1932

Abstract

Interferometry is a highly versatile tool for probing physical and chemical phenomena. In addition to the benefit of noncontact investigations, even spatially resolved information can be obtained by choosing a suitable setup. This review presents the evolution of the various setups that have evolved since the first interferometers were developed in the mid-nineteenth century and highlights the benefits, limitations, and typical areas of application. This review focuses on interferometry based on electromagnetic waves in the near-infrared and visible range applied to liquid samples, categorizes the chemical/physical properties (e.g., pressure, temperature, composition) and phenomena (e.g., evaporation, crystal growth, diffusion, thermophoresis) that can be assessed, and presents a comprehensive literature review of specific existing applications. Finally, it discusses some fundamental open questions with respect to geometric considerations and overlapping effects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-123822
2022-06-07
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092220-123822.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-123822&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Young T. 1804. I. The Bakerian Lecture: experiments and calculations relative to physical optics. Philos. Trans. R. Soc. Lond. 94:1–16
    [Google Scholar]
  2. 2.
    Jönsson C. 1961. Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Z. Phys. 161:4454–74
    [Google Scholar]
  3. 3.
    Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F et al. 2016. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116:061102
    [Google Scholar]
  4. 4.
    Michelson AA. 1881. The relative motion of the Earth and the luminiferous ether. Am. J. Sci. 22:128120–29
    [Google Scholar]
  5. 5.
    Michelson AA, Morley EW. 1887. On the relative motion of the Earth and the luminiferous aether. Lond. Edinb. Dublin Philos. Mag. J. Sci. 24:151449–63
    [Google Scholar]
  6. 6.
    Espinola R, Waterman P. 1958. Ultrasonic interferometer for the measurement of the temperature dependence of elastic constants. J. Appl. Phys. 29:4718–21
    [Google Scholar]
  7. 7.
    Rigden S, Gwanmesia G, Fitz Gerald J, Jackson I, Liebermann R 1991. Spinel elasticity and seismic structure of the transition zone of the mantle. Nature 354:6349143–45
    [Google Scholar]
  8. 8.
    Liu W, Kung J, Li B. 2005. Elasticity of San Carlos olivine to 8 GPa and 1073 K. Geophys. Res. Lett. 32:16L16301
    [Google Scholar]
  9. 9.
    Shiio H, Ogawa T, Yoshihashi H. 1955. Measurement of the amount of bound water by ultrasonic interferometer. J. Am. Chem. Soc. 77:194980–82
    [Google Scholar]
  10. 10.
    Shiio H, Yoshihashi H. 1956. Measurement of the amount of bound water by ultrasonic interferometer. II. Polyvinylalcohol and its partially substituted acetates. J. Phys. Chem. 60:71049–51
    [Google Scholar]
  11. 11.
    Shiio H. 1958. Ultrasonic interferometer measurements of the amount of bound water—saccharides. J. Am. Chem. Soc. 80:170–73
    [Google Scholar]
  12. 12.
    Bonse U, Hart M. 1965. An X-ray interferometer. Appl. Phys. Lett. 6:8155–56
    [Google Scholar]
  13. 13.
    Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y. 2003. Demonstration of X-ray Talbot interferometry. Jpn. J. Appl. Phys. 42:7BL866–68
    [Google Scholar]
  14. 14.
    Momose A. 1995. Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer. Nucl. Instrum. Methods A 352:3622–28
    [Google Scholar]
  15. 15.
    Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M et al. 2005. X-ray phase imaging with a grating interferometer. Opt. Express 13:166296–304
    [Google Scholar]
  16. 16.
    Griffiths PR, De Haseth JA. 2007. Fourier Transform Infrared Spectrometry New York: Wiley
    [Google Scholar]
  17. 17.
    Fischer H, Birk M, Blom C, Carli B, Carlotti M et al. 2008. MIPAS: an instrument for atmospheric and climate research. Atmos. Chem. Phys. 8:82151–88
    [Google Scholar]
  18. 18.
    Downes D, Solomon P. 1998. Rotating nuclear rings and extreme starbursts in ultraluminous galaxies. Astrophys. J. 507:2615–54
    [Google Scholar]
  19. 19.
    Sanderson R, Scott H. 1971. High resolution far infrared interferometer. Appl. Opt. 10:51097–102
    [Google Scholar]
  20. 20.
    Globus T, Woolard D, Khromova T, Crowe T, Bykhovskaia M et al. 2003. THz-spectroscopy of biological molecules. J. Biol. Phys. 29:289–100
    [Google Scholar]
  21. 21.
    Helmich FP, Ivison R. 2009. FIRIA: far-infrared interferometer. Exp. Astron. 23:1245–76
    [Google Scholar]
  22. 22.
    Saghati AP, Batra JS, Kameoka J, Entesari K. 2017. A metamaterial-inspired wideband microwave interferometry sensor for dielectric spectroscopy of liquid chemicals. IEEE Trans. Microwave Theory Tech. 65:72558–71
    [Google Scholar]
  23. 23.
    Gentile C. 2010. Deflection measurement on vibrating stay cables by non-contact microwave interferometer. NDT&E Int 43:3231–40
    [Google Scholar]
  24. 24.
    Wigneron JP, Waldteufel P, Chanzy A, Calvet JC, Kerr Y. 2000. Two-dimensional microwave interferometer retrieval capabilities over land surfaces (SMOS mission). Remote Sens. Environ. 73:3270–82
    [Google Scholar]
  25. 25.
    Jennison R. 1958. A phase sensitive interferometer technique for the measurement of the Fourier transforms of spatial brightness distributions of small angular extent. MNRAS 118:3276–84
    [Google Scholar]
  26. 26.
    Lee BH, Kim YH, Park KS, Eom JB, Kim MJ et al. 2012. Interferometric fiber optic sensors. Sensors 12:32467–86
    [Google Scholar]
  27. 27.
    Islam MR, Ali MM, Lai MH, Lim KS, Ahmad H. 2014. Chronology of Fabry–Pérot interferometer fiber-optic sensors and their applications: a review. Sensors 14:47451–88
    [Google Scholar]
  28. 28.
    Pevec S, Donlagic D. 2019. Multiparameter fiber-optic sensors: a review. Opt. Eng. 58:072009
    [Google Scholar]
  29. 29.
    Bhardwaj V, Kishor K, Sharma AC. 2020. Tapered optical fiber geometries and sensing applications based on Mach–Zehnder interferometer: a review. Opt. Fiber Technol. 58:102302
    [Google Scholar]
  30. 30.
    Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y. 2008. Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta 620:1/28–26
    [Google Scholar]
  31. 31.
    Kussrow A, Enders CS, Bornhop DJ. 2012. Interferometric methods for label-free molecular interaction studies. Anal. Chem. 84:2779–92
    [Google Scholar]
  32. 32.
    Kozma P, Kehl F, Ehrentreich-Förster E, Stamm C, Bier FF. 2014. Integrated planar optical waveguide interferometer biosensors: a comparative review. Biosens. Bioelectron. 58:287–307
    [Google Scholar]
  33. 33.
    Mudgal N, Agarwal A, Saharia A, Sahu S, Ghunawat AK, Singh G. 2020. Comparative study of interferometer and ring resonator based biosensors: a review. Optical Wireless Technologies419–27 Berlin: Springer
    [Google Scholar]
  34. 34.
    Jamin J. 1856. Description d'un nouvel appareil de recherches, fondé sur les interférences. C. R. Acad. Sci. 42:482–85
    [Google Scholar]
  35. 35.
    Fizeau H. 1862. Recherches sur les modifications que subit la vitesse de la lumière dans le verre et plusieurs autres corps solides sous l'influence de la chaleur. Ann. Chim. Phys. 66:429–82
    [Google Scholar]
  36. 36.
    Zehnder L. 1891. Ein neuer Interferenzrefraktor. Z. Instrum. 11:275–85
    [Google Scholar]
  37. 37.
    Mach L. 1892. Ueber einen Interferenzrefraktor. Z. Instrum. 12:389–93
    [Google Scholar]
  38. 38.
    Lord Rayleigh ( Strutt JW 1896. On some physical properties of argon and helium. Proc. R. Soc. 59:353–358198–208
    [Google Scholar]
  39. 39.
    Fabry C, Pérot A. 1899. Théorie et applications d'une nouvelle méthode de spectroscopie interférentielle. Ann. Chim. Phys. 16:115–44
    [Google Scholar]
  40. 40.
    Sagnac G. 1913. L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre en rotation uniforme. C. R. Acad. Sci. 157:708–10
    [Google Scholar]
  41. 41.
    Sagnac G. 1913. Sur la preuve de la réalité de l'éther lumineux par l'expérience de l'interférographe tournant. C. R. Acad. Sci. 157:1410–13
    [Google Scholar]
  42. 42.
    Culshaw B. 2005. The optical fibre Sagnac interferometer: an overview of its principles and applications. Meas. Sci. Technol. 17:1R1
    [Google Scholar]
  43. 43.
    MacKenzie D. 1993. From the luminiferous ether to the Boeing 757: a history of the laser gyroscope. Technol. Cult. 34:3475–515
    [Google Scholar]
  44. 44.
    Bates W. 1947. A wavefront shearing interferometer. Proc. Phys. Soc. 59:6940
    [Google Scholar]
  45. 45.
    Lv W, Zhou H, Lou C, Zhu J. 2012. Spatial and temporal film thickness measurement of a soap bubble based on large lateral shearing displacement interferometry. Appl. Opt. 51:368863–72
    [Google Scholar]
  46. 46.
    Rasouli S, Sakhal F, Yeganeh M. 2018. Infinite-mode double-grating interferometer for investigating thermal-lens-acting fluid dynamics. Meas. Sci. Technol. 29:085201
    [Google Scholar]
  47. 47.
    Kordel S, Hussong J. 2019. Utilizing differential interferometry for spatially resolved pressure field measurements of laser-induced cavitation. Exp. Fluids 60:114
    [Google Scholar]
  48. 48.
    Bornhop DJ. 1994. Laser-based refractive index detector using backscatter US Patent 5,325,170
    [Google Scholar]
  49. 49.
    Hecht E. 2016. Optics London: Pearson Educ. , 5th ed..
    [Google Scholar]
  50. 50.
    Hariharan P. 2010. Basics of Interferometry Amsterdam: Elsevier
    [Google Scholar]
  51. 51.
    Hipp M, Woisetschlager J, Reiterer P, Neger T 2004. Digital evaluation of interferograms. Measurement 36:153–66
    [Google Scholar]
  52. 52.
    Chen W, Liu D, Ma W, Xie A, Fang J. 2002. The determination of solute distribution during growth and dissolution of NaClO3 crystals: the growth of large crystals. J. Cryst. Growth 236:1–3413–19
    [Google Scholar]
  53. 53.
    Vogus DR, Mansard V, Rapp MV, Squires TM. 2015. Measuring concentration fields in microfluidic channels in situ with a Fabry–Pérot interferometer. Lab Chip 15:71689–96
    [Google Scholar]
  54. 54.
    van der Veen RCA, Tran T, Lohse D, Sun C. 2012. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85:026315
    [Google Scholar]
  55. 55.
    Butler CS, Seeger ZLE, Bell TDM, Bishop AI, Tabor RF. 2016. Local determination of thin liquid film profiles using colour interferometry. Eur. Phys. J. E 39:214
    [Google Scholar]
  56. 56.
    Kitagawa K. 2012. Single-shot surface profiling by multiwavelength interferometry without carrier fringe introduction. J. Electron. Imaging 21:021107
    [Google Scholar]
  57. 57.
    Kitagawa K. 2013. Thin-film thickness profile measurement by three-wavelength interference color analysis. Appl. Opt. 52:101998–2007
    [Google Scholar]
  58. 58.
    Guo F, Wong PL, Fu Z, Ma C. 2010. Interferometry measurement of lubricating films in slider-on-disc contacts. Tribol. Lett. 39:171–79
    [Google Scholar]
  59. 59.
    Li X, Guo F, Wong PL. 2015. Optical interferometry measurement of BSA adsorption in hydrodynamic lubrication. Proceedings of the 8th International Scientific Conference (BALTTRIB 2015)11–16 Stockholm: Diamond Sci.
    [Google Scholar]
  60. 60.
    Fan J, Myant C, Underwood R, Cann P, Hart A. 2011. Inlet protein aggregation: a new mechanism for lubricating film formation with model synovial fluids. Proc. Inst. Mech. Eng. H 225:7696–709
    [Google Scholar]
  61. 61.
    Vrbka M, Krupka I, Hartl M, Navrat T, Gallo J, Galandakova A. 2014. In situ measurements of thin films in bovine serum lubricated contacts using optical interferometry. Proc. Inst. Mech. Eng. H 228:2149–58
    [Google Scholar]
  62. 62.
    Han Y, Shikazono N, Kasagi N. 2011. Measurement of liquid film thickness in a micro parallel channel with interferometer and laser focus displacement meter. Int. J. Multiph. Flow 37:136–45
    [Google Scholar]
  63. 63.
    Han Y, Shikazono N. 2009. Measurement of the liquid film thickness in micro tube slug flow. Int. J. Heat Fluid Flow 30:5842–53
    [Google Scholar]
  64. 64.
    Chan DY, Klaseboer E, Manica R. 2011. Film drainage and coalescence between deformable drops and bubbles. Soft Matter 7:62235–64
    [Google Scholar]
  65. 65.
    Chan DY, Klaseboer E, Manica R. 2011. Theory of non-equilibrium force measurements involving deformable drops and bubbles. Adv. Colloid Interface Sci. 165:270–90
    [Google Scholar]
  66. 66.
    Arends AA, Germain TM, Owens JF, Putnam SA. 2018. Simultaneous reflectometry and interferometry for measuring thin-film thickness and curvature. Rev. Sci. Instrum. 89:055117
    [Google Scholar]
  67. 67.
    Stamm J, Daume D, Hartwig T, Oschmann M, Schaefer J et al. 2019. Dynamic interferometric imaging of the thickness distribution of evaporating thin liquid films. J. Coat. Technol. Res. 16:61663–71
    [Google Scholar]
  68. 68.
    Saunders JE, Chen H, Brauer C, Clayton M, Chen W et al. 2015. Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry. Soft Matter 11:458746–57
    [Google Scholar]
  69. 69.
    Dehaeck S, Rednikov A, Colinet P. 2014. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets. Langmuir 30:82002–8
    [Google Scholar]
  70. 70.
    Shukla D, Panigarhi PK. 2020. Digital holographic interferometry investigation of liquid hydrocarbon vapor cloud above a circular well. Appl. Opt. 59:195851–63
    [Google Scholar]
  71. 71.
    Dasch CJ. 1992. One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt. 31:81146–52
    [Google Scholar]
  72. 72.
    Ma S, Gao H, Wu L. 2008. Modified Fourier–Hankel method based on analysis of errors in Abel inversion using Fourier transform techniques. Appl. Opt. 47:91350–57
    [Google Scholar]
  73. 73.
    Mayerhöfer TG, Dabrowska A, Schwaighofer A, Lendl B, Popp J. 2020. Beyond Beer's law: why the index of refraction depends (almost) linearly on concentration. ChemPhysChem 21:8707–11
    [Google Scholar]
  74. 74.
    Tsukamoto K, Srivastava A, Dold P. 2010. Developments in interferometric techniques for in-situ observation of surface kinetics of crystals in solutions and three-dimensional analysis of transport phenomena. AIP Conf. Proc 1270:292–315
    [Google Scholar]
  75. 75.
    Yoshizaki I, Tsukamoto K, Yamazaki T, Murayama K, Oshi K et al. 2013. Growth rate measurements of lysozyme crystals under microgravity conditions by laser interferometry. Rev. Sci. Instrum. 84:103707
    [Google Scholar]
  76. 76.
    Suzuki Y, Tsukamoto K, Yoshizaki I, Miura H, Fujiwara T. 2015. First direct observation of impurity effects on the growth rate of tetragonal lysozyme crystals under microgravity as measured by interferometry. Cryst. Growth Des. 15:104787–94
    [Google Scholar]
  77. 77.
    Ueta S, Satoh H, Kato H, Ueda A, Tsukamoto K. 2013. A novel technique of in situ phase-shift interferometry applied for faint dissolution of bulky montmorillonite in alkaline solution. J. Nucl. Sci. Technol. 50:7731–41
    [Google Scholar]
  78. 78.
    Fultz DW, Allen JS. 2014. Nonintrusive pressure measurement in microfluidic systems via backscattering interferometry. Exp. Fluids 55:61754
    [Google Scholar]
  79. 79.
    Yang J. 2018. A reflection interferometer highly sensitive to applied pressures driving the solution flow and capable of sensing solvent species and concentrations in a microscopic fluid channel. Rev. Sci. Instrum. 89:124103
    [Google Scholar]
  80. 80.
    Veysset D, Maznev AA, Pezeril T, Kooi S, Nelson KA. 2016. Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer. Sci. Rep. 6:24
    [Google Scholar]
  81. 81.
    Bello V, Simoni A, Merlo S. 2020. Spectral phase shift interferometry for refractive index monitoring in micro-capillaries. Sensors 20:41043
    [Google Scholar]
  82. 82.
    Jepsen ST, Jørgensen TM, Zong W, Trydal T, Kristensen SR, Sørensen HS 2015. Evaluation of back scatter interferometry, a method for detecting protein binding in solution. Analyst 140:3895–901
    [Google Scholar]
  83. 83.
    Bornhop DJ, Latham JC, Kussrow A, Markov DA, Jones RD, Sørensen HS. 2007. Free-solution, label-free molecular interactions studied by back-scattering interferometry. Science 317:58451732–36
    [Google Scholar]
  84. 84.
    Jørgensen TM, Jepsen ST, Sørensen HS, di Gennaro AK, Kristensen SR 2015. Back scattering interferometry revisited—a theoretical and experimental investigation. Sens. Actuators B 220:1328–37
    [Google Scholar]
  85. 85.
    Jepsen ST, Jørgensen TM, Sørensen HS, Kristensen SR 2019. Real-time interferometric refractive index change measurement for the direct detection of enzymatic reactions and the determination of enzyme kinetics. Sensors 19:3539
    [Google Scholar]
  86. 86.
    Zhang J, Di J, Li Y, Xi T, Zhao J. 2015. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection. Opt. Express 23:2127328–34
    [Google Scholar]
  87. 87.
    Arosa Y, Lopez Lago E, de la Fuente R. 2018. Refractive index measurements in absorbing media with white light spectral interferometry. Opt. Express 26:67578–86
    [Google Scholar]
  88. 88.
    Kienle DF, de Souza JV, Watkins EB, Kuhl TL. 2014. Thickness and refractive index of DPPC and DPPE monolayers by multiple-beam interferometry. Anal. Bioanal. Chem. 406:194725–33
    [Google Scholar]
  89. 89.
    Kienle DF, Kuhl TL. 2014. Analyzing refractive index profiles of confined fluids by interferometry. Anal. Chem. 86:2311860–67
    [Google Scholar]
  90. 90.
    Born M, Wolf E. 1980. Principles of Optics Oxford, UK: Pergamon. , 6th ed..
    [Google Scholar]
  91. 91.
    Mahdieh MH, Nazari T. 2013. Measurement of impurity and temperature variations in water by interferometry technique. Optik 124:204393–96
    [Google Scholar]
  92. 92.
    Zhang S, Duan L, Kang Q. 2016. Experimental research on thermocapillary migration of drops by using digital holographic interferometry. Exp. Fluids 57:7113
    [Google Scholar]
  93. 93.
    Kordel S, Nowak T, Skoda R, Hussong J. 2016. Combined density gradient and velocity field measurements in transient flows by means of differential interferometry and long-range μPIV. Exp. Fluids 57:9138
    [Google Scholar]
  94. 94.
    van Limbeek MAJ, Schaarsberg MHK, Sobac B, Rednikov A, Sun C et al. 2017. Leidenfrost drops cooling surfaces: theory and interferometric measurement. J. Fluid Mech. 827:614–39
    [Google Scholar]
  95. 95.
    Leidenfrost JG. 1756. De aquae communis nonnullis qualitatibus tractatus London: Ovenius
    [Google Scholar]
  96. 96.
    Flores-Martinez E, Malin MJ, DeWerd LA. 2016. Development and characterization of an interferometer for calorimeter-based absorbed dose to water measurements in a medical linear accelerator. Rev. Sci. Instrum. 87:114301
    [Google Scholar]
  97. 97.
    Kristament C, Schwaighofer A, Montemurro M, Lendl B. 2018. A photothermal Mach–Zehnder interferometer for measuring caffeine and proteins in aqueous solutions using external cavity quantum cascade lasers. Proc. SPIE 10490:104900M
    [Google Scholar]
  98. 98.
    Eder C, Delgado A 2007. Interferometric measurement of the density of aqueous solutions under ultra-high hydrostatic pressure. Tech. Mess. 74:245–50
    [Google Scholar]
  99. 99.
    Werner M, Baars A, Eder C, Delgado A. 2008. Thermal conductivity and density of plant oils under high pressure. J. Chem. Eng. Data 53:71444–52
    [Google Scholar]
  100. 100.
    Guerrero-Mendez C, Saucedo-Anaya T, Araiza-Esquivel M, Balderas-Navarro RE, Lopez-Martinez A, Olvera-Olvera C. 2017. Measurements of concentration differences between liquid mixtures using digital holographic interferometry. Metrol. Meas. Syst. 24:119–26
    [Google Scholar]
  101. 101.
    Guerrero-Mendez C, Saucedo-Anaya T, Moreno I, Araiza-Esquivel M, Olvera-Olvera C, Lopez-Betancur D. 2020. Digital holographic interferometry without phase unwrapping by a convolutional neural network for concentration measurements in liquid samples. Appl. Sci. 10:144974
    [Google Scholar]
  102. 102.
    Hajian A, Styles P. 2018. Artificial neural networks. Application of Soft Computing and Intelligent Methods in Geophysics3–69 Berlin: Springer
    [Google Scholar]
  103. 103.
    Tsukakoshi K, Ogasawara D, Takahashi E, Katayama R, Ikebukuro K. 2011. Non-label homogeneous protein detection based on laser interferometric photo-thermal displacement measurement using aptamers. Biotechnol. J. 6:1101–6
    [Google Scholar]
  104. 104.
    Li D, Guan T, He Y, He Q, Zhang Y et al. 2017. A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection. J. Phys. D 50:49LT01
    [Google Scholar]
  105. 105.
    Richards EG, Schachman HK. 1959. Ultracentrifuge studies with Rayleigh interference optics. I. General application. J. Phys. Chem. 63:101578–91
    [Google Scholar]
  106. 106.
    Brown PH, Balbo A, Schuck P. 2008. Characterizing protein–protein interactions by sedimentation velocity analytical ultracentrifugation. Curr. Protoc. Immunol. 81:118.15.139
    [Google Scholar]
  107. 107.
    Zhao H, Brown PH, Balbo A, del Carmen Fernandez-Alonso M, Polishchuck N et al. 2010. Accounting for solvent signal offsets in the analysis of interferometric sedimentation velocity data. Macromol. Biosci. 10:7736–45
    [Google Scholar]
  108. 108.
    Lamm O. 1929. Zur Theorie und Methodik der Ultrazentrifugierung. Z. Phys. Chem. 143:1177–90
    [Google Scholar]
  109. 109.
    Bao SR, Zhang RP, Rong YY, Zhi XQ, Qiu LM. 2017. Interferometric study on the mass transfer in cryogenic distillation under magnetic field. IOP Conf. Ser. Mater. Sci. Eng. 278:012135
    [Google Scholar]
  110. 110.
    Adawy A, Marks K, de Grip WJ, van Enckevort WJP, Vlieg E. 2013. The development of the depletion zone during ceiling crystallization: phase shifting interferometry and simulation results. CrystEngComm 15:122275–86
    [Google Scholar]
  111. 111.
    Eder C, Choscz C, Mueller V, Briesen H. 2015. Jamin-interferometer-setup for the determination of concentration and temperature dependent face-specific crystal growth rates from a single experiment. J. Cryst. Growth 426:255–64
    [Google Scholar]
  112. 112.
    Van Dam J, Mischgofsky F. 1987. The application of a new, simple interference technique to the determination of growth concentration gradients of the layer perovskite NH3(CH2)3NH3CdCl4. J. Cryst. Growth 84:3539–51
    [Google Scholar]
  113. 113.
    Greiner M, Choscz C, Eder C, Elts E, Briesen H. 2016. Multiscale modeling of aspirin dissolution: from molecular resolution to experimental scales of time and size. CrystEngComm 18:285302–12
    [Google Scholar]
  114. 114.
    Elts E, Greiner M, Briesen H. 2017. In silico prediction of growth and dissolution rates for organic molecular crystals: a multiscale approach. Crystals 7:10288
    [Google Scholar]
  115. 115.
    Szydlowska J, Janowska B. 1982. Holographic measurement of diffusion coefficients. J. Phys. D 15:81385–93
    [Google Scholar]
  116. 116.
    He MG, Zhang S, Zhang Y, Peng SG. 2015. Development of measuring diffusion coefficients by digital holographic interferometry in transparent liquid mixtures. Opt. Express 23:910884–99
    [Google Scholar]
  117. 117.
    Zhang S, He M, Zhang Y, Peng S, He X. 2015. Study of the measurement for the diffusion coefficient by digital holographic interferometry. Appl. Opt. 54:319127–35
    [Google Scholar]
  118. 118.
    Feng S, Li C, Peng X, Shao L, Liu W. 2019. Digital holography interferometry for measuring the mass diffusion coefficients of N2 in RP-3 and RP-5 jet fuels. Aircr. Eng. Aerosp. Technol. 91:81093–99
    [Google Scholar]
  119. 119.
    Wylock C, Dehaeck S, Cartage T, Colinet P, Haut B. 2011. Experimental study of gas-liquid mass transfer coupled with chemical reactions by digital holographic interferometry. Chem. Eng. Sci. 66:143400–12
    [Google Scholar]
  120. 120.
    Wylock C, Dehaeck S, Alonso Quintans D, Colinet P, Haut B 2013. CO2 absorption in aqueous solutions of N-(2-hydroxyethyl)piperazine: experimental characterization using interferometry and modeling. Chem. Eng. Sci. 100:249–58
    [Google Scholar]
  121. 121.
    Molisso A, Annunziata O. 2014. Composition of coexisting liquid phases determined by Rayleigh interferometry. J. Solut. Chem. 43:1126–34
    [Google Scholar]
  122. 122.
    Albright JG, Annunziata O, Miller DG, Paduano L, Pearlstein AJ. 1999. Precision measurements of binary and multicomponent diffusion coefficients in protein solutions relevant to crystal growth: lysozyme chloride in water and aqueous NaCl at pH 4.5 and 25°C. J. Am. Chem. Soc. 121:143256–66
    [Google Scholar]
  123. 123.
    Mialdun A, Shevtsova V. 2011. Measurement of the Soret and diffusion coefficients for benchmark binary mixtures by means of digital interferometry. J. Chem. Phys. 134:044524
    [Google Scholar]
  124. 124.
    Mialdun A, Shevtsova V. 2008. Development of optical digital interferometry technique for measurement of thermodiffusion coefficients. Int. J. Heat Mass Transf. 51:11/123164–78
    [Google Scholar]
  125. 125.
    Ahadi A, Khoshnevis A, Saghir MZ. 2016. Experimental thermal time estimation for Mach–Zehnder interferometer to study coupled heat and mass transfer. Can. J. Chem. Eng. 94:1159–67
    [Google Scholar]
  126. 126.
    Ahadi A, Saghir MZ. 2015. Determination of the glass wall effect in optical measurement of temperature in liquid using Mach–Zehnder interferometer. Appl. Opt. 54:13D74–81
    [Google Scholar]
  127. 127.
    Ahadi A, Khoshnevis A, Saghir MZ. 2014. Windowed Fourier transform as an essential digital interferometry tool to study coupled heat and mass transfer. Opt. Laser Technol. 57:304–17
    [Google Scholar]
  128. 128.
    Torres JF, Komiya A, Henry D, Maruyama S. 2013. Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions. J. Chem. Phys. 139:074203
    [Google Scholar]
  129. 129.
    Torres JF, Komiya A, Shoji E, Okajima J, Maruyama S. 2012. Development of phase-shifting interferometry for measurement of isothermal diffusion coefficients in binary solutions. Opt. Lasers Eng. 50:91287–96
    [Google Scholar]
  130. 130.
    Lapeira E, Mialdun A, Yasnou V, Aristimuno P, Shevtsova V, Bou-Ali MM. 2018. Digital interferometry applied to thermogravitational technique. Microgravity Sci. Technol. 30:5635–41
    [Google Scholar]
  131. 131.
    Larrañaga M, Bou-Ali MM, Lapeira E, Santamaría C, Madariaga JA. 2014. Effect of thermophyisical properties and morphology of the molecules on thermodiffusion coefficient of binary mixtures. Microgravity Sci. Technol. 26:129–35
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092220-123822
Loading
/content/journals/10.1146/annurev-chembioeng-092220-123822
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error