1932

Abstract

This review discusses the complex behaviors in diverse chemical and biochemical systems to elucidate their commonalities and thus help develop a mesoscience methodology to address the complexities in even broader topics. This could possibly build a new scientific paradigm for different disciplines and could meanwhile provide effective tools to tackle the big challenges in various fields, thus paving a path toward combining the paradigm shift in science with the breakthrough in technique developments. Starting with our relatively fruitful understanding of chemical systems, the discussion focuses on the relatively pristine but very intriguing biochemical systems. It is recognized that diverse complexities are multilevel in nature, with each level being multiscale and the complexity emerging always at mesoscales in mesoregimes. Relevant advances in theoretical understandings and mathematical tools are summarized as well based on case studies, and the convergence between physics and mathematics is highlighted.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-115031
2022-06-07
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092220-115031.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-115031&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Li J, Kwauk M. 2003. Exploring complex systems in chemical engineering—the multi-scale methodology. Chem. Eng. Sci. 58:521–35
    [Google Scholar]
  2. 2.
    Gallagher R, Appenzeller T. 1999. Beyond reductionism. Science 284:79
    [Google Scholar]
  3. 3.
    Batterham R. 2016. Compromise through competition: A more widely applicable approach?. Engineering 2:286–87
    [Google Scholar]
  4. 4.
    Trabesinger A. 2011. Complexity. Nat. Phys. 8:13
    [Google Scholar]
  5. 5.
    Holland JH. 2012. Signals and Boundaries: Building Blocks for Complex Adaptive Systems Cambridge, MA: MIT Press
    [Google Scholar]
  6. 6.
    Hutt A, Haken H. 2020. Synergetics New York: Springer
    [Google Scholar]
  7. 7.
    Nicolis G, Prigogine I. 1977. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations New York: John Wiley
    [Google Scholar]
  8. 8.
    Kondepudi D, Petrosky T, Pojman JA. 2017. Dissipative structures and irreversibility in nature: celebrating 100th birth anniversary of Ilya Prigogine (1917–2003). Chaos 27:104501
    [Google Scholar]
  9. 9.
    Mitchell M. 2009. Complexity: A Guided Tour Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  10. 10.
    Li J, Kwauk M. 1994. Particle-Fluid Two-Phase FlowThe Energy-Minimization Multi-Scale Method Beijing: Metall. Ind. Press
    [Google Scholar]
  11. 11.
    Greco S, Klamroth K, Knowles J, Rudolph G. 2017. Editorial: special issue on understanding complexity in multiobjective optimization. J. Multi-Criteria Decis. Anal. 24:3–4
    [Google Scholar]
  12. 12.
    Commendatore P, Kubin I, Bougheas S, Kirman A, Kopel M, Bischi GI. 2018. The Economy as a Complex Spatial System: Macro, Meso and Micro Perspectives Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  13. 13.
    Li J, Ge W, Wang W, Yang N, Liu X et al. 2013. From Multiscale Modeling to Meso-Science: A Chemical Engineering Perspective Berlin/Heidelberg: Springer
    [Google Scholar]
  14. 14.
    Li J, Huang W. 2014. Towards Mesoscience: The Principle of Compromise in Competition Berlin: Springer
    [Google Scholar]
  15. 15.
    Li J, Tung Y, Kwauk M. 1988. Method of energy minimization in multi-scale modeling of particle-fluid two-phase flow Presented at Circulating Fluidized Bed Technology II New York:
    [Google Scholar]
  16. 16.
    Huang W, Li J, Edwards PP. 2018. Mesoscience: exploring the common principle at mesoscales. Natl. Sci. Rev. 5:321–26
    [Google Scholar]
  17. 17.
    Li J, Huang W. 2018. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels. Annu. Rev. Chem. Biomol. Eng. 9:41–60
    [Google Scholar]
  18. 18.
    Li J. 2017. Mesoscale spatiotemporal structures: opportunities from challenges. Natl. Sci. Rev. 4:787
    [Google Scholar]
  19. 19.
    Li J, Ge W, Wang W, Yang N, Huang W 2016. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience. Curr. Opin. Chem. Eng. 13:10–23
    [Google Scholar]
  20. 20.
    Ge W, Wang W, Yang N, Li J, Kwauk M et al. 2011. Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS paradigm. Chem. Eng. Sci. 66:4426–58
    [Google Scholar]
  21. 21.
    Li J. 2015. Approaching virtual process engineering with exploring mesoscience. Chem. Eng. J. 278:541–55
    [Google Scholar]
  22. 22.
    Ge W, Guo L, Liu X, Meng F, Xu J et al. 2019. Mesoscience-based virtual process engineering. Comput. Chem. Eng. 126:68–82
    [Google Scholar]
  23. 23.
    Li J, Huang W. 2019. Paradigm shift in science with tackling global challenges. Natl. Sci. Rev. 6:1091–93
    [Google Scholar]
  24. 24.
    Li J, Ge W, Wang W, Yang N 2010. Focusing on the meso-scales of multi-scale phenomena—in search for a new paradigm in chemical engineering. Particuology 8:634–39
    [Google Scholar]
  25. 25.
    Fu B, Wang S, Zhang J, Hou Z, Li J. 2019. Unravelling the complexity in achieving the 17 sustainable-development goals. Natl. Sci. Rev. 6:386–88
    [Google Scholar]
  26. 26.
    Guo L, Wu J, Li J. 2019. Complexity at mesoscales: a common challenge in developing artificial intelligence. Engineering 5:924–29
    [Google Scholar]
  27. 27.
    Huang Y. 2018. Consensus reached at the mesoscience conference. Natl. Sci. Rev. 5:455
    [Google Scholar]
  28. 28.
    Song J. 2018. Mesoscience: peering into a once neglected world. Bull. Chin. Acad. Sci. 32:79–86
    [Google Scholar]
  29. 29.
    Ocone R. 2017. Reconciling “micro” and “macro” through mesoscience. Engineering 3:281–82
    [Google Scholar]
  30. 30.
    Paci AM. 2018. A research and innovation policy for sustainable S&T: a comment on the essay “Exploring the Logic and Landscape of the Knowledge System. .” Engineering 4:306–8
    [Google Scholar]
  31. 31.
    Li J, Huang W, Ge W 2018. Multilevel and multiscale PSE: challenges and opportunities at mesoscales. Computer Aided Chemical EngineeringVol. 44 MR Eden, MG Ierapetritou, GP Towler 11–19 Amsterdam: Elsevier
    [Google Scholar]
  32. 32.
    Aron DC. 2020. Complex Systems in Medicine: A Hedgehog's Tale of Complexity in Clinical Practice, Research, Education, and Management Cham, Switz.: Springer Int. Publ.
    [Google Scholar]
  33. 33.
    Ertl G. 1991. Oscillatory kinetics and spatio-temporal self-organization in reactions at solid surfaces. Science 254:1750–55
    [Google Scholar]
  34. 34.
    Imbihl R, Ertl G. 1995. Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95:697–733
    [Google Scholar]
  35. 35.
    von Oertzen A, Rotermund HH, Mikhailov AS, Ertl G. 2000. Standing wave patterns in the CO oxidation reaction on a PT(110) surface: experiments and modeling. J. Phys. Chem. B 104:3155–78
    [Google Scholar]
  36. 36.
    Prakash S, Nicolis G. 1997. Dynamics of the Shlögl models on lattices of low spatial dimension. J. Stat. Phys. 86:1289–311
    [Google Scholar]
  37. 37.
    Wintterlin J, Völkening S, Janssens TVW, Zambelli T, Ertl G. 1997. Atomic and macroscopic reaction rates of a surface-catalyzed reaction. Science 278:1931–34
    [Google Scholar]
  38. 38.
    Huang WL, Li J. 2016. Mesoscale model for heterogeneous catalysis based on the principle of compromise in competition. Chem. Eng. Sci. 147:83–90
    [Google Scholar]
  39. 39.
    Sun F, Huang WL, Li J. 2017. Mesoscale structures in the adlayer of A-B2 heterogeneous catalysis. Langmuir 33:11582–89
    [Google Scholar]
  40. 40.
    Huang WL, Li J, Liu Z, Zhou J, Ma C, Wen L-X. 2019. Mesoscale distribution of adsorbates in ZSM-5 zeolite. Chem. Eng. Sci. 198:253–59
    [Google Scholar]
  41. 41.
    Sundaresan S. 2000. Modeling the hydrodynamics of multiphase flow reactors: current status and challenges. AIChE J 46:1102–5
    [Google Scholar]
  42. 42.
    Deckwer WD. 1992. Bubble Column Reactors Chichester, UK: Wiley
    [Google Scholar]
  43. 43.
    Fan LS. 1989. Gas-Liquid-Solid Fluidization Engineering Stoneham, MA: Butterworth
    [Google Scholar]
  44. 44.
    Clift R, Grace JR, Weber ME. 1978. Bubbles, Drops, and Particles London: Academic
    [Google Scholar]
  45. 45.
    Kwauk M, Li J, Liu D. 2000. Particulate and aggregative fluidization—50 years in retrospect. Powder Technol 111:3–18
    [Google Scholar]
  46. 46.
    Yang N, Wang W, Ge W, Li J. 2003. CFD simulation of concurrent-up gas–solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chem. Eng. J. 96:71–80
    [Google Scholar]
  47. 47.
    Wang W, Li J. 2007. Simulation of gas–solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level. Chem. Eng. Sci. 62:208–31
    [Google Scholar]
  48. 48.
    Lu B, Wang W, Li J 2009. Searching for a mesh-independent sub-grid model for CFD simulation of gas–solid riser flows. Chem. Eng. Sci. 64:3437–47
    [Google Scholar]
  49. 49.
    Wang W, Lu B, Geng J, Li F. 2020. Mesoscale drag modeling: a critical review. Curr. Opin. Chem. Eng. 29:96–103
    [Google Scholar]
  50. 50.
    Du M, Hu S, Chen J, Liu X, Ge W. 2018. Extremum characteristics of energy consumption in fluidization analyzed by using EMMS. Chem. Eng. J. 342:386–94
    [Google Scholar]
  51. 51.
    Mo Y, Du M, Ge W, Zhang P. 2020. Analysis of the energy-minimization multiscale model with multiobjective optimization. Particuology 48:109–15
    [Google Scholar]
  52. 52.
    Chen J. 2019. Determination of choking in the EMMS model. Chem. Eng. J. 357:508–17
    [Google Scholar]
  53. 53.
    Liu X, Jiang Y, Liu C, Wang W, Li J 2014. Hydrodynamic modeling of gas–solid bubbling fluidization based on energy-minimization multiscale (EMMS) theory. Ind. Eng. Chem. Res. 53:2800–10
    [Google Scholar]
  54. 54.
    Hu S, Liu X, Zhang N, Li J, Ge W, Wang W. 2017. Quantifying cluster dynamics to improve EMMS drag law and radial heterogeneity description in coupling with gas-solid two-fluid method. Chem. Eng. J. 307:326–38
    [Google Scholar]
  55. 55.
    Liu J, Liu X, Ge W. 2021. EMMS-based modeling of gas–solid generalized fluidization: towards a unified phase diagram. Chin. J. Chem. Eng. 29:27–34
    [Google Scholar]
  56. 56.
    Lu L, Xu J, Ge W, Yue Y, Liu X, Li J. 2014. EMMS-based discrete particle method (EMMS–DPM) for simulation of gas–solid flows. Chem. Eng. Sci. 120:67–87
    [Google Scholar]
  57. 57.
    Liu X, Xu J, Ge W, Lu B, Wang W 2020. Long-time simulation of catalytic MTO reaction in a fluidized bed reactor with a coarse-grained discrete particle method—EMMS-DPM. Chem. Eng. J. 389:124135
    [Google Scholar]
  58. 58.
    Ge W, Chang Q, Li C, Wang J. 2019. Multiscale structures in particle–fluid systems: characterization, modeling, and simulation. Chem. Eng. Sci. 198:198–223
    [Google Scholar]
  59. 59.
    Lu L, Xu J, Ge W, Gao G, Jiang Y et al. 2016. Computer virtual experiment on fluidized beds using a coarse-grained discrete particle method—EMMS-DPM. Chem. Eng. Sci. 155:314–37
    [Google Scholar]
  60. 60.
    Liu X, Wang L, Ge W. 2017. Meso-scale statistical properties of gas–solid flow—a direct numerical simulation (DNS) study. AIChE J 63:3–14
    [Google Scholar]
  61. 61.
    Cui H, Chang Q, Chen J, Ge W 2020. PR-DNS verification of the stability condition in the EMMS model. Chem. Eng. J. 401:125999
    [Google Scholar]
  62. 62.
    Yang N, Chen J, Zhao H, Ge W, Li J. 2007. Explorations on the multi-scale flow structure and stability condition in bubble columns. Chem. Eng. Sci. 62:6978–91
    [Google Scholar]
  63. 63.
    Yang N 2015. Mesoscale transport phenomena and mechanisms in gas–liquid reaction systems. Advances in Chemical EngineeringVol. 46 GB Marin, J Li 245–80 Waltham, MA: Academic
    [Google Scholar]
  64. 64.
    Chen J, Yang N, Ge W, Li J. 2009. Modeling of regime transition in bubble columns with stability condition. Ind. Eng. Chem. Res. 48:290–301
    [Google Scholar]
  65. 65.
    Yang N, Chen J, Ge W, Li J. 2010. A conceptual model for analyzing the stability condition and regime transition in bubble columns. Chem. Eng. Sci. 65:517–26
    [Google Scholar]
  66. 66.
    Guan X, Yang N 2019. Modeling of co-current and counter-current bubble columns with an extended EMMS approach. Particuology 44:126–35
    [Google Scholar]
  67. 67.
    Yang N, Wu Z, Chen J, Wang Y, Li J. 2011. Multi-scale analysis of gas–liquid interaction and CFD simulation of gas–liquid flow in bubble columns. Chem. Eng. Sci. 66:3212–22
    [Google Scholar]
  68. 68.
    Xiao Q, Yang N, Li J 2013. Stability-constrained multi-fluid CFD models for gas–liquid flow in bubble columns. Chem. Eng. Sci. 100:279–92
    [Google Scholar]
  69. 69.
    Chen C, Guan X, Ren Y, Yang N, Li J et al. 2019. Mesoscale modeling of emulsification in rotor-stator devices: part I: a population balance model based on EMMS concept. Chem. Eng. Sci. 193:171–83
    [Google Scholar]
  70. 70.
    Han C, Chen J. 2019. Mesoregime-oriented investigation of flow regime transition in bubble columns. Ind. Eng. Chem. Res. 58:14424–35
    [Google Scholar]
  71. 71.
    Liu M, Li J, Kwauk M. 2001. Application of the energy-minimization multi-scale method to gas–liquid–solid fluidized beds. Chem. Eng. Sci. 56:6805–12
    [Google Scholar]
  72. 72.
    Jin G 2006. Multi-scale modeling of gas–liquid–solid three-phase fluidized beds using the EMMS method. Chem. Eng. J. 117:1–11
    [Google Scholar]
  73. 73.
    Tian S, Sun J, Fan X, Yang Y, Huang Z et al. 2021. A volatile spray zone model and experimentation in a gas-solid fluidized bed with liquid injection. Chem. Eng. Sci. 231:116306
    [Google Scholar]
  74. 74.
    Floudas CA, Ciric AR, Grossmann IE. 1986. Automatic synthesis of optimum heat exchanger network synthesis. AIChE J. 32:276–90
    [Google Scholar]
  75. 75.
    Chen W, Wu Z, He J, Gao P, Xu S. 2007. Carbon emission control strategies for China: a comparative study with partial and general equilibrium versions of the China MARKAL model. Energy 32:59–72
    [Google Scholar]
  76. 76.
    Zhang S-W. 2010. Review of the status quo and future development of energy-economy-environment models. Energy Technol. Econ. 22:43–49
    [Google Scholar]
  77. 77.
    Huang WL, Li J. 2021. Optimizing the roadmap to carbon neutrality with a new paradigm. Engineering 7:1678–79
    [Google Scholar]
  78. 78.
    Ge W, Wang W, Ren Y, Li J. 2008. More opportunities than challenges—perspectives on chemical engineering. Curr. Sci. 95:1310–16
    [Google Scholar]
  79. 79.
    Bagrov AA, Iakovlev IA, Iliasov AA, Katsnelson MI, Mazurenko VV. 2020. Multiscale structural complexity of natural patterns. PNAS 117:30241–51
    [Google Scholar]
  80. 80.
    Wolf YI, Katsnelson MI, Koonin EV. 2018. Physical foundations of biological complexity. PNAS 115:E8678–87
    [Google Scholar]
  81. 81.
    Thomas-Vaslin V. 2017. Understanding and Modeling the Complexity of the Immune System Presented at First Complex Systems Digital Campus World E-Conference 2015 Cham, Switz:.
    [Google Scholar]
  82. 82.
    Bocharov G, Volpert V, Ludewig B, Meyerhans A. 2020. Editorial: mathematical modeling of the immune system in homeostasis, infection and disease. Front. Immunol. 10:2944
    [Google Scholar]
  83. 83.
    Muir K-L, Kallam A, Koepsell SA, Gundabolu K. 2021. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination. N. Engl. J. Med. 384:1964–65
    [Google Scholar]
  84. 84.
    Haueis P. 2021. Multiscale modeling of cortical gradients: the role of mesoscale circuits for linking macro- and microscale gradients of cortical organization and hierarchical information processing. NeuroImage 232:117846
    [Google Scholar]
  85. 85.
    Gordon DM. 2019. The ecology of collective behavior in ants. Annu. Rev. Entomol. 64:35–50
    [Google Scholar]
  86. 86.
    Dehghani N. 2018. Theoretical principles of multiscale spatiotemporal control of neuronal networks: a complex systems perspective. Front. Comput. Neurosci. 12:81
    [Google Scholar]
  87. 87.
    Peng Y, Liu Z, Cheng X. 2021. Imaging the emergence of bacterial turbulence: phase diagram and transition kinetics. Sci. Adv. 7:eabd1240
    [Google Scholar]
  88. 88.
    Li H, Shi X, Huang M, Chen X, Xiao M et al. 2019. Data-driven quantitative modeling of bacterial active nematics. PNAS 116:777–85
    [Google Scholar]
  89. 89.
    Deutsch A, Friedl P, Preziosi L, Theraulaz G. 2020. Multi-scale analysis and modelling of collective migration in biological systems. Philos. Trans. R. Soc. B 375:20190377
    [Google Scholar]
  90. 90.
    Li J. 2016. Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale. Engineering 2:276–85
    [Google Scholar]
  91. 91.
    Li J, Huang W, Chen J, Ge W, Hou C. 2018. Mesoscience based on the EMMS principle of compromise in competition. Chem. Eng. J. 333:327–35
    [Google Scholar]
  92. 92.
    Li J, Huang WL, Chen J 2021. Possible roadmap to advancing the knowledge system and tackling challenges from complexity. Chem. Eng. Sci. 237:116548
    [Google Scholar]
  93. 93.
    Li L, Huang L, Lemos H, Mautino M, Mellor A. 2012. Altered tryptophan metabolism as a paradigm for good and bad aspects of immune privilege in chronic inflammatory diseases. Front. Immunol. 3:109
    [Google Scholar]
  94. 94.
    Benchaib MA, Bouchnita A, Volpert V, Makhoute A. 2019. Mathematical modeling reveals that the administration of EGF can promote the elimination of lymph node metastases by PD-1/PD-L1 blockade. Front. Bioeng. Biotechnol. 7:104
    [Google Scholar]
  95. 95.
    Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A et al. 2020. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181:236–49
    [Google Scholar]
  96. 96.
    Huang Y, Dai H, Ke R. 2019. Principles of effective and robust innate immune response to viral infections: a multiplex network analysis. Front. Immunol. 10:1736
    [Google Scholar]
  97. 97.
    Futreal PA, Coin L, Marshall M, Down T, Hubbard T et al. 2004. A census of human cancer genes. Nat. Rev. Cancer 4:177–83
    [Google Scholar]
  98. 98.
    Wallace DC. 2012. Mitochondria and cancer. Nat. Rev. Cancer 12:685–98
    [Google Scholar]
  99. 99.
    Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP. 2012. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res. 10:1403–18
    [Google Scholar]
  100. 100.
    Kuzmin E, VanderSluis B, Wang W, Tan G, Deshpande R et al. 2018. Systematic analysis of complex genetic interactions. Science 360:eaao1729
    [Google Scholar]
  101. 101.
    Asatryan AD, Komarova NL. 2016. Evolution of genetic instability in heterogeneous tumors. J. Theor. Biol. 396:1–12
    [Google Scholar]
  102. 102.
    Banzhaf-Strathmann J, Edbauer D. 2014. Good guy or bad guy: the opposing roles of microRNA 125b in cancer. Cell Commun. Signal. 12:30
    [Google Scholar]
  103. 103.
    Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D et al. 2010. Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 6:1603–24
    [Google Scholar]
  104. 104.
    Rutkowski R, Mertens-Walker I, Lisle JE, Herington AC, Stephenson S-A. 2012. Evidence for a dual function of EphB4 as tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand. Int. J. Cancer 131:E614–E24
    [Google Scholar]
  105. 105.
    Deisboeck TS, Stamatakos G. 2011. Multiscale Cancer Modeling London: CRC
    [Google Scholar]
  106. 106.
    Gatenby RA. 2009. A change of strategy in the war on cancer. Nature 459:508–9
    [Google Scholar]
  107. 107.
    Hiam-Galvez KJ, Allen BM, Spitzer MH. 2021. Systemic immunity in cancer. Nat. Rev. Cancer 21:345–59
    [Google Scholar]
  108. 108.
    Parish CR. 2003. Cancer immunotherapy: the past, the present and the future. Immunol. Cell Biol. 81:106–13
    [Google Scholar]
  109. 109.
    Smyth MJ, Godfrey DI, Trapani JA. 2001. A fresh look at tumor immunosurveillance and immunotherapy. Nat. Immunol. 2:293–99
    [Google Scholar]
  110. 110.
    Haslam A, Prasad V. 2019. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2:e192535
    [Google Scholar]
  111. 111.
    Szalayova G, James TA, Rincon M. 2015. A framework for the role of acute inflammation in tumor progression. Breast Cancer Res. Treat. 151:235–38
    [Google Scholar]
  112. 112.
    Gatenby RA, Silva AS, Gillies RJ, Frieden BR. 2009. Adaptive therapy. Cancer Res 69:4894–903
    [Google Scholar]
  113. 113.
    Enriquez-Navas PM, Wojtkowiak JW, Gatenby RA. 2015. Application of evolutionary principles to cancer therapy. Cancer Res 75:4675–80
    [Google Scholar]
  114. 114.
    Kotzia GA, Platis D, Axarli IA, Chronopoulou EG, Karamitros C, Labrou NE 2012. Biocatalysis, enzyme engineering and biotechnology. Food Biochemistry and Food Processing BK Simpson 125–66 Hoboken, NJ: Wiley
    [Google Scholar]
  115. 115.
    Petsko GA. 1999. Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. Nature 401:115–16
    [Google Scholar]
  116. 116.
    Agarwal PK, Billeter SR, Rajagopalan PTR, Benkovic SJ, Hammes-Schiffer S. 2002. Network of coupled promoting motions in enzyme catalysis. PNAS 99:2794–99
    [Google Scholar]
  117. 117.
    Han M, Xu J, Ren Y, Li J. 2016. Simulations of flow induced structural transition of the β-switch region of glycoprotein Ibα. Biophys. Chem. 209:9–20
    [Google Scholar]
  118. 118.
    Li W, Zhang L, Li Q, Wang S, Luo X et al. 2019. Porous structured cellulose microsphere acts as biosensor for glucose detection with “signal-and-color” output. Carbohydr. Polym. 205:295–301
    [Google Scholar]
  119. 119.
    Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R. 2013. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42:6290–307
    [Google Scholar]
  120. 120.
    Palombo M, Bonucci A, Etienne E, Ciurli S, Uversky VN et al. 2017. The relationship between folding and activity in UreG, an intrinsically disordered enzyme. Sci. Rep. 7:5977
    [Google Scholar]
  121. 121.
    Secundo F. 2013. Conformational changes of enzymes upon immobilization. Chem. Soc. Rev. 42:6250–61
    [Google Scholar]
  122. 122.
    Huang WL, Zhang L, Chen K, Lu G 2021. Mesoscale mechanisms in viscoplastic deformation of metals and their applications to constitutive models. Materials 14:4667
    [Google Scholar]
  123. 123.
    Fu X, Liu Y, Zhu L, Mou H. 2019. Flocculation activity of carp protamine in microalgal cells. Aquaculture 505:150–56
    [Google Scholar]
  124. 124.
    Bloss EB, Hunt DL. 2019. Revealing the synaptic hodology of mammalian neural circuits with multiscale neurocartography. Front. Neuroinform. 13:52
    [Google Scholar]
  125. 125.
    Kaiser M, Hilgetag C, Kötter R. 2010. Hierarchy and dynamics of neural networks. Front. Neuroinform. 4:112
    [Google Scholar]
  126. 126.
    Poultsidi A, Dimopoulos Y, He T-F, Chavakis T, Saloustros E et al. 2018. Lymph node cellular dynamics in cancer and HIV: What can we learn for the follicular CD4 (Tfh) cells?. Front. Immunol. 9:2233
    [Google Scholar]
  127. 127.
    Kopp MA, Druschel C, Meisel C, Liebscher T, Prilipp E et al. 2013. The SCIentinel study—prospective multicenter study to define the spinal cord injury-induced immune depression syndrome (SCI-IDS)—study protocol and interim feasibility data. BMC Neurol 13:168
    [Google Scholar]
  128. 128.
    Huang WL, Li J, Chen X 2019. 110th anniversary: mesoscale complexity—To dodge or to confront?. Ind. Eng. Chem. Res. 58:12478–84
    [Google Scholar]
  129. 129.
    Lesne A, Laguës M. 2012. Scale Invariance: From Phase Transitions to Turbulence New York: Springer
    [Google Scholar]
  130. 130.
    Zhou X, Zeng Y, Tang Y, Huang Y, Lv F et al. 2020. Artificial regulation of state transition for augmenting plant photosynthesis using synthetic light-harvesting polymer materials. Sci. Adv. 6:eabc5237
    [Google Scholar]
  131. 131.
    Zahradnik J, Fialova M, Ruzicka M, Drahos J, Kastanek F, Thomas NH. 1997. Duality of the gas-liquid flow regimes in bubble column reactors. Chem. Eng. Sci. 52:3811–26
    [Google Scholar]
  132. 132.
    Camarasa E, Vial C, Poncin S, Wild G, Midoux N, Bouillard J. 1999. Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column. Chem. Eng. Proc.38:329–44
    [Google Scholar]
  133. 133.
    Dasgupta P, Chakrabarti PP, DeSarkar SC. 1999. Multiobjective Heuristic Search: An Introduction to Intelligent Search Methods for Multicriteria Optimization Wiesbaden, Ger.: Vieweg
    [Google Scholar]
  134. 134.
    Barba PD. 2010. Multiobjective Shape Design in Electricity and Magnetism New York: Springer
    [Google Scholar]
  135. 135.
    Rodrigues D, Papa JP, Adeli H. 2017. Meta-heuristic multi- and many-objective optimization techniques for solution of machine learning problems. Expert Syst. 34:e12255
    [Google Scholar]
  136. 136.
    Gen M, Yun Y 2006. Soft computing approach for reliability optimization: state-of-the-art survey. Reliab. Eng. Syst. Saf. 91:1008–26
    [Google Scholar]
  137. 137.
    Marler RT, Arora JS. 2004. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26:369–95
    [Google Scholar]
  138. 138.
    Messac A. 1996. Physical programming: effective optimization for computational design. AIAA J 34:149–58
    [Google Scholar]
  139. 139.
    Yu PL, Leitmann G. 1974. Nondominated decisions and cone convexity in dynamic multicriteria. J. Optim. Theory Appl. 13:362–78
    [Google Scholar]
  140. 140.
    Miettinen K. 1998. Nonlinear Multiobjective Optimization New York: Springer
    [Google Scholar]
  141. 141.
    Athan TW, Papalambros PY. 1996. A note on weighted criteria methods for compromise solutions in multi-objective optimization. Eng. Optim. 27:155–76
    [Google Scholar]
  142. 142.
    Das I, Dennis JE. 1998. Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8:631–57
    [Google Scholar]
  143. 143.
    Messac A, Ismail-Yahaya A, Mattson CA. 2003. The normalized normal constraint method for generating the Pareto frontier. Struct. Multidiscip. Optim. 25:86–98
    [Google Scholar]
  144. 144.
    Mueller-Gritschneder D, Graeb H, Schlichtmann U. 2009. A successive approach to compute the bounded Pareto front of practical multiobjective optimization problems. SIAM J. Optim. 20:915–34
    [Google Scholar]
  145. 145.
    Erfani T, Utyuzhnikov SV. 2011. Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization. Eng. Optim. 43:467–84
    [Google Scholar]
  146. 146.
    Gao HR, Nie HF, Li K. 2019. Visualisation of Pareto front approximation: a short survey and empirical comparisons. Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1750–57 Piscataway, NJ: IEEE
    [Google Scholar]
  147. 147.
    Deb K, Agrawal S, Pratap A, Meyarivan T. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6:182–97
    [Google Scholar]
  148. 148.
    Zitzler E, Kunzli S 2004. Indicator-based selection in multiobjective search. Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII) X Yao, EK Burke, JA Lozano, J Smith, JJ Merelo-Guervos, et al. 832–42 New York: Springer
    [Google Scholar]
  149. 149.
    Miettinen K, Mäkelä MM. 1995. Interactive bundle-based method for nondifferentiable multiobjective optimization: nimbus. Optimization 34:231–46
    [Google Scholar]
  150. 150.
    Zhang L, Chen J, Huang W, Li J. 2018. A direct solution to multi-objective optimization: validation in solving the EMSS model for gas-solid fluidization. Chem. Eng. Sci. 192:499–506
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092220-115031
Loading
/content/journals/10.1146/annurev-chembioeng-092220-115031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error