140:1049–56
    [Google Scholar]
  10. 10.
    Laviron E. 1980. A multilayer model for the study of space distributed redox modified electrodes: part I. Description and discussion of the model. J. Electroanal. Chem. Interfacial Electrochem. 112:1–9
    [Google Scholar]
  11. 11.
    Andrieux CP, Savéant JM. 1980. Electron transfer through redox polymer films. J. Electroanal. Chem. Interfacial Electrochem. 111:377–81
    [Google Scholar]
  12. 12.
    Marcus RA. 1956. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24:966–78
    [Google Scholar]
  13. 13.
    Marcus RA. 1993. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65:599–610
    [Google Scholar]
  14. 14.
    Marcus RA. 1968. Electron transfer at electrodes and in solution: comparison of theory and experiment. Electrochim. Acta 13:995–1004
    [Google Scholar]
  15. 15.
    Hush NS. 1958. Adiabatic rate processes at electrodes. I. Energy-charge relationships. J. Chem. Phys. 28:962–72
    [Google Scholar]
  16. 16.
    Hush NS. 1968. Homogeneous and heterogeneous optical and thermal electron transfer. Electrochim. Acta 13:1005–23
    [Google Scholar]
  17. 17.
    Ohsaka T, Yamamoto H, Oyama N. 1987. Thermodynamic parameters for charge-transfer reactions in pendant viologen polymers coated on graphite electrodes and at electrode/pendant viologen polymer film interfaces. J. Phys. Chem. 91:3775–79
    [Google Scholar]
  18. 18.
    von Smoluchowski M. 1906. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys 326:756–80
    [Google Scholar]
  19. 19.
    Yoshida N. 1985. Calculation of the self-diffusion coefficient of interacting Brownian particles based on the time-independent Smoluchowski equation. J. Chem. Phys. 83:4786–90
    [Google Scholar]
  20. 20.
    Akhoury A, Bromberg L, Hatton TA. 2013. Interplay of electron hopping and bounded diffusion during charge transport in redox polymer electrodes. J. Phys. Chem. B 117:333–42
    [Google Scholar]
  21. 21.
    Kuki A, Wolynes PG. 1987. Electron tunneling paths in proteins. Science 236:1647–52
    [Google Scholar]
  22. 22.
    Anson FC. 1964. Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo)tetraacetate on mercury electrodes. Anal. Chem. 36:932–34
    [Google Scholar]
  23. 23.
    Anson FC. 1966. Innovations in the study of adsorbed reactants by chronocoulometry. Anal. Chem. 38:54–57
    [Google Scholar]
  24. 24.
    Zahn R, Coullerez G, Vörös J, Zambelli T. 2012. Effect of polyelectrolyte interdiffusion on electron transport in redox-active polyelectrolyte multilayers. J. Mater. Chem. 22:11073–78
    [Google Scholar]
  25. 25.
    Wang H, Sayed SY, Luber EJ, Olsen BC, Shirurkar SM et al. 2020. Redox flow batteries: how to determine electrochemical kinetic parameters. ACS Nano 14:2575–84
    [Google Scholar]
  26. 26.
    Oyaizu K, Kawamoto T, Suga T, Nishide H. 2010. Synthesis and charge transport properties of redox-active nitroxide polyethers with large site density. Macromolecules 43:10382–89
    [Google Scholar]
  27. 27.
    Nicholson RS, Shain I. 1964. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 36:706–23
    [Google Scholar]
  28. 28.
    Erdey-Grúz T, Volmer M. 2017. Zur theorie der Wasserstoff Überspannung. Z. Phys. Chem. 150A:1203–13
    [Google Scholar]
  29. 29.
    Eisner U, Gileadi E. 1970. Anodic oxidation of hydrazine and its derivatives: part 1. The oxidation of hydrazine on gold electrodes in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 28:181–92
    [Google Scholar]
  30. 30.
    Klingler RJ, Kochi JK. 1981. Electron-transfer kinetics from cyclic voltammetry. Quantitative description of electrochemical reversibility. J. Phys. Chem. 85:121731–41
    [Google Scholar]
  31. 31.
    Bard AJ, Faulkner LR. 2000. Electrochemical Methods: Fundamentals and Applications Hoboken, NJ: John Wiley & Sons. , 2nd ed..
    [Google Scholar]
  32. 32.
    Ma T, Easley AD, Wang S, Flouda P, Lutkenhaus JL. 2021. Mixed electron-ion-water transfer in macromolecular radicals for metal-free aqueous batteries. Cell Rep. Phys. Sci. 2:100414
    [Google Scholar]
  33. 33.
    Easley AD, Shaligram SV, Echols IJ, Nixon K, Regen SL, Lutkenhaus JL. 2022. Layer-by-layer nanoarchitectonics of electrochemically active thin films comprised of radical-containing polymers. J. Electrochem. Soc. 169:020510
    [Google Scholar]
  34. 34.
    Oka K, Kato R, Oyaizu K, Nishide H. 2018. Poly(vinyldibenzothiophenesulfone): its redox capability at very negative potential toward an all-organic rechargeable device with high-energy density. Adv. Funct. Mater. 28:1805858
    [Google Scholar]
  35. 35.
    Qiu J, Hajibabaei H, Nellist MR, Laskowski FAL, Hamann TW, Boettcher SW. 2017. Direct in situ measurement of charge transfer processes during photoelectrochemical water oxidation on catalyzed hematite. ACS Cent. Sci. 3:1015–25
    [Google Scholar]
  36. 36.
    Porras-Gutiérrez AG, Frontana-Uribe BA, Gutiérrez-Granados S, Griveau S, Bedioui F. 2013. In situ characterization by cyclic voltammetry and conductance of composites based on polypyrrole, multi-walled carbon nanotubes and cobalt phthalocyanine. Electrochim. Acta 89:840–47
    [Google Scholar]
  37. 37.
    Salinas G, Frontana-Uribe BA. 2019. Analysis of conjugated polymers conductivity by in situ electrochemical-conductance method. ChemElectroChem 6:4105–17
    [Google Scholar]
  38. 38.
    Thakur RM, Easley AD, Wang S, Zhang Y, Ober CK, Lutkenhaus JL. 2022. Real time quantification of mixed ion and electron transfer associated with the doping of poly(3-hexylthiophene). J. Mater. Chem. C 10:7251–62
    [Google Scholar]
  39. 39.
    Rostro L, Wong SH, Boudouris BW. 2014. Solid state electrical conductivity of radical polymers as a function of pendant group oxidation state. Macromolecules 47:3713–19
    [Google Scholar]
  40. 40.
    Zhang Y, Park A, Cintora A, McMillan SR, Harmon NJ et al. 2018. Impact of the synthesis method on the solid-state charge transport of radical polymers. J. Mater. Chem. C 6:111–18
    [Google Scholar]
  41. 41.
    Deng W, Shi W, Liu Q, Jiang J, Wang Q, Guo C. 2020. Conductive nonconjugated radical polymer as high capacity organic cathode material for high-energy Li/Na ion batteries. J. Power Sources 479:228796
    [Google Scholar]
  42. 42.
    Yu I, Jeon D, Boudouris B, Joo Y. 2020. Mixed ionic and electronic conduction in radical polymers. Macromolecules 53:4435–41
    [Google Scholar]
  43. 43.
    Joo Y, Agarkar V, Sung SH, Savoie BM, Boudouris BW. 2018. A nonconjugated radical polymer glass with high electrical conductivity. Science 359:1391–95
    [Google Scholar]
  44. 44.
    Tanaka M, Hatta K, Edura T, Tsutsui K, Wada Y, Nishide H. 2007. Conductive characteristics of radical-bearing polythiophenes using a microcomb-shaped electrode. Polym. Adv. Technol. 18:925–31
    [Google Scholar]
  45. 45.
    Zhang Y, Park AM, McMillan SR, Harmon NJ, Flatté ME et al. 2018. Charge transport in conjugated polymers with pendent stable radical groups. Chem. Mater. 30:4799–807
    [Google Scholar]
  46. 46.
    Wang S, Easley AD, Thakur RM, Ma T, Yun J et al. 2020. Quantifying internal charge transfer and mixed ion-electron transfer in conjugated radical polymers. Chem. Sci. 11:9962–70
    [Google Scholar]
  47. 47.
    Häringer D, Novák P, Haas O, Piro B, Pham M-C. 1999. Poly(5-amino-1,4-naphthoquinone), a novel lithium-inserting electroactive polymer with high specific charge. J. Electrochem. Soc. 146:2393–96
    [Google Scholar]
  48. 48.
    Shen YF, Yuan DD, Ai XP, Yang HX, Zhou M. 2015. High capacity and cycling stability of poly(diaminoanthraquinone) as an organic cathode for rechargeable lithium batteries. J. Polym. Sci. B 53:235–38
    [Google Scholar]
  49. 49.
    Zhao L, Wang W, Wang A, Yuan K, Chen S, Yang Y 2013. A novel polyquinone cathode material for rechargeable lithium batteries. J. Power Sources 233:23–27
    [Google Scholar]
  50. 50.
    Song Z, Zhan H, Zhou Y. 2009. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem. Commun. 2009:448–50
    [Google Scholar]
  51. 51.
    Deng W, Liang X, Wu X, Qian J, Cao Y et al. 2013. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3:2671
    [Google Scholar]
  52. 52.
    Song Z, Qian Y, Zhang T, Otani M, Zhou H. 2015. Poly(benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries. Adv. Sci. 2:1500124
    [Google Scholar]
  53. 53.
    Tang M, Zhu S, Liu Z, Jiang C, Wu Y et al. 2018. Tailoring π-conjugated systems: from π-π stacking to high-rate-performance organic cathodes. Chemistry 4:2600–14
    [Google Scholar]
  54. 54.
    Tang M, Wu Y, Chen Y, Jiang C, Zhu S et al. 2019. An organic cathode with high capacities for fast-charge potassium-ion batteries. J. Mater. Chem. A 7:486–92
    [Google Scholar]
  55. 55.
    Petronico A, Bassett KL, Nicolau BG, Gewirth AA, Nuzzo RG. 2017. Toward a four-electron redox quinone polymer for high capacity lithium ion storage. Adv. Energy Mater. 8:1700960
    [Google Scholar]
  56. 56.
    Kassam A, Burnell DJ, Dahn JR. 2011. Lithiated 1,4,5,8-naphthalenetetraol formaldehyde polymer, an organic cathode material. Electrochem. Solid-State Lett. 14:A22
    [Google Scholar]
  57. 57.
    Song Z, Qian Y, Liu X, Zhang T, Zhu Y et al. 2014. A quinone-based oligomeric lithium salt for superior Li–organic batteries. Energy Environ. Sci. 7:4077–86
    [Google Scholar]
  58. 58.
    Haupler B, Hagemann T, Friebe C, Wild A, Schubert US. 2015. Dithiophenedione-containing polymers for battery application. ACS Appl. Mater. Interfaces 7:3473–79
    [Google Scholar]
  59. 59.
    Jing Y, Liang Y, Gheytani S, Yao Y. 2017. Cross-conjugated oligomeric quinones for high performance organic batteries. Nano Energy 37:46–52
    [Google Scholar]
  60. 60.
    Xie J, Wang Z, Xu ZJ, Zhang Q. 2018. Toward a high-performance all-plastic full battery with a single organic polymer as both cathode and anode. Adv. Energy Mater. 8:1703509
    [Google Scholar]
  61. 61.
    Liu T, Kim KC, Lee B, Chen Z, Noda S et al. 2017. Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy Environ. Sci. 10:205–15
    [Google Scholar]
  62. 62.
    Pirnat K, Casado N, Porcarelli L, Ballard N, Mecerreyes D. 2019. Synthesis of redox polymer nanoparticles based on poly(vinyl catechols) and their electroactivity. Macromolecules 52:8155–66
    [Google Scholar]
  63. 63.
    Muench S, Winsberg J, Friebe C, Wild A, Brendel JC et al. 2018. pNTQS: easily accessible high-capacity redox-active polymer for organic battery electrodes. ACS Appl. Energy Mater. 1:3554–59
    [Google Scholar]
  64. 64.
    Huang W, Jia T, Zhou G, Chen S, Hou Q et al. 2018. A triphenylamine-based polymer with anthraquinone side chain as cathode material in lithium ion batteries. Electrochim. Acta 283:1284–90
    [Google Scholar]
  65. 65.
    Choi W, Harada D, Oyaizu K, Nishide H. 2011. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries. J. Am. Chem. Soc. 133:19839–43
    [Google Scholar]
  66. 66.
    Kawai T, Oyaizu K, Nishide H. 2015. High-density and robust charge storage with poly(anthraquinone-substituted norbornene) for organic electrode-active materials in polymer–air secondary batteries. Macromolecules 48:2429–34
    [Google Scholar]
  67. 67.
    Oyaizu K, Choi W, Nishide H. 2011. Functionalization of poly(4-chloromethylstyrene) with anthraquinone pendants for organic anode-active materials. Polym. Adv. Technol. 22:1242–47
    [Google Scholar]
  68. 68.
    Wang S, Wang Q, Shao P, Han Y, Gao X et al. 2017. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139:4258–61
    [Google Scholar]
  69. 69.
    Gu S, Wu S, Cao L, Li M, Qin N et al. 2019. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J. Am. Chem. Soc. 141:9623–28
    [Google Scholar]
  70. 70.
    Kang H, Liu H, Li C, Sun L, Zhang C et al. 2018. Polyanthraquinone-triazine-A promising anode material for high-energy lithium-ion batteries. ACS Appl. Mater. Interfaces 10:37023–30
    [Google Scholar]
  71. 71.
    Torres W, Fox MA. 1990. Poly(N-3-thenylphthalimide): conductivity and spectral properties. Chem. Mater. 2:158–62
    [Google Scholar]
  72. 72.
    Song Z, Zhan H, Zhou Y. 2010. Polyimides: promising energy-storage materials. Angew. Chem. Int. Ed. 49:8444–48
    [Google Scholar]
  73. 73.
    Oyaizu K, Hatemata A, Choi W, Nishide H. 2010. Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides. J. Mater. Chem. 20:5404–10
    [Google Scholar]
  74. 74.
    Xu F, Xia J, Shi W. 2015. Anthraquinone-based polyimide cathodes for sodium secondary batteries. Electrochem. Commun. 60:117–20
    [Google Scholar]
  75. 75.
    Wang H-g, Yuan S, Ma D-l, Huang X-l, Meng F-l, Zhang X-b. 2014. Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries. Adv. Energy Mater. 4:1301651
    [Google Scholar]
  76. 76.
    Xu F, Wang H, Wu M, Nan J, Li T, Cao S-a. 2018. Electrochemical properties of poly(anthraquinonyl imide)s as high-capacity organic cathode materials for Li-ion batteries. Mater. Chem. Phys. 214:120–25
    [Google Scholar]
  77. 77.
    Chen C, Zhao X, Li H-B, Gan F, Zhang J et al. 2017. Naphthalene-based polyimide derivatives as organic electrode materials for lithium-ion batteries. Electrochim. Acta 229:387–95
    [Google Scholar]
  78. 78.
    Sharma P, Damien D, Nagarajan K, Shaijumon MM, Hariharan M. 2013. Perylene-polyimide-based organic electrode materials for rechargeable lithium batteries. J. Phys. Chem. Lett. 4:3192–97
    [Google Scholar]
  79. 79.
    Liang Y, Chen Z, Jing Y, Rong Y, Facchetti A, Yao Y. 2015. Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J. Am. Chem. Soc. 137:4956–59
    [Google Scholar]
  80. 80.
    Li J, Jing X, Li Q, Li S, Gao X et al. 2020. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 49:3565–604
    [Google Scholar]
  81. 81.
    Wang G, Chandrasekhar N, Biswal BP, Becker D, Paasch S et al. 2019. A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage. Adv. Mater. 31:e1901478
    [Google Scholar]
  82. 82.
    Lv J, Tan YX, Xie J, Yang R, Yu M et al. 2018. Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem. Int. Ed. 57:12716–20
    [Google Scholar]
  83. 83.
    Tian D, Zhang H-Z, Zhang D-S, Chang Z, Han J et al. 2014. Li-ion storage and gas adsorption properties of porous polyimides (PIs). RSC Adv. 4:7506–10
    [Google Scholar]
  84. 84.
    Schon TB, Tilley AJ, Kynaston EL, Seferos DS. 2017. Three-dimensional arylene diimide frameworks for highly stable lithium ion batteries. ACS Appl. Mater. Interfaces 9:15631–37
    [Google Scholar]
  85. 85.
    Geng J, Bonnet J-P, Renault S, Dolhem F, Poizot P 2010. Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit. Energy Environ. Sci. 3:1929–33
    [Google Scholar]
  86. 86.
    Nokami T, Matsuo T, Inatomi Y, Hojo N, Tsukagoshi T et al. 2012. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 134:19694–700
    [Google Scholar]
  87. 87.
    Liang Y, Jing Y, Gheytani S, Lee KY, Liu P et al. 2017. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16:841–48
    [Google Scholar]
  88. 88.
    Xie J, Chen W, Long G, Gao W, Xu ZJ et al. 2018. Boosting the performance of organic cathodes through structure tuning. J. Mater. Chem. A 6:12985–91
    [Google Scholar]
  89. 89.
    Li Q, Li D, Wang H, Wang HG, Li Y et al. 2019. Conjugated carbonyl polymer-based flexible cathode for superior lithium-organic batteries. ACS Appl. Mater. Interfaces 11:28801–8
    [Google Scholar]
  90. 90.
    Shi R, Liu L, Lu Y, Li Y, Zheng S et al. 2020. situ polymerized conjugated poly(pyrene-4,5,9,10-tetraone)/carbon nanotubes composites for high-performance cathode of sodium batteries. Adv. Energy Mater 11:2002917
    [Google Scholar]
  91. 91.
    Trofimov BA, Myachina GF, Rodionova IV, Mal'kina AG, Dorofeev IA et al. 2008. Ethynedithiol-based polyeneoligosulfides as active cathode materials for lithium-sulfur batteries. J. Appl. Polymer Sci. 107:784–87
    [Google Scholar]
  92. 92.
    Sarukawa T, Oyama N. 2010. Electrochemical activity of sulfur-linked tetrathionaphthalene polymer. J. Electrochem. Soc. 157:F23
    [Google Scholar]
  93. 93.
    Su Y-Z, Dong W, Zhang J-H, Song J-H, Zhang Y-H, Gong K-C. 2007. Poly[bis(2-aminophenyloxy)disulfide]: a polyaniline derivative containing disulfide bonds as a cathode material for lithium battery. Polymer 48:165–73
    [Google Scholar]
  94. 94.
    Simmonds AG, Griebel JJ, Park J, Kim KR, Chung WJ et al. 2014. Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li–S batteries. ACS Macro Lett. 3:229–32
    [Google Scholar]
  95. 95.
    Grocke GL, Zhang H, Kopfinger SS, Patel SN, Rowan SJ. 2021. Synthesis and characterization of redox-responsive disulfide cross-linked polymer particles for energy storage applications. ACS Macro Lett. 10:1637–42
    [Google Scholar]
  96. 96.
    Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J et al. 2002. Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359:351–54
    [Google Scholar]
  97. 97.
    Wang S, Li F, Easley AD, Lutkenhaus JL. 2019. Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat. Mater. 18:69–75
    [Google Scholar]
  98. 98.
    Wang S, Park AMG, Flouda P, Easley AD, Li F et al. 2020. Solution-processable thermally crosslinked organic radical polymer battery cathodes. ChemSusChem 13:2371–78
    [Google Scholar]
  99. 99.
    Qin H, Liu X, Huang J, Liang H, Zhang Z, Lu J. 2019. Design and synthesis of a facile solution-processing and ultrastable crosslinkable branched nitroxide polymer. Macromol. Chem. Phys. 220:1900068
    [Google Scholar]
  100. 100.
    Rohan R, Hung M-K, Yang Y-F, Hsu C-W, Yeh C-K et al. 2022. Enhancement of the high-rate performance of an organic radical thin-film battery by decreasing the grafting density of polymer brushes. ACS Appl. Polym. Mater. 4:2365–72
    [Google Scholar]
  101. 101.
    López-Peña HA, Hernández-Muñoz LS, Cardoso J, González FJ, González I, Frontana C. 2009. Electrochemical and spectroelectrochemical properties of nitroxyl radical species in PTMA, an organic radical polymer. Influence of the microstructure. Electrochem. Commun. 11:1369–72
    [Google Scholar]
  102. 102.
    Guo W, Yin Y-X, Xin S, Guo Y-G, Wan L-J. 2012. Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ. Sci. 5:5221–25
    [Google Scholar]
  103. 103.
    Qu J, Khan FZ, Satoh M, Wada J, Hayashi H et al. 2008. Synthesis and charge/discharge properties of cellulose derivatives carrying free radicals. Polymer 49:1490–96
    [Google Scholar]
  104. 104.
    Nesvadba P, Bugnon L, Maire P, Novák P 2009. Synthesis of a novel spirobisnitroxide polymer and its evaluation in an organic radical battery. Chem. Mater. 22:783–88
    [Google Scholar]
  105. 105.
    Oyaizu K, Suga T, Yoshimura K, Nishide H. 2008. Synthesis and characterization of radical-bearing polyethers as an electrode-active material for organic secondary batteries. Macromolecules 41:6646–52
    [Google Scholar]
  106. 106.
    Anghel M, Magnan F, Catingan SD, McCready MA, Aawani E et al. 2020. Redox polymers incorporating pendant 6-oxoverdazyl and nitronyl nitroxide radicals. J. Polym. Sci. 58:309–19
    [Google Scholar]
  107. 107.
    Ezugwu S, Paquette JA, Yadav V, Gilroy JB, Fanchini G. 2016. Design criteria for ultrathin single-layer flash memristors from an organic polyradical. Adv. Electron. Mater. 2:1600253
    [Google Scholar]
  108. 108.
    Hansen KA, Nerkar J, Thomas K, Bottle SE, O'Mullane AP et al. 2018. New spin on organic radical batteries—an isoindoline nitroxide-based high-voltage cathode material. ACS Appl. Mater. Interfaces 10:7982–88
    [Google Scholar]
  109. 109.
    Suga T, Sugita S, Ohshiro H, Oyaizu K, Nishide H. 2011. p- and n-type bipolar redox-active radical polymer: toward totally organic polymer-based rechargeable devices with variable configuration. Adv. Mater. 23:751–54
    [Google Scholar]
  110. 110.
    Xiong J, Wei Z, Xu T, Zhang Y, Xiong C, Dong L. 2017. Polytriphenylamine derivative with enhanced electrochemical performance as the organic cathode material for rechargeable batteries. Polymer 130:135–42
    [Google Scholar]
  111. 111.
    Jähnert T, Hager MD, Schubert US. 2016. Assorted phenoxyl-radical polymers and their application in lithium-organic batteries. Macromol. Rapid Commun. 37:725–30
    [Google Scholar]
  112. 112.
    Saal A, Friebe C, Schubert US. 2022. Blatter radical as a polymeric active material in organic batteries. J. Power Sources 524:231061
    [Google Scholar]
  113. 113.
    Gerlach P, Burges R, Lex-Balducci A, Schubert US, Balducci A. 2019. Influence of the salt concentration on the electrochemical performance of electrodes for polymeric batteries. Electrochim. Acta 306:610–16
    [Google Scholar]
  114. 114.
    Easley AD, Vukin LM, Flouda P, Howard DL, Pena JL, Lutkenhaus JL. 2020. Nitroxide radical polymer–solvent interactions and solubility parameter determination. Macromolecules 53:7997–8008
    [Google Scholar]
  115. 115.
    Feng JK, Cao YL, Ai XP, Yang HX 2008. Polytriphenylamine: a high power and high capacity cathode material for rechargeable lithium batteries. J. Power Sources 177:199–204
    [Google Scholar]
  116. 116.
    Su C, Yang F, Ji L, Xu L, Zhang C 2014. Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries. J. Mater. Chem. A 2:20083–88
    [Google Scholar]
  117. 117.
    Obrezkov FA, Shestakov AF, Traven VF, Stevenson KJ, Troshin PA. 2019. An ultrafast charging polyphenylamine-based cathode material for high rate lithium, sodium and potassium batteries. J. Mater. Chem. A 7:11430–37
    [Google Scholar]
  118. 118.
    Obrezkov FA, Ramezankhani V, Zhidkov I, Traven VF, Kurmaev EZ et al. 2019. High-energy and high-power-density potassium ion batteries using dihydrophenazine-based polymer as active cathode material. J. Phys. Chem. Lett. 10:5440–45
    [Google Scholar]
  119. 119.
    Lee M, Hong J, Lee B, Ku K, Lee S et al. 2017. Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chem. 19:2980–85
    [Google Scholar]
  120. 120.
    Kolek M, Otteny F, Becking J, Winter M, Esser B, Bieker P. 2018. Mechanism of charge/discharge of poly(vinylphenothiazine)-based Li–organic batteries. Chem. Mater. 30:6307–17
    [Google Scholar]
  121. 121.
    Otteny F, Perner V, Einholz C, Desmaizieres G, Schleicher E et al. 2021. Bridging the gap between small molecular π-interactions and their effect on phenothiazine-based redox polymers in organic batteries. ACS Appl. Energy Mater. 4:7622–31
    [Google Scholar]
  122. 122.
    Otteny F, Kolek M, Becking J, Winter M, Bieker P, Esser B. 2018. Unlocking full discharge capacities of poly(vinylphenothiazine) as battery cathode material by decreasing polymer mobility through cross-linking. Adv. Energy Mater. 8:1802151
    [Google Scholar]
  123. 123.
    Schmidt M, Hermann M, Otteny F, Esser B. 2020. Calix[n]phenothiazines: optoelectronic and structural properties and host–guest chemistry. Org. Mater. 02:235–39
    [Google Scholar]
  124. 124.
    Peterson BM, Ren D, Shen L, Wu Y-CM, Ulgut B et al. 2018. Phenothiazine-based polymer cathode materials with ultrahigh power densities for lithium ion batteries. ACS Appl. Energy Mater. 1:3560–64
    [Google Scholar]
  125. 125.
    Kuzin YI, Khadieva AI, Padnya PL, Khannanov AA, Kutyreva MP et al. 2021. Electrochemistry of new derivatives of phenothiazine: electrode kinetics and electropolymerization conditions. Electrochim. Acta 375:137985
    [Google Scholar]
  126. 126.
    Otteny F, Perner V, Wassy D, Kolek M, Bieker P et al. 2019. Poly(vinylphenoxazine) as fast-charging cathode material for organic batteries. ACS Sustain. Chem. Eng. 8:238–47
    [Google Scholar]
  127. 127.
    Speer ME, Kolek M, Jassoy JJ, Heine J, Winter M et al. 2015. Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chem. Commun. 51:15261–64
    [Google Scholar]
  128. 128.
    Wild A, Strumpf M, Häupler B, Hager MD, Schubert US. 2017. All-organic battery composed of thianthrene- and TCAQ-based polymers. Adv. Energy Mater. 7:1601415
    [Google Scholar]
  129. 129.
    Acker P, Speer ME, Wössner JS, Esser B. 2020. Azine-based polymers with a two-electron redox process as cathode materials for organic batteries. J. Mater. Chem. A 8:11195–201
    [Google Scholar]
  130. 130.
    Li C, Xue J, Huang A, Ma J, Qing F et al. 2019. Poly(N-vinylcarbazole) as an advanced organic cathode for potassium-ion-based dual-ion battery. Electrochim. Acta 297:850–55
    [Google Scholar]
  131. 131.
    Yao M, Senoh H, Sakai T, Kiyobayashi T. 2012. Redox active poly(N-vinylcarbazole) for use in rechargeable lithium batteries. J. Power Sources 202:364–68
    [Google Scholar]
  132. 132.
    Sano N, Tomita W, Hara S, Min C-M, Lee J-S et al. 2013. Polyviologen hydrogel with high-rate capability for anodes toward an aqueous electrolyte-type and organic-based rechargeable device. ACS Appl. Mater. Interfaces 5:1355–61
    [Google Scholar]
  133. 133.
    Beladi-Mousavi SM, Sadaf S, Mahmood AM, Walder L. 2017. High performance poly(viologen)–graphene nanocomposite battery materials with puff paste architecture. ACS Nano 11:8730–40
    [Google Scholar]
  134. 134.
    Nguyen TP, Easley AD, Kang N, Khan S, Lim S-M et al. 2021. Polypeptide organic radical batteries. Nature 593:61–66
    [Google Scholar]
  135. 135.
    Li F, Gore DN, Wang S, Lutkenhaus JL. 2017. Unusual internal electron transfer in conjugated radical polymers. Angew. Chem. Int. Ed. 56:9856–59
    [Google Scholar]
  136. 136.
    Wang W, Zhao C, Yang J, Xiong P, Su H, Xu Y. 2021. In-situ electropolymerized bipolar organic cathode for stable and high-rate lithium-ion batteries. Sci. China Mater. 64:2938–48
    [Google Scholar]
  137. 137.
    Zhao Y, Wu M, Chen H, Zhu J, Liu J et al. 2021. Balance cathode-active and anode-active groups in one conjugated polymer towards high-performance all-organic lithium-ion batteries. Nano Energy 86:106055
    [Google Scholar]
  138. 138.
    Casado N, Mantione D, Shanmukaraj D, Mecerreyes D. 2020. Symmetric all-organic battery containing a dual redox-active polymer as cathode and anode material. ChemSusChem 13:2464–70
    [Google Scholar]
  139. 139.
    Li W, Jiang S, Xie Y, Yan X, Zhao F et al. 2022. Anthraquinone-catalyzed TEMPO reduction to realize two-electron energy storage of poly(TEMPO-methacrylate). ACS Energy Lett. 7:1481–89
    [Google Scholar]
  140. 140.
    Zhao Y, Wu M, Zhang H, Ge Z, Li C et al. 2022. One polymer with three charge states for two types of lithium-ion batteries with different characteristics as needed. Energy Storage Mater. 47:141–48
    [Google Scholar]
  141. 141.
    Zhang K, Xie Y, Noble BB, Monteiro MJ, Lutkenhaus JL et al. 2021. Unravelling kinetic and mass transport effects on two-electron storage in radical polymer batteries. J. Mater. Chem. A 9:13071–79
    [Google Scholar]
  142. 142.
    Qu J, Morita R, Satoh M, Wada J, Terakura F et al. 2008. Synthesis and properties of DNA complexes containing 2,2,6,6-tetramethyl-1-piperidinoxy (TEMPO) moieties as organic radical battery materials. Chemistry 14:3250–59
    [Google Scholar]
  143. 143.
    Huang Q, Choi D, Cosimbescu L, Lemmon JP. 2013. Multi-electron redox reaction of an organic radical cathode induced by a mesopore carbon network with nitroxide polymers. Phys. Chem. Chem. Phys. 15:20921–28
    [Google Scholar]
  144. 144.
    Li Y, Jian Z, Lang M, Zhang C, Huang X. 2016. Covalently functionalized graphene by radical polymers for graphene-based high-performance cathode materials. ACS Appl. Mater. Interfaces 8:17352–59
    [Google Scholar]
  145. 145.
    Zhou T, Jin W, Xue W, Dai B, Feng C et al. 2021. Radical polymer-grafted carbon nanotubes as high-performance cathode materials for lithium organic batteries with promoted n-/p-type redox reactions. J. Power Sources 483:229136
    [Google Scholar]
  146. 146.
    Deng Y, Teng C, Wu Y, Zhang K, Yan L. 2022. Polypeptide radical cathode for aqueous Zn-ion battery with two-electron storage and faster charging rate. ChemSusChem 15:e202102710
    [Google Scholar]
  147. 147.
    Su C, Yang F, Xu L, Zhu X, He H, Zhang C. 2015. Radical polymer containing a polytriphenylamine backbone: its synthesis and electrochemical performance as the cathode of lithium-ion batteries. ChemPlusChem 80:606–11
    [Google Scholar]
  148. 148.
    Sukegawa T, Kai A, Oyaizu K, Nishide H. 2013. Synthesis of pendant nitronyl nitroxide radical-containing poly(norbornene)s as ambipolar electrode-active materials. Macromolecules 46:1361–67
    [Google Scholar]
  149. 149.
    Suga T, Pu Y-J, Kasatori S, Nishide H. 2007. Cathode- and anode-active poly(nitroxylstyrene)s for rechargeable batteries: p- and n-type redox switching via substituent effects. Macromolecules 40:3167–73
    [Google Scholar]
  150. 150.
    Jähnert T, Janoschka T, Hager MD, Schubert US. 2014. Polymers with n-type nitroxide side groups: synthesis and electrochemical characterization. Eur. Polym. J. 61:105–12
    [Google Scholar]
  151. 151.
    Paquette JA, Ezugwu S, Yadav V, Fanchini G, Gilroy JB. 2016. Synthesis, characterization, and thin-film properties of 6-oxoverdazyl polymers prepared by ring-opening metathesis polymerization. J. Polym. Sci. A 54:1803–13
    [Google Scholar]
  152. 152.
    Price JT, Paquette JA, Harrison CS, Bauld R, Fanchini G, Gilroy JB. 2014. 6-Oxoverdazyl radical polymers with tunable electrochemical properties. Polym. Chem. 5:5223–26
    [Google Scholar]
  153. 153.
    Magnan F, Dhindsa JS, Anghel M, Bazylewski P, Fanchini G, Gilroy JB. 2021. A divergent strategy for the synthesis of redox-active verdazyl radical polymers. Polym. Chem. 12:2786–97
    [Google Scholar]
  154. 154.
    Sentyurin VV, Levitskiy OA, Magdesieva TV. 2020. Molecular design of ambipolar redox-active open-shell molecules: principles and implementations. Curr. Opin. Electrochem. 24:15–23
    [Google Scholar]
  155. 155.
    Magdesieva T. 2022. Ambipolar diarylnitroxides: molecular design and electrochemical testing. Electrochem. Sci. Adv. 2:6e2100182
    [Google Scholar]
  156. 156.
    Li C-H, Tabor DP. 2022. Discovery of lead low-potential radical candidates for organic radical polymer batteries with machine-learning-assisted virtual screening. J. Mater. Chem. A 10:8273–82
    [Google Scholar]
  157. 157.
    Poizot P, Dolhem F, Gaubicher J. 2018. Progress in all-organic rechargeable batteries using cationic and anionic configurations: Toward low-cost and greener storage solutions?. Curr. Opin. Electrochem. 9:70–80
    [Google Scholar]
  158. 158.
    Zhu LM, Lei AW, Cao YL, Ai XP, Yang HX 2013. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode. Chem. Commun. 49:567–69
    [Google Scholar]
  159. 159.
    Wang H, Emanuelsson R, Karlsson C, Jannasch P, Strømme M, Sjödin M. 2021. Rocking-chair proton batteries with conducting redox polymer active materials and protic ionic liquid electrolytes. ACS Appl. Mater. Interfaces 13:19099–108
    [Google Scholar]
  160. 160.
    Yao M, Sano H, Ando H, Kiyobayashi T. 2015. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier. Sci. Rep. 5:10962
    [Google Scholar]
  161. 161.
    Chikushi N, Yamada H, Oyaizu K, Nishide H. 2012. TEMPO-substituted polyacrylamide for an aqueous electrolyte-typed and organic-based rechargeable device. Sci. China Chem. 55:822–29
    [Google Scholar]
  162. 162.
    Wang H, Wu Q, Wang Y, Lv X, Wang H-g. 2022. A redox-active metal–organic compound for lithium/sodium-based dual-ion batteries. J. Colloid Interface Sci. 606:1024–30
    [Google Scholar]
  163. 163.
    Zhang Y, An Y, Yin B, Jiang J, Dong S et al. 2019. A novel aqueous ammonium dual-ion battery based on organic polymers. J. Mater. Chem. A 7:11314–20
    [Google Scholar]
  164. 164.
    Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H. 2009. Emerging N-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv. Mater. 21:1627–30
    [Google Scholar]
  165. 165.
    Tan Y, Casetti NC, Boudouris BW, Savoie BM. 2021. Molecular design features for charge transport in nonconjugated radical polymers. J. Am. Chem. Soc. 143:11994–2002
    [Google Scholar]
  166. 166.
    Yan Y, Robinson SG, Sigman MS, Sanford MS. 2019. Mechanism-based design of a high-potential catholyte enables a 3.2 V all-organic nonaqueous redox flow battery. J. Am. Chem. Soc. 141:15301–6
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092220-111121
Loading
/content/journals/10.1146/annurev-chembioeng-092220-111121
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error