1932

Abstract

This review describes key milestones related to the production of biopharmaceuticals—therapies manufactured using recombinant DNA technology. The market for biopharmaceuticals has grown significantly since the first biopharmaceutical approval in 1982, and the scientific maturity of the technologies used in their manufacturing processes has grown concomitantly. Early processes relied on established unit operations, with research focused on process scale-up and improved culture productivity. In the early 2000s, changes in regulatory frameworks and the introduction of Quality by Design emphasized the importance of developing manufacturing processes to deliver a desired product quality profile. As a result, companies adopted platform processes and focused on understanding the dynamic interplay between product quality and processing conditions. The consistent and reproducible manufacturing processes of today's biopharmaceutical industry have set high standards for product efficacy, quality, and safety, and as the industry continues to evolve in the coming decade, intensified processing capabilities for an expanded range of therapeutic modalities will likely become routine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092220-125832
2022-06-07
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092220-125832.html?itemId=/content/journals/10.1146/annurev-chembioeng-092220-125832&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Rader RA. 2008. (Re)defining biopharmaceutical. Nat. Biotechnol. 26:7743–51
    [Google Scholar]
  2. 2.
    Walsh G. 2018. Biopharmaceutical benchmarks 2018. Nat. Biotechnol. 36:121136–45
    [Google Scholar]
  3. 3.
    Kaplon H, Chenoweth A, Crescioli S, Reichert JM. 2022. Antibodies to watch in 2022. mAbs 14:12014296
    [Google Scholar]
  4. 4.
    Mullard A. 2021. FDA approves 100th monoclonal antibody product. Nat. Rev. Drug Discov. 20:7491–95
    [Google Scholar]
  5. 5.
    Mullard A. 2021. 2020 FDA drug approvals. Nat. Rev. Drug Discov. 20:285–90
    [Google Scholar]
  6. 6.
    Lu R-M, Hwang Y-C, Liu I-J, Lee C-C, Tsai H-Z et al. 2020. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27:1
    [Google Scholar]
  7. 7.
    Rathore N, Rajan RS. 2008. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol. Prog. 24:3504–14
    [Google Scholar]
  8. 8.
    Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG et al. 1979. Expression in Escherichia coli of chemically synthesized genes for human insulin. PNAS 76:1106–10
    [Google Scholar]
  9. 9.
    Junod SW. 2007. Celebrating a milestone: FDA's approval of first genetically-engineered product Publ., Food Drug Adm. Washington, DC: https://www.fda.gov/media/110447/download
    [Google Scholar]
  10. 10.
    Köhler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:5517495–97
    [Google Scholar]
  11. 11.
    Llewelyn MB, Hawkins RE, Russell SJ. 1992. Discovery of antibodies. BMJ 305:68641269–72
    [Google Scholar]
  12. 12.
    Kung PC, Goldstein G, Reinherz EL, Schlossman SF. 1979. Monoclonal antibodies defining distinctive human T cell surface antigens. Science 206:4416347–49
    [Google Scholar]
  13. 13.
    Cosimi AB, Burton RC, Colvin RB, Goldstein G, Delmonico FL et al. 1981. Treatment of acute renal allograft rejection with OKT3 monoclonal antibody. Transplantation 32:6535–39
    [Google Scholar]
  14. 14.
    Hawkins RE, Llewelyn MB, Russell SJ. 1992. Adapting antibodies for clinical use. BMJ 305:68651348–52
    [Google Scholar]
  15. 15.
    Shawler DL, Bartholomew RM. 1985. Human immune response to multiple injections of murine monoclonal IgG. J. Immunol. 135:21530–35
    [Google Scholar]
  16. 16.
    Kimball J, Norman D, Shield C, Schroeder T, Lisi P et al. 1995. The OKT3 antibody response study: a multicentre study of human anti-mouse antibody (HAMA) production following OKT3 use in solid organ transplantation. Transpl. Immunol. 3:3212–21
    [Google Scholar]
  17. 17.
    Boulianne GL, Hozumi N, Shulman MJ. 1984. Production of functional chimaeric mouse/human antibody. Nature 312:5995643–46
    [Google Scholar]
  18. 18.
    Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. 1984. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. PNAS 81:216851–55
    [Google Scholar]
  19. 19.
    Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. 1986. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:6069522–25
    [Google Scholar]
  20. 20.
    Orlandi R, Güssow DH, Jones PT, Winter G. 1989. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. PNAS 86:103833–37
    [Google Scholar]
  21. 21.
    Smith G. 1985. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:47051315–17
    [Google Scholar]
  22. 22.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ. 1990. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:6301552–54
    [Google Scholar]
  23. 23.
    Hoogenboom HR. 2005. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23:91105–16
    [Google Scholar]
  24. 24.
    Datar RV, Cartwright T, Rosen C-G. 1993. Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator. Bio/Technology 11:3349–57
    [Google Scholar]
  25. 25.
    Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A. 2012. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev. 28:1147–76
    [Google Scholar]
  26. 26.
    Puck TT, Cieciura SJ, Robinson A 1958. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J. Exp. Med. 108:6945–56
    [Google Scholar]
  27. 27.
    Wurm FM. 2013. CHO quasispecies—implications for manufacturing processes. Processes 1:3296–311
    [Google Scholar]
  28. 28.
    Urlaub G, Chasin LA. 1980. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. PNAS 77:74216–20
    [Google Scholar]
  29. 29.
    Urlaub G, Käs E, Carothers AM, Chasin LA. 1983. Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell 33:2405–12
    [Google Scholar]
  30. 30.
    Kaufman RJ, Wasley LC, Spiliotes AJ, Gossels SD, Latt SA et al. 1985. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol. Cell. Biol. 5:71750–59
    [Google Scholar]
  31. 31.
    Capstick PB, Telling RC, Chapman WG, Stewart DL. 1962. Growth of a cloned strain of hamster kidney cells in suspended cultures and their susceptibility to the virus of foot-and-mouth disease. Nature 195:48471163–64
    [Google Scholar]
  32. 32.
    Telling RC, Elsworth R. 1965. Submerged culture of hamster kidney cells in a stainless steel vessel. Biotechnol. Bioeng. 7:3417–34
    [Google Scholar]
  33. 33.
    Arathoon W, Birch JR. 1986. Large-scale cell culture in biotechnology. Science 232:47561390–95
    [Google Scholar]
  34. 34.
    Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22:111393–98
    [Google Scholar]
  35. 35.
    Spier RE, Kadouri A. 1997. The evolution of processes for the commercial exploitation of anchorage-dependent animal cells. Enzyme Microb. Technol. 21:12–8
    [Google Scholar]
  36. 36.
    Van Wezel AL. 1967. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 216:511064–65
    [Google Scholar]
  37. 37.
    Spier RE, Whiteside JP. 1976. The production of foot-and-mouth disease virus from BHK 21 C 13 cells grown on the surface of glass spheres. Biotechnol. Bioeng. 18:5649–57
    [Google Scholar]
  38. 38.
    Wurm MJ, Wurm FM. 2021. Naming CHO cells for bio-manufacturing: Genome plasticity and variant phenotypes of cell populations in bioreactors question the relevance of old names. Biotechnol. J. 16:7e2100165
    [Google Scholar]
  39. 39.
    Ozturk SS, Palsson BO. 1991. Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 1. Analysis of data from controlled batch reactors. Biotechnol. Prog. 7:6471–80
    [Google Scholar]
  40. 40.
    Bibila T, Flickinger MC. 1991. A structured model for monoclonal antibody synthesis in exponentially growing and stationary phase hybridoma cells. Biotechnol. Bioeng. 37:3210–26
    [Google Scholar]
  41. 41.
    Bibila TA, Robinson DK. 1995. In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol. Prog. 11:11–13
    [Google Scholar]
  42. 42.
    Sinacore MS, Drapeau D, Adamson SR. 2000. Adaptation of mammalian cells to growth in serum-free media. Mol. Biotechnol. 15:3249–57
    [Google Scholar]
  43. 43.
    Ham RG. 1965. Clonal growth of mammalian cells in a chemically defined, synthetic medium. PNAS 53:2288–93
    [Google Scholar]
  44. 44.
    Ritacco FV, Wu Y, Khetan A. 2018. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol. Prog. 34:61407–26
    [Google Scholar]
  45. 45.
    Murakami H, Masui H, Sato GH, Sueoka N, Chow TP, Kano-Sueoka T. 1982. Growth of hybridoma cells in serum-free medium: Ethanolamine is an essential component. PNAS 79:41158–62
    [Google Scholar]
  46. 46.
    Murakami H. 1989. Serum-free media used for cultivation of hybridomas. Adv. Biotechnol. Process. 11:107–41
    [Google Scholar]
  47. 47.
    Martin AJP, Synge RLM. 1941. A new form of chromatogram employing two liquid phases. Biochem. J. 35:121358–68
    [Google Scholar]
  48. 48.
    Peterson EA, Sober HA. 1956. Chromatography of proteins. I. Cellulose ion-exchange adsorbents. J. Am. Chem. Soc. 78:4751–55
    [Google Scholar]
  49. 49.
    Porath J, Flodin P. 1959. Gel filtration: a method for desalting and group separation. Nature 183:46761657–59
    [Google Scholar]
  50. 50.
    Janson J-C. 1987. On the history of the development of Sephadex®. Chromatographia 23:5361–65
    [Google Scholar]
  51. 51.
    Curling J 2017. The development of antibody purification technologies. Process Scale Purification of Antibodies U Gottschalk 23–54 Hoboken, NJ: John Wiley & Sons. , 2nd ed..
    [Google Scholar]
  52. 52.
    Hjertén S. 1964. The preparation of agarose spheres for chromatography of molecules and particles. Biochim. Biophys. Acta 79:2393–98
    [Google Scholar]
  53. 53.
    Fontes N, Zhang R, Vogel JH 2014. Extraction and purification of biologics from cell culture: monoclonal antibody downstream processing. Animal Cell Biotechnology: In Biologics Production H Hauser, R Wagner 489–522 Berlin/Munich/Boston: De Gruyter
    [Google Scholar]
  54. 54.
    Cuatrecasas P, Wilchek M, Anfinsen CB. 1968. Selective enzyme purification by affinity chromatography. PNAS 61:2636–43
    [Google Scholar]
  55. 55.
    Jensen K. 1958. A normally occurring staphylococcus antibody in human serum. Acta Pathol. Microbiol. Scand. 44:4421–28
    [Google Scholar]
  56. 56.
    Forsgren A, Sjöquist J. 1966.. “ Protein A” from S. aureus: I. Pseudo-immune reaction with human γ-globulin. J. Immunol. 97:6822–27
    [Google Scholar]
  57. 57.
    Hjelm H, Hjelm K, Sjöquist J. 1972. Protein A from Staphylococcus aureus. Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins. FEBS Lett 28:173–76
    [Google Scholar]
  58. 58.
    Kronvall G. 1973. A surface component in group A, C, and G streptococci with non-immune reactivity for immunoglobulin G. J. Immunol. 111:51401–6
    [Google Scholar]
  59. 59.
    Ey PL, Prowse SJ, Jenkin CR. 1978. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using Protein A-Sepharose. Immunochemistry 15:7429–36
    [Google Scholar]
  60. 60.
    Bolton GR, Mehta KK. 2016. The role of more than 40 years of improvement in Protein A chromatography in the growth of the therapeutic antibody industry. Biotechnol. Prog. 32:51193–202
    [Google Scholar]
  61. 61.
    Cockett MI, Bebbington CR, Yarranton GT. 1990. High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Bio/Technology 8:7662–67
    [Google Scholar]
  62. 62.
    Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT. 1992. High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Bio/Technology 10:2169–75
    [Google Scholar]
  63. 63.
    Chusainow J, Yang YS, Yeo JHM, Toh PC, Asvadi P et al. 2009. A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer?. Biotechnol. Bioeng. 102:41182–96
    [Google Scholar]
  64. 64.
    Dinnis DM, James DC. 2005. Engineering mammalian cell factories for improved recombinant monoclonal antibody production: Lessons from nature?. Biotechnol. Bioeng. 91:2180–89
    [Google Scholar]
  65. 65.
    Barnes LM, Bentley CM, Dickson AJ. 2003. Stability of protein production from recombinant mammalian cells. Biotechnol. Bioeng. 81:6631–39
    [Google Scholar]
  66. 66.
    Ozturk SS, Palsson B. 1990. Loss of antibody productivity during long-term cultivation of a hybridoma cell line in low serum and serum-free media. Hybridoma 9:2167–75
    [Google Scholar]
  67. 67.
    Kim NS, Kim SJ, Lee GM. 1998. Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol. Bioeng. 60:6679–88
    [Google Scholar]
  68. 68.
    Wilson C, Bellen HJ, Gehring WJ. 1990. Position effects on eukaryotic gene expression. Annu. Rev. Cell Biol. 6:679–714
    [Google Scholar]
  69. 69.
    Kim SJ, Kim NS, Ryu CJ, Hong HJ, Lee GM. 1998. Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol. Bioeng. 58:173–84
    [Google Scholar]
  70. 70.
    Kim SJ, Lee GM. 1999. Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol. Bioeng. 64:6741–49
    [Google Scholar]
  71. 71.
    Koduri RK, Miller JT, Thammana P. 2001. An efficient homologous recombination vector pTV(I) contains a hot spot for increased recombinant protein expression in Chinese hamster ovary cells. Gene 280:187–95
    [Google Scholar]
  72. 72.
    Hirata R, Chamberlain J, Dong R, Russell DW 2002. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nat. Biotechnol. 20:7735–38
    [Google Scholar]
  73. 73.
    Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H. 2007. Road to precision: recombinase-based targeting technologies for genome engineering. Curr. Opin. Biotechnol. 18:5411–19
    [Google Scholar]
  74. 74.
    Barnes LM, Bentley CM, Dickson AJ. 2004. Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells. Biotechnol. Bioeng. 85:2115–21
    [Google Scholar]
  75. 75.
    Hu W, Wiltberger K 2014. Industrial cell culture process scale-up strategies and considerations. Animal Cell Biotechnology: In Biologics Production H Hauser, R Wagner 455–88 Berlin/Munich/Boston: De Gruyter
    [Google Scholar]
  76. 76.
    Kelley B. 2009. Industrialization of mAb production technology: the bioprocessing industry at a crossroads. mAbs 1:5443–52
    [Google Scholar]
  77. 77.
    Li F, Vijayasankaran N, Shen A(Y), Kiss R, Amanullah A 2010. Cell culture processes for monoclonal antibody production. mAbs 2:5466–77
    [Google Scholar]
  78. 78.
    Wong DCF, Wong KTK, Goh LT, Heng CK, Yap MGS. 2005. Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol. Bioeng. 89:2164–77
    [Google Scholar]
  79. 79.
    Nienow AW. 2006. Reactor engineering in large scale animal cell culture. Cytotechnology 50:1–39–33
    [Google Scholar]
  80. 80.
    Mostafa SS, Gu X(S) 2003. Strategies for improved dCO2 removal in large-scale fed-batch cultures. Biotechnol. Prog. 19:145–51
    [Google Scholar]
  81. 81.
    Li F, Hashimura Y, Pendleton R, Harms J, Collins E, Lee B. 2006. A systematic approach for scale-down model development and characterization of commercial cell culture processes. Biotechnol. Prog. 22:3696–703
    [Google Scholar]
  82. 82.
    Zhang J, Robinson D 2005. Development of animal-free, protein-free and chemically-defined media for NS0 cell culture. Cytotechnology 48:1–359–74
    [Google Scholar]
  83. 83.
    Pereira S, Kildegaard HF, Andersen MR. 2018. Impact of CHO metabolism on cell growth and protein production: an overview of toxic and inhibiting metabolites and nutrients. Biotechnol. J. 13:31700499
    [Google Scholar]
  84. 84.
    Xie L, Nyberg G, Gu X, Li H, Möllborn F, Wang DIC. 1997. Gamma-interferon production and quality in stoichiometric fed-batch cultures of Chinese hamster ovary (CHO) cells under serum-free conditions. Biotechnol. Bioeng. 56:5577–82
    [Google Scholar]
  85. 85.
    Altamirano C, Paredes C, Cairo JJ, Godia F. 2000. Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol. Prog. 16:169–75
    [Google Scholar]
  86. 86.
    Castro PML, Hayter PM, Ison AP, Bull AT. 1992. Application of a statistical design to the optimization of culture medium for recombinant interferon-gamma production by Chinese hamster ovary cells. Appl. Microbiol. Biotechnol. 38:184–90
    [Google Scholar]
  87. 87.
    Zang M, Trautmann H, Gandor C, Messi F, Asselbergs F et al. 1995. Production of recombinant proteins in Chinese hamster ovary cells using a protein-free cell culture medium. Nat. Biotechnol. 13:4389–92
    [Google Scholar]
  88. 88.
    Sinacore MS, Charlebois TS, Harrison S, Brennan S, Richards T et al. 1996. CHO DUKX cell lineages preadapted to growth in serum-free suspension culture enable rapid development of cell culture processes for the manufacture of recombinant proteins. Biotechnol. Bioeng. 52:4518–28
    [Google Scholar]
  89. 89.
    Low D, O'Leary R, Pujar NS 2007. Future of antibody purification. J. Chromatogr. B 848:148–63
    [Google Scholar]
  90. 90.
    Shukla AA, Hubbard B, Tressel T, Guhan S, Low D. 2007. Downstream processing of monoclonal antibodies—application of platform approaches. J. Chromatogr. B 848:128–39
    [Google Scholar]
  91. 91.
    Fahrner RL, Knudsen HL, Basey CD, Galan W, Feuerhelm D et al. 2001. Industrial purification of pharmaceutical antibodies: development, operation, and validation of chromatography processes. Biotechnol. Genet. Eng. Rev. 18:1301–27
    [Google Scholar]
  92. 92.
    Linhult M, Gülich S, Gräslund T, Simon A, Karlsson M et al. 2004. Improving the tolerance of a Protein A analogue to repeated alkaline exposures using a bypass mutagenesis approach. Proteins 55:2407–16
    [Google Scholar]
  93. 93.
    Hahn R, Bauerhansl P, Shimahara K, Wizniewski C, Tscheliessnig A, Jungbauer A. 2005. Comparison of Protein A affinity sorbents: II. Mass transfer properties. J. Chromatogr. A 1093:198–110
    [Google Scholar]
  94. 94.
    Shukla AA, Thömmes J. 2010. Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28:5253–61
    [Google Scholar]
  95. 95.
    Zhou JX 2017. Orthogonal virus clearance applications in monoclonal antibody production. Process Scale Purification of Antibodies U Gottschalk 325–41 Hoboken, NJ: John Wiley & Sons. , 2nd ed..
    [Google Scholar]
  96. 96.
    Rathore AS, Winkle H. 2009. Quality by design for biopharmaceuticals. Nat. Biotechnol. 27:126–34
    [Google Scholar]
  97. 97.
    US Food Drug Adm 2004. PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assurance Guid. Ind., Food Drug Adm. Washington, DC: https://www.fda.gov/media/71012/download
    [Google Scholar]
  98. 98.
    US Food Drug Adm 2009. Q8(R2) pharmaceutical development Guid. Ind., Food Drug Adm. Washington, DC: https://www.fda.gov/media/71535/download
    [Google Scholar]
  99. 99.
    Yu LX. 2008. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm. Res. 25:4781–91
    [Google Scholar]
  100. 100.
    Guerra A, von Stosch M, Glassey J. 2019. Toward biotherapeutic product real-time quality monitoring. Crit. Rev. Biotechnol. 39:3289–305
    [Google Scholar]
  101. 101.
    Rathore AS. 2009. Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol 27:9546–53
    [Google Scholar]
  102. 102.
    CMC Biotech Work. Group 2009. A-Mab: a case study in bioprocess development https://ispe.org/publications/guidance-documents/a-mab-case-study-in-bioprocess-development
    [Google Scholar]
  103. 103.
    Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ. 2013. The emerging CHO systems biology era: harnessing the ‘omics revolution for biotechnology. Curr. Opin. Biotechnol. 24:61102–7
    [Google Scholar]
  104. 104.
    Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z et al. 2011. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29:8735–41
    [Google Scholar]
  105. 105.
    Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G et al. 2013. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat. Biotechnol. 31:8759–65
    [Google Scholar]
  106. 106.
    Rupp O, MacDonald ML, Li S, Dhiman H, Polson S et al. 2018. A reference genome of the Chinese hamster based on a hybrid assembly strategy. Biotechnol. Bioeng. 115:82087–100
    [Google Scholar]
  107. 107.
    Hilliard W, MacDonald ML, Lee KH. 2020. Chromosome-scale scaffolds for the Chinese hamster reference genome assembly to facilitate the study of the CHO epigenome. Biotechnol. Bioeng. 117:82331–39
    [Google Scholar]
  108. 108.
    Feichtinger J, Hernández I, Fischer C, Hanscho M, Auer N et al. 2016. Comprehensive genome and epigenome characterization of CHO cells in response to evolutionary pressures and over time: comprehensive genome and epigenome characterization of CHO cells. Biotechnol. Bioeng. 113:102241–53
    [Google Scholar]
  109. 109.
    Sha S, Bhatia H, Yoon S. 2018. An RNA-seq based transcriptomic investigation into the productivity and growth variants with Chinese hamster ovary cells. J. Biotechnol. 271:37–46
    [Google Scholar]
  110. 110.
    Baycin-Hizal D, Tabb DL, Chaerkady R, Chen L, Lewis NE et al. 2012. Proteomic analysis of Chinese hamster ovary cells. J. Proteome Res. 11:115265–76
    [Google Scholar]
  111. 111.
    Valente KN, Lenhoff AM, Lee KH. 2015. Expression of difficult-to-remove host cell protein impurities during extended Chinese hamster ovary cell culture and their impact on continuous bioprocessing. Biotechnol. Bioeng. 112:61232–42
    [Google Scholar]
  112. 112.
    Fischer S, Handrick R, Otte K. 2015. The art of CHO cell engineering: a comprehensive retrospect and future perspectives. Biotechnol. Adv. 33:81878–96
    [Google Scholar]
  113. 113.
    Kol S, Ley D, Wulff T, Decker M, Arnsdorf J et al. 2020. Multiplex secretome engineering enhances recombinant protein production and purity. Nat. Commun. 11:11908
    [Google Scholar]
  114. 114.
    Karottki KJC, Hefzi H, Li S, Pedersen LE, Spahn PN et al. 2021. A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes. Metab. Eng. 66:114–22
    [Google Scholar]
  115. 115.
    Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D et al. 2016. A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst 3:5434–443.e8
    [Google Scholar]
  116. 116.
    Kim M, O'Callaghan PM, Droms KA, James DC. 2011. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol. Bioeng. 108:102434–46
    [Google Scholar]
  117. 117.
    Paredes V, Park JS, Jeong Y, Yoon J, Baek K. 2013. Unstable expression of recombinant antibody during long-term culture of CHO cells is accompanied by histone H3 hypoacetylation. Biotechnol. Lett. 35:7987–93
    [Google Scholar]
  118. 118.
    Baik JY, Lee KH. 2017. A framework to quantify karyotype variation associated with CHO cell line instability at a single-cell level. Biotechnol. Bioeng. 114:51045–53
    [Google Scholar]
  119. 119.
    Spahn PN, Zhang X, Hu Q, Lu H, Hamaker NK et al. 2022. Restoration of DNA repair mitigates genome instability and increases productivity of Chinese hamster ovary cells. Biotechnol. Bioeng. 119:963–82
    [Google Scholar]
  120. 120.
    Hamaker NK, Lee KH. 2018. Site-specific integration ushers in a new era of precise CHO cell line engineering. Curr. Opin. Chem. Eng. 22:152–60
    [Google Scholar]
  121. 121.
    Zhang L, Inniss MC, Han S, Moffat M, Jones H et al. 2015. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol. Prog. 31:61645–56
    [Google Scholar]
  122. 122.
    Gaidukov L, Wroblewska L, Teague B, Nelson T, Zhang X et al. 2018. A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res 46:84072–86
    [Google Scholar]
  123. 123.
    Shen Y, Burakov D, Chen G, Fandl JP. 2017. CHO integration sites and uses thereof US Patent 9816110B2
    [Google Scholar]
  124. 124.
    Ng CKD, Crawford YG, Shen A, Zhou M, Snedecor BR et al. 2019. Targeted integration of nucleic acids. US Patent 20210002669A1
    [Google Scholar]
  125. 125.
    Hilliard W, Lee KH. 2021. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis. Biotechnol. Bioeng. 118:2659–75
    [Google Scholar]
  126. 126.
    Lee JS, Grav LM, Lewis NE, Kildegaard HF. 2015. CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives. Biotechnol. J. 10:7979–94
    [Google Scholar]
  127. 127.
    Lee JS, Kallehauge TB, Pedersen LE, Kildegaard HF. 2015. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci. Rep. 5:18572
    [Google Scholar]
  128. 128.
    Bosshard S, Duroy P-O, Mermod N. 2019. A role for alternative end-joining factors in homologous recombination and genome editing in Chinese hamster ovary cells. DNA Repair 82:102691
    [Google Scholar]
  129. 129.
    Hamaker NK, Lee KH. 2020. A site-specific integration reporter system that enables rapid evaluation of CRISPR/Cas9-mediated genome editing strategies in CHO cells. Biotechnol. J. 15:82000057
    [Google Scholar]
  130. 130.
    Ng D, Zhou M, Zhan D, Yip S, Ko P et al. 2021. Development of a targeted integration Chinese hamster ovary host directly targeting either one or two vectors simultaneously to a single locus using the Cre/Lox recombinase-mediated cassette exchange system. Biotechnol. Prog. 37:4e3140
    [Google Scholar]
  131. 131.
    Inniss MC, Bandara K, Jusiak B, Lu TK, Weiss R et al. 2017. A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO cells. Biotechnol. Bioeng. 114:81837–46
    [Google Scholar]
  132. 132.
    Pristovšek N, Nallapareddy S, Grav LM, Hefzi H, Lewis NE et al. 2019. Systematic evaluation of site-specific recombinant gene expression for programmable mammalian cell engineering. ACS Synth. Biol. 8:4758–74
    [Google Scholar]
  133. 133.
    Carver J, Ng D, Zhou M, Ko P, Zhan D et al. 2020. Maximizing antibody production in a targeted integration host by optimization of subunit gene dosage and position. Biotechnol. Prog. 36:4e2967
    [Google Scholar]
  134. 134.
    Hansen HG, Pristovšek N, Kildegaard HF, Lee GM. 2017. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: lessons learned and future directions. Biotechnol. Adv. 35:164–76
    [Google Scholar]
  135. 135.
    Mason M, Sweeney B, Cain K, Stephens P, Sharfstein ST. 2012. Identifying bottlenecks in transient and stable production of recombinant monoclonal-antibody sequence variants in Chinese hamster ovary cells. Biotechnol. Prog. 28:3846–55
    [Google Scholar]
  136. 136.
    Le Fourn V, Girod P-A, Buceta M, Regamey A, Mermod N 2014. CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Metab. Eng. 21:91–102
    [Google Scholar]
  137. 137.
    Hasegawa H, Hsu A, Tinberg CE, Siegler KE, Nazarian AA, Tsai M-M. 2017. Single amino acid substitution in LC-CDR1 induces Russell body phenotype that attenuates cellular protein synthesis through eIF2α phosphorylation and thereby downregulates IgG secretion despite operational secretory pathway traffic. mAbs 9:5854–73
    [Google Scholar]
  138. 138.
    Mathias S, Wippermann A, Raab N, Zeh N, Handrick R et al. 2020. Unraveling what makes a monoclonal antibody difficult-to-express: from intracellular accumulation to incomplete folding and degradation via ERAD. Biotechnol. Bioeng. 117:15–16
    [Google Scholar]
  139. 139.
    O'Callaghan PM, McLeod J, Pybus LP, Lovelady CS, Wilkinson SJ et al. 2010. Cell line-specific control of recombinant monoclonal antibody production by CHO cells. Biotechnol. Bioeng. 106:6938–51
    [Google Scholar]
  140. 140.
    Pybus LP, Dean G, West NR, Smith A, Daramola O et al. 2014. Model-directed engineering of “difficult-to-express” monoclonal antibody production by Chinese hamster ovary cells: improving difficult-to-express mAb expression. Biotechnol. Bioeng. 111:2372–85
    [Google Scholar]
  141. 141.
    Johari YB, Estes SD, Alves CS, Sinacore MS, James DC. 2015. Integrated cell and process engineering for improved transient production of a “difficult-to-express” fusion protein by CHO cells. Biotechnol. Bioeng. 112:2527–42
    [Google Scholar]
  142. 142.
    Kelley B, Kiss R, Laird M 2018. A different perspective: How much innovation is really needed for monoclonal antibody production using mammalian cell technology?. New Bioprocessing Strategies: Development and Manufacturing of Recombinant Antibodies and Proteins B Kiss, U Gottschalk, M Pohlscheidtpp. 44362 Adv. Biochem. Eng. Biotechnol. 165 Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  143. 143.
    Huang Y-M, Hu W, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T. 2010. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol. Prog. 26:51400–10
    [Google Scholar]
  144. 144.
    Khanal O, Lenhoff AM. 2021. Developments and opportunities in continuous biopharmaceutical manufacturing. mAbs 13:11903664
    [Google Scholar]
  145. 145.
    Hsu W-T, Aulakh RPS, Traul DL, Yuk IH 2012. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology 64:6667–78
    [Google Scholar]
  146. 146.
    Coffman JL, Kramarczyk JF, Kelley BD. 2008. High-throughput screening of chromatographic separations: I. Method development and column modeling. Biotechnol. Bioeng. 100:4605–18
    [Google Scholar]
  147. 147.
    Bhambure R, Rathore AS. 2013. Chromatography process development in the quality by design paradigm. I: establishing a high-throughput process development platform as a tool for estimating “characterization space” for an ion exchange chromatography step. Biotechnol. Prog. 29:2403–14
    [Google Scholar]
  148. 148.
    Benner SW, Welsh JP, Rauscher MA, Pollard JM. 2019. Prediction of lab and manufacturing scale chromatography performance using mini-columns and mechanistic modeling. J. Chromatogr. A 1593:54–62
    [Google Scholar]
  149. 149.
    Roush D, Asthagiri D, Babi DK, Benner S, Bilodeau C et al. 2020. Toward in silico CMC: an industrial collaborative approach to model-based process development. Biotechnol. Bioeng. 117:123986–4000
    [Google Scholar]
  150. 150.
    Le H, Kabbur S, Pollastrini L, Sun Z, Mills K et al. 2012. Multivariate analysis of cell culture bioprocess data—lactate consumption as process indicator. J. Biotechnol. 162:2210–23
    [Google Scholar]
  151. 151.
    Krambeck FJ, Betenbaugh MJ. 2005. A mathematical model of N-linked glycosylation. Biotechnol. Bioeng. 92:6711–28
    [Google Scholar]
  152. 152.
    St. Amand MM, Radhakrishnan D, Robinson AS, Ogunnaike BA 2014. Identification of manipulated variables for a glycosylation control strategy. Biotechnol. Bioeng. 111:101957–70
    [Google Scholar]
  153. 153.
    Kumar V, Lenhoff AM. 2020. Mechanistic modeling of preparative column chromatography for biotherapeutics. Annu. Rev. Chem. Biomol. Eng. 11:235–55
    [Google Scholar]
  154. 154.
    Bee JS, Tie L, Johnson D, Dimitrova MN, Jusino KC, Afdahl CD. 2015. Trace levels of the CHO host cell protease cathepsin D caused particle formation in a monoclonal antibody product. Biotechnol. Prog. 31:51360–69
    [Google Scholar]
  155. 155.
    Dixit N, Salamat-Miller N, Salinas PA, Taylor KD, Basu SK. 2016. Residual host cell protein promotes polysorbate 20 degradation in a sulfatase drug product leading to free fatty acid particles. J. Pharm. Sci. 105:51657–66
    [Google Scholar]
  156. 156.
    Levy NE, Valente KN, Choe LH, Lee KH, Lenhoff AM. 2014. Identification and characterization of host cell protein product-associated impurities in monoclonal antibody bioprocessing. Biotechnol. Bioeng. 111:5904–12
    [Google Scholar]
  157. 157.
    Levy NE, Valente KN, Lee KH, Lenhoff AM. 2016. Host cell protein impurities in chromatographic polishing steps for monoclonal antibody purification. Biotechnol. Bioeng. 113:61260–72
    [Google Scholar]
  158. 158.
    Pais DAM, Carrondo MJ, Alves PM, Teixeira AP. 2014. Towards real-time monitoring of therapeutic protein quality in mammalian cell processes. Curr. Opin. Biotechnol. 30:161–67
    [Google Scholar]
  159. 159.
    Brinkmann U, Kontermann RE. 2017. The making of bispecific antibodies. mAbs 9:2182–212
    [Google Scholar]
  160. 160.
    Shukla AA, Wolfe LS, Mostafa SS, Norman C. 2017. Evolving trends in mAb production processes. Bioeng. Transl. Med. 2:158–69
    [Google Scholar]
  161. 161.
    Penaud-Budloo M, François A, Clément N, Ayuso E. 2018. Pharmacology of recombinant adeno-associated virus production. Mol. Ther. 8:166–80
    [Google Scholar]
  162. 162.
    Srivastava A, Mallela KMG, Deorkar N, Brophy G. 2021. Manufacturing challenges and rational formulation development for AAV viral vectors. J. Pharm. Sci. 110:72609–24
    [Google Scholar]
  163. 163.
    Warikoo V, Godawat R, Brower K, Jain S, Cummings D et al. 2012. Integrated continuous production of recombinant therapeutic proteins. Biotechnol. Bioeng. 109:123018–29
    [Google Scholar]
  164. 164.
    Badman C, Cooney CL, Florence A, Konstantinov K, Krumme M et al. 2019. Why we need continuous pharmaceutical manufacturing and how to make it happen. J. Pharm. Sci. 108:113521–23
    [Google Scholar]
  165. 165.
    Erickson J, Baker J, Barrett S, Brady C, Brower M et al. 2021. End-to-end collaboration to transform biopharmaceutical development and manufacturing. Biotechnol. Bioeng. 118:93302–12
    [Google Scholar]
  166. 166.
    Pollock J, Ho SV, Farid SS. 2013. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol. Bioeng. 110:1206–19
    [Google Scholar]
  167. 167.
    Arnold L, Lee K, Rucker-Pezzini J, Lee JH. 2019. Implementation of fully integrated continuous antibody processing: effects on productivity and COGm. Biotechnol. J. 14:21800061
    [Google Scholar]
  168. 168.
    Walther J, Lu J, Hollenbach M, Yu M, Hwang C et al. 2019. Perfusion cell culture decreases process and product heterogeneity in a head-to-head comparison with fed-batch. Biotechnol. J. 14:21700733
    [Google Scholar]
  169. 169.
    Mahal H, Branton H, Farid SS. 2021. End-to-end continuous bioprocessing: impact on facility design, cost of goods, and cost of development for monoclonal antibodies. Biotechnol. Bioeng. 118:93468–85
    [Google Scholar]
  170. 170.
    Martins DL, Sencar J, Hammerschmidt N, Flicker A, Kindermann J et al. 2020. Truly continuous low pH viral inactivation for biopharmaceutical process integration. Biotechnol. Bioeng. 117:51406–17
    [Google Scholar]
  171. 171.
    Dizon-Maspat J, Bourret J, D'Agostini A, Li F 2012. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production. Biotechnol. Bioeng. 109:4962–70
    [Google Scholar]
  172. 172.
    Casey C, Gallos T, Alekseev Y, Ayturk E, Pearl S 2011. Protein concentration with single-pass tangential flow filtration (SPTFF). J. Membr. Sci. 384:1–282–88
    [Google Scholar]
  173. 173.
    Rucker-Pezzini J, Arnold L, Hill-Byrne K, Sharp T, Avazhanskiy M, Forespring C 2018. Single pass diafiltration integrated into a fully continuous mAb purification process. Biotechnol. Bioeng. 115:81949–57
    [Google Scholar]
  174. 174.
    Mantle JL, Lee KH. 2020. NIIMBL-facilitated active listening meeting between industry and FDA identifies common challenges for adoption of new biopharmaceutical manufacturing technologies. PDA J. Pharm. Sci. Technol. 74:5497–508
    [Google Scholar]
  175. 175.
    US Food Drug Adm 2022. Coronavirus (COVID-19) update: FDA limits use of certain monoclonal antibodies to treat COVID-19 due to the omicron variant. Guid. Ind., Food Drug Adm. Washington, DC: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certain-monoclonal-antibodies-treat-covid-19-due-omicron
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092220-125832
Loading
/content/journals/10.1146/annurev-chembioeng-092220-125832
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error